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OPERATORS SATISFYING A G1 CONDITION

C. R. PUTNAM

An operator T o n a Hubert space is said to be G1 if
11 (T-z)-1 ||=l/dist(s, σ(T)) for z £ σ(T) and completely d if, in
addition, T has no normal part. Certain results are obtained
concerning the spectra of completely G± operators and of
their real parts. It is shown in particular that there exist
completely Gλ operators having spectra of zero Hausdorff
dimension. Some sparseness conditions on the spectrum are
given which assure that a Gx operator has a normal part.

1* Introduction. All operators considered in this paper will be
bounded (linear) on a Hubert space $Q of elements x. For any such
operator T it is well-known (and due to Wintner [26]) that

for z£σ{T) and | | ( T - sΓΊI ^ l/dist(z, W~{T)) for zi W~(T), where
σ(T) denotes the spectrum of T and W~(T) denotes the (convex)
closure of the numerical range W{T) — {(Tx, x): \\x\\ •— 1}. An operator
T is said to be G1 (or to satisfy a Gx condition, or to be of class GJ
if

(1.1) | | ( Γ - z Π I = 1/distfo <7(T)) for zϊσ(T) .

For instance, (1.1) holds for operators T which are normal (Γ*Γ —
TT* — 0), more generally, for those which are subnormal [T has a
normal extension on a larger Hubert space), and still more generally,
for hyponormal operators (T*T — TΓ* ^ 0). The inclusions indicated
here,

(1.2) normals c subnormals c hyponormals c (Gx) ,

are all proper and, needless to say, the simple stratification (1.2) can
be interstitially (and endlessly) refined. In this connection, see the
brief survey in Putnam [16].

An operator T will be called completely G± if T is Gλ and if, in
addition, T has no normal part, that is, T has no reducing subspace
on which it is normal. Similarly, one has corresponding definitions
of completely subnormal or completely hyponormal operators. It is
well-known that every compact set of the plane is the spectrum of
some normal operator. Moreover, necessary and sufficient conditions
are known in order that a compact set be the spectrum of a completely
subnormal operator (Clancey and Putnam [4]) or of a completely
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hyponormal operator (Putnam [15], [17]). On the other hand, no such
conditions are known for the class of completely G± operators.

It may be noted that if Tis Gλ and if σ{T) is finite, in particular,
if £$f is finite-dimensional, then necessarily T is normal. In fact,
Stampfli [20], p. 473, shows that if T is Gx and if z0 is an iso-
lated point of σ(T) then z0 is a normal eigenvalue of Γ, that is,
z0 e σ9(T), the point spectrum of T, and the corresponding eigenvectors
form a reducing space of T on which T is normal. (For some related
results, see also Hildebrandt [8], p. 234, and Luecke [10], p. 631.)
More generally, it was shown by Stampfli ([22], [23]) that if T is
Gx and if σ{T) is a subset of a smooth (C2) curve then T is normal.
In fact, he even obtains a local version of this result. Thus, if
zoeσ(T) and if D is an open disk centered at z0 for which σ(T) ΓΊ D
lies on a smooth curve and for which T is only locally G19 so that
(1.1) is assumed only in D — σ(T), then T has a representation
T= T Ί φ T 2 where Tx is normal with spectrum (σ(T) Π D)~ and T2

has a spectrum contained in σ(T) — D. On the other hand, as Stampfli
has shown ([20], p. 474; [22], p. 9), it is possible that (1.1) holds
and that σ(T) is even a countable subset of a curve z — z(t), 0 <; t ^ 1,
where z(t) is C2 for 0 ^ t < 1, but T fails to be normal. In [10],
Luecke shows that if o{T) is countable and has the property that
for any zeσ(T) there exists some w£σ(T) for which \z — w\ =
dist(w, σ(T)), then, in general, T need not be normal. However, if,
in addition, T is assumed to be a scalar operator, then it must indeed
be normal.

All of this suggests that a simple necessary and sufficient con-
dition on a compact set in order that it be the spectrum of a
completely Gx operator is not easily obtained. In fact, even such a
condition on a countable compact set in order that it be the spectrum
of a nonnormal operator of class Gλ is not known. (A sufficient
condition for normality is that of Luecke [10] mentioned above;
another is given in Theorem 2 below.) Of course, any Gx operator
having a countable spectrum certainly has a normal part. It is thus
clear that a necessary condition on a compact set, X, in order that
it be the spectrum of a completely Gx operator is that X be perfect.
In order to describe certain types of sets X occurring below, it will
be convenient to recall the definition of Hausdorff measure.

A "measure function" h(t) is an increasing continuous function
on 0 <̂  t < oo satisfying h(0) = 0. For a bounded set, X, of the
complex plane and a fixed d > 0 let Γ = {Du D2, •} be any countable
covering of X by open disks Dά of radius δj ^ <5. Then Ah(X) =
limδ_o [inf ΣΓ=i H$J)] exists and is the Hausdorff /^-measure of X. (See
Garnett [5], p. 58; also Carleson [2], Rogers [19].) If h(t) = tr, r > 0,
then A/. (-30 is the r-dimensional Hausdorff measure of X. In par-



OPERATORS SATISFYING A G, CONDITION 415

ticular, a nonempty set X is said to have Hausdorίf dimension = 0

if Ah(X) = 0 for all λ = ίr, r > 0.

2. THEOREM 1. For any given measure function h there exists
a perfect set X of the complex plane and [a completely G1 operator
T for which X = σ(T) has Hausdorff h-measure = 0.

It may be noted that, in particular, there exist completely Gx

operators with spectra of Hausdorίf dimension = 0. That the function
h of Theorem 1 be preassigned is an essential requirement however.
In fact, the condition that Ah(σ(T)) = 0 for all measure functions
h is sufficient (as well as necessary) in order that σ(T) be countable;
see Rogers [19], p. 67.

Proof. As in Stampfli ([20], [22]), consider the matrix

/0 1\

™ A - \o o.
acting on a two-dimensional Hubert space, so that (A — z)~ι =

i^ψ ~ l / f ) ' a n d h e n c e I I ( A " ^"'H = Vl«l + VM2 for all z£σ(A) =
{0}. Note also that W(A)(= W~(A)) = {z: \z\ ^ 1/2} and | |A | | = 1.
Then 11(A - ^ )"1!! ^ (\z\ - 1/2)"1 for \z\> 1/2 and clearly there exists
a countable set a = {̂ , z2, •} c {̂  : 0 < |» | < 1} satisfying ^ -> 0 as
n —> oo and such that

(2.2) IICA-z)-1)) ^ l/dist(z, α) for ^ ^ O .

Next, choose a sequence of nonoverlapping open disks {Du D2, •},
where each JDW has center zn and is contained in {z: 0 < | z | < 1}. Let
.AΛ = anA + «Λ, where 0 < an < radius i),,, so that || An — zn\\ = radius
ί)^ and σ(An) = {zn}. Then, for each n = 1, 2, , choose a countable
set α n = {»Λ1, znif •} c Z\ satisfying 2:%fc ^ ^ and z^ -^ ^ as Λ -> oo
and the inequality ||(AΛ — ^ )"1!! ^ l/dist(«, a%) for « ^ «w. Thus, if
To = A and Tx = Σ θ ^ one sees that

T = T ° ® Γ l s a t i s f i e s I I ( Γ "" z)~^ = ! / d i s t ( ^ U an) for
( ' } z$

In the next step each of the disks Dn plays the role of the con-
taining disk {z: \ z | < 1} in the previous construction. Thus, for each
n — 1, 2, , one chooses a sequence of nonoverlapping open disks
{DnU Dn2, •••}, contained in Dn and clustering at zn, and obtains a
new operator T2 for which T = j Γ o θ ^ φ ^ satisfies a condition
analogous to (2.2) for T = To and to (2.3) for T = Γ o φ Γ l t Continu-
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ation of this process leads to an operator T = Σ?=o 0 Tk satisfying

(2.4) | |(Γ - zΓ1!! ^ l/dist(z, X) for z$X ,

where X is the closure of the set of all centers of circles occurring
in the above construction. Since Xaσ(T) then, by (2.4), σ(T) = X
and T satisfies (1.1). Moreover, it is clear that T is a completely
Gi operator. Further, the inclusions

{z: z < 1} 3 [\jDn U {0}] => [ΌDnk U {0, zu z2, •}] => - 3 σ(T)

show that, for any given measure function h, one can always choose
the countable collection of disks {Dn}, {Dnk}, , in such a way that
σ(T) has Hausdorff fo-measure = 0. This completes the proof of
Theorem 1.

COROLLARY 1. If X denotes an arbitrary compact set of the plane
and if h is any measure function, then there exists a perfect set
P Z) X and a completely Gx operator T such that P — X has Hausdorff
h-measure = 0 and σ{T) = P.

Proof, Let {zl9 z2f } be any countable subset of X dense in X.
For each n = 1, 2, , let Dn be an open disk centered at zn and
suppose that diam Dn -> 0 as n —» oo. Then let Tn be a completely
Gx operator having spectrum of Hausdorff ^-measure = 0 and such
that zneσ(Tn)(zDn. One need only choose Tn, for instance, to be an
appropriate linear function of the operator T constructed in the proof
of Theorem 1. (Note that the Gx property is invariant under linear
transformations; see Luecke [11], p. 36.) If Γ = Σ Θ ^ then, since
each Tn is Gu σ(T) — (U o{Tn))~ and hence, since diam Dn —> 0 as n —>
co, σ(T) = \Jσ(Tn) U X = P satisfies the conditions stated in the
corollary.

A related result is the following

COROLLARY 2. If B is any operator and h is any measure
function there exists a completely Gλ operator T for which 5 0 T is
also (?! and σ(T) c {d(σ(B)) U β} where β has Hausdorff h-measure = 0.

Proof, Choose a sequence of points a = {zu z2, } in such a
way that no zn lies in σ(J5), dist(zΛ, σ(T)) —> 0 as n —> oo, and such that
||(2? — z)-"1!! <; l/dist(^, α) for z&σ(B). Then choose a sequence of
open disks{Dlf D2, —•}, where zn is the center of Dn, satisfying
Ώ% Π σ(B) = 0 and diam J5M -» 0 as n —• ©o, so that the Z)%'s cluster
only on the set d(σ(B)). If 2\, T2, are Gx operators such that
znea(Tn)cDn and σ(Tn) has Hausdorff fe-measure = 0, then T =
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, satisfies the conditions stated in the corollary.

3* Some lemmas. If {Alf A2, •••} is a decreasing sequence of
self-adjoint operators then the An converge strongly to a (self-adjoint)
operator A, a result due to Vigier (see Riesz and Sz.-Nagy [18], p.
263). In particular, if each An is an orthogonal projection, so also
is A. Further, it is well-known that a projection P(P = P2) is
orthogonal if and only if | | P | | <: 1. We shall need need the following
generalization to arbitrary projections Pn of the above results.

LEMMA 1. Let {Pu P2, •} be a sequence of projections (PΛ = PI)
satisfying

(3.1) P n P n + P = P n + P ( n = l , 2 , . . . ; P = 0 , 1 , 2 , •••)

a n d

(3.2) limsupllP.il ^ 1 .
ίt-»oo

Then the Pn converge strongly as n-> °o to an orthogonal projection.

Proof. First, let P denote any projection and let t ^ 0 satisfy

(3.3)

Since P 2 = P, the range of P* is orthogonal to the range oί I — P
and hence, if x is arbitrary in £> and y = P*x, then y = P*y 1(1— P)y.
Since Py = y — (I — P)y, then

\\y\\* + | | ( J - P)y\\2 = \\Py\\2 ^ ( l + * ) 2 I M I 2 ,

and so 11 (/ - P)P*x \ |2 ^ (2t + ί2) 11 P*αj 112. Consequently,

(3.4) | | P - PP* || = | | P * - P P * || ^ ί1/2(2 + ί)1/2(l + ί) ,

and hence

(3.5) | | P - P* || ^ 2ί1/2(2 + t)ί/2(l + t) .

Relations (3.2) and (3.5) (with P replaced by P J imply that
| | P Λ - P * | | - > 0 as ^ ^ oo. Further, if Qn = PnP%, also | |Q . - P J | - >
0 as n-+oof and hence, by (3.1), \\QnQn+p — Q»+p|| -> 0 as n->oo
(uniformly in p ^ 0). Similarly, ||O»O»+P - Q.+J,Q»||->0 as n->oo
(uniformly in p^ 0) and hence also | |Q.(I - Qn+P) - QT(I- Qn+P)QH2\\ ->
0 (uniformly in p ^ 0). I t follows that there exists a sequence of
positive numbers {tu t2, •••,} with limit 0 for which

(3.6) Anp = Qn- Qn+P + tn^0 for all n ^ 1 and p ^ 0 .
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If x is arbitrary in φ, then clearly one can choose integers n =
nk -> oo and p = pk-> °° so that (Qnjcx, x) —• lim inf^^{QnX, a?) and also

* χ) "* l i m suP -̂>oo (Q «, x). Hence, by (3.6),

(3.7) lim(Qna?, x) exists, for each x in § .

An argument like that in Riesz and Sz.-Nagy [18], p. 263, shows
that \\Anvx\\* = (Anpa?, AW3)x)2 ^ (Anpα, a?)(Aipί», A,pίc) and hence, by (3.7)
and the definition of Anp in (3.6), (Qn — Qn+p)x->0 (strongly) as n—>
oo (uniformly in p iΞ> 0), so that Q = s-lim^^ Qn exists and is self-
adjoint. Since | |Q n — Pn\\ —> 0, then s-lim^^P^ = Q is an orthogonal
projection and the proof of Lemma 1 is complete.

LEMMA 2. Let T be a Gλ operator and suppose that zoeσ(T).
In addition, suppose that there exists a sequence of circles Cn =
{Z:\Z-ZQ\- rn}7 n = 1, 2, , lying in the resolvent set of Γ, and
for which rλ> r1> - —> 0

(3.8) rΛ/dist(CΛ, σ(T)) > 1 as w > oo .

// each Cn is positively oriented and if Pn denotes the projection

(3.9) Pn=

Pn-^ P {strongly), where P is an orthogonal projection com-
muting tvith T, and

(3.10) ( T - s 0 ) P = 0 .

Proof. That the Pw satisfy (3.1) follows from a computation
similar to that in Riesz and Sz.-Nagy [18], p. 419. In addition, it
is clear that

(3.11) | |P. || ^ (2τrr(max ||(Γ - z Π l W . ^ rn/dist(C., σ(T)) ,
\2 on Cw /

so that (3.8) implies (3.2). Thus, by Lemma 1, Pn-*P (strongly),
where P is an orthogonal projection. Since PnT — TPn, then also
PT = TP. Relation (3.10) follows from the limit relation rn -> 0 and
an estimate of (T - zo)P = -(2πi)"1 \ (« - 20)(Γ - z)~γdz similar to
that of (3.11).

LEMMA 3. Let T be an arbitrary operator and suppose that
zoeσp(T). In addition, suppose that there exist zn£σ(T) such that
zn->z0 and \z% — zo\ \\(T — O"ΊI -^ 1 a s n~* °° Then z0 is a normal
eigenvalue of T.
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Proof, The result was given in Putnam [14] and, before this,
implicitly in Stampfli [21] (cf. Stampfli's remark in [24], p. 135). A
A variation appears earlier in Sz.-Nagy and Foias [25], p. 93. See
also Hildebrandt [8], p. 234.

REMARK. Let T be Gt. It is clear from Lemma 3 that if zQ e
σp(T) and if

znίσ(T), zn >z0 and dist(zn, σ(T))/\zn - zo\ > 1
{ό.lΔ)

as n > oo f

then z0 is a normal eigenvalue of T. In Lemma 2, it is assumed
only that z0 is in o{T) but not necessarily in op{T). On the other
hand, the condition (3.8) for such a zQ is clearly much stronger than
(3.12). Since T commutes with P, relation (3.10) implies that if
p φ 0 then necessarily z0 is a normal eigenvalue of T.

If only zQeσ(T) is assumed, it may be noted that (3.12) may
hold for a completely Gx operator, so that, in particular, zoίσp(T).
For example, let T be a completely Gx operator as constructed in
the proof of Theorem 1, so that T has the form Γ = Σ © (bnA + wn),
where bn > 0 and A is given by (2.1). If s = sup Re σ(T), then there
exists some zoeσ(T) with s — RezQ, and hence (3.12) holds with, say,
zn = zQ 4- cnf where 0 < cn —> 0.

Further, note that it is possible that T is Gx with zoeσp(T) and
that there exist circles Cn = {z:\z — zo\ = τn), n = 1, 2, , lying in
the resolvent set of T and satisfying rx> r2 > —> 0 and for which
the projections Pn of (3.9) are orthogonal and converge strongly to
an orthogonal projection P Φ 0, but for which £0 is not a normal
eigenvalue of T. Thus, (3.10) need not hold if (3.8) is not assumed,
even though the other hypotheses of Lemma 2 are retained.

A simple example is obtained by considering the construction
of Stampfli ([20], [22]), with

(3.13) Γ = A 0 i V ,

where A is given by (2.1) and N is normal with spectrum a~. Here
a is defined as in the beginning of the proof of Theorem 1 and, in
particular, (2.2) holds. Clearly, for z0 = 0, there exist circles Cn =
{z: \z\ — rn} lying in the resolvent set of T with τx > r2 > —> 0.
It is seen that each Pn is an orthogonal projection. Further, if A acts
on the two-dimensional space $ 0 then Pn—>P (strongly), where P is
the projection of § onto #<>• Although so6cΓp(T), it is clear that z0

is not a normal eigenvalue of T.
The above procedure can be modified so as to yield a completely

(?! operator T. One need only consider the operator T constructed
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in the proof of Theorem 1 above where the numbers zlf z2, , and
the first sequence of disks {Dlf D2, •}, with D% = {z: \z — zn\ < rn},
are chosen so that (0, t) Π U*=i (I *» I - r«9 \ZΔ + rn) Φ (0, ί) for all
t > 0. This enables one to choose circles Cn as in the preceding
paragraph and to proceed in a manner similar to that described there.

4* THEOREM 2. Let T be Gx and suppose that σ(T) is not a
perfect set and that for each zoeσ(T) there exists a sequence of
circles Cn = {z: \z — zo\ = rn}, n = 1, 2, , ί̂ /wiβr iw ίfee resolvent of
T for which n > r2 > —> 0 and (3.8) feoίds.

(4.1) T is normal if σ(T) is countable ,

and

(4.2) T = T,®T2 if σ(T) is not countable ,

where !\ is normal with σ(T^) = α~ α^cί α α countable set, and where
σ(T2) is perfect and σ{T2) Π a = 0 .

Proof. Since (j(T) is not perfect, σ(T) contains a nonempty-
countable) set, So, of isolated points. Hence, as noted earlier, Thas
a normal part JV0 corresponding to these points with σ(NQ) = Si". In
case So — G(T), the proof is complete. Otherwise, as will be assumed,
T=Noφ Ao, where σ(A0) Π So= 0, and we let Sx denote the (countable)
set of isolated points of the first derivative, σ'(Γ), of σ(T). If S± is
empty the proof is over and so we can suppose that Sx Φ 0 . It
follows from (3.10) of Lemma 2 that each point zQ of Sx either cor-
responds to a normal eigenvalue (if P Φ 0), or, if P = 0, can simply
be ignored. Thus, at the end of the second stage we have T =
N, 0 A1 where σ(Nύ = So" U Sr and, if Λ is present, σ(Aλ) Π (So U SJ =
0 . One then repeats this process. It should be noted that for
n = 0, 1, 2, , Sn = <7W(T) - σ(TO+1)(Γ), where σw(T) denotes the ^ith
derived set of σ{T) = σ(0)(Γ). If for any positive integer n, Sn is
empty, the process terminates. In addition, if σ{T) — U^=oS%, the
process also terminates, and, of course, implies that T is normal
and that σ(T) is countable. Otherwise, the process continues via
transfinite induction as noted below.

The vth derived set of σ(T) can be defined, in the manner of
Cantor using transfinite induction, for any ordinal v, see Kamke [9],
p. 127. It follows from a transfinite induction argument ([9], pp.
132-133) that there is a least ordinal 7, where 0 ^ cardinality of
7 ^ Ko, with the property that σw(T) = σ{a\T) for all ordinals a ^ 7.
In particular, if σw(T) is not empty then it is perfect. It follows
(cf. [9], p. 133) that if σ(T) is countable, then σ{r)(T) is empty and,
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by the process described in the preceding paragraph, (4.1) is established.
If σ{T) [is not countable then σir)(T) is perfect and so (4.2) holds
with the properties described in Theorem 2.

5. THEOREM 3. Let T be G^ Suppose that for every ε > 0 there
exists a countable covering of σ{T) by open disks Dn — {z:\z — zn\ < rn),
n — 1, 2, , with the properties that, for each n, D% Π o(T) Φ 0 and
Cn = {z: \z — zn\ •= rn) lies in the resolvent set of T, and that

(5.1) Σ (rn/dΛ - 1)1/2 < ε , where dn = dist(CΛ, σ{T)) (^ rn) ,
n

and

(5.2) Σr,<ε.
n

Then T is normal.

Proof. Let ε > 0 be fixed. In view of the Heine-Borel theorem

it may be suppose that the covering of Theorem 3 is finite, say

{A, *', DN), and that Dn ς£ Dm for n Φ m. For n = 1, , N, define

Pn — — (2πi)~1 \ (T — z)~γdz, where the Cn are regarded as positively

oriented, so that, by an estimate similar to that of (3.11), | | P W | | ^
rjdn. (Note that in the present case, Dn f] σ(T) φ 0 but it is not
assumed as in Lemma 2 that the center of Cn is in σ(T).) Next, if
tn - rjdn - 1 then | | P J | £ 1 + tn (cf. (3.3)). It follows from (3.5)
with P and t replaced by Pn and tn that

(5.3) | | P . - P* II ^ const(rΛ/dΛ - 1)1/2 (n = 1, , N) ,

provided, say, 0 < ε <: 1/2, as will be assumed. Thus, in view of
(5.1).

(5.4) Σ l l ^ --Pίll ^ const ε .

Next, consider any pair or circles, say Cλ and C2. It will be
shown that if A IΊ A Φ 0 then either one circle, say C2, can be
discarded or it can be deformed into a rectifiable simple closed curve
C[ lying in the resolvent set of T and with the properties that

(5.5) P 2 - Pc, = -(27a)-1 ί (Γ - z)~ι

2 J°2

and

(5.6) int C[ c A and A Π int Ĉ  =

ιdz
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To see this, note first that σ{T) Π {z: r1 — d1 < \z — zx\ <r1 + cίj =
0 . It D1c:{z\\z-z1\<r1 + dj, then A Π σ{T) c A ί l σ(Γ) and so
C2 can be discarded. Also, in case A Π {z: |s — «x| ^ r1 — dj = 0 ,
then, since A £ A, C2 can be deformed into C[ so as to satisfy both
(5.5) and (5.6). The remaining possibility is that

A Π {z: 12 - z,I <; n - d j =£ 0 and A <£ {z:\z - z^ <rt + cZJ .

It may be supposed, however, that {z: \z — z±\ ^ rx — dj ςz! A since,
otherwise, A ΓΊ 0"(JΓ) c A ΓΊ 0"(T) and Ĉ  can be discarded. Consequently,
r2 > dλ and d2 < 2(rx - dx), so that r2/d2 > dJ2(r1 - dj = lβ{rιjd1 -1)""1.
Hence, r2/d2 > l/2ε2, in view of, and in contradiction to (5.1) (with
ε :£ 1/2).

Repeated applications of the above argument show that the
circles Cu , CN may be replaced by rectifiable simple closed curves,
say, 7i, , ΎM(M ̂  N), where each j i is some Cs or some C], and
where int 7» Π int 7m = 0 for mφn and σ(Γ) c Uf=iίnt 7». It is
seen from relations corresponding to (5.5) and (5.6) that Σf=i ^ = I>
where PΛ = -(2τrί)-1ί (T - z)- 1 ^, and hence that Σ/P» = I where
the prime denotes that the summation is over a subset of {1, , JV}.
As a result, we revert to the original notation and suppose without
loss of generality, that

(5.7) /

It is now easy to complete the proof of Theorem 3. For,

(5.8) T = TI =

But || (Γ - ^ J P J | ^ r J | PJI ^ rn(rjdn) < rn(l + ε2), the last inequality
by (5.1). Since ε ^ J, (5.2) shows -that ΣIKϊ7 - O P J I ^ 2β. Also,
Σ « Λ = Σ z Λ * + Σ ^ ( P . - P.*) and, by (5.4), Σ \\z%(PΛ - P*) | | ^
(max 1̂ 1) const ε. Since each Dn contains part of σ{T) it is clear
from (5.2) that max | s j ^ | |Γ | | + 2ε ^ | |Γ | | + 1, and so, by (5.8),

(5.9) T = ΣmP* + A9 where || A \\ ^ const ε .

Hence, T*T = 2A**T*P* + T*A = ^*JznPt + (T:-zn)P;] + T*A. But
|JΓ*A| | ^constε and, as above, Σ \\zn(Tf-zn)Pϊ\\ ^ (max |zj)2ε, and

so another application of (5.4) yields || Γ*Γ|| - Σ \zn\
2Pn | | < const ε.

A similar argument yields the same inequality with T and T* in-
terchanged, hence T is normal, and the proof is complete.

REMARKS. It is readily seen that Theorem 3 implies the asser-
tion of Theorem 2 when σ(T) is countable. We do not know whether
the hypothesis of Theorem 2 implies that T is normal even when σ{T)
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is not countable, in which case Theorem 2 would imply Theorem 3.
The hypothesis (3.8) of Theorem 2 is of course a "sparseness" con-
dition on σ(T) and, conceivably, is restrictive enough to imply
normality of T. In the same vein, we do not know whether the
condition (5.2) in the hypothesis of Theorem 3 is essential, although,
of course, at least a boundedness restriction must be placed on the
rn'& of (5.1). (Note that if Cr is the circle with center at z = 0 and
radius r then r/dist(Cr, σ(T)) —»1 as r -> °o.) It is clear, of course,
that (5.2) alone is not enough, since this condition amounts only to
requiring that σ(T) be of one-dimensional Hausdorff measure 0.

It may be noted that there exist uncountable sets, corresponding
to σ(T), for which (3.8) holds. To see this, one need only modify
the construction of the standard Cantor set so that the length of
each removed complementary open interval is a fraction sufficiently
close to 1 of the length of the (closed) interval from which it was
removed.

6* Real parts of GL operators* If T is G± then, as was shown
in Putnam [13], p. 509,

(6.1) Reσ(T)cσ(Re T) .

For another proof, see Berberian [1], where it is also shown that,
if σ(T) is connected,

(6.2) Reσ(T) = σ(Re T) .

That (6.2) need not hold in general, however, can be deduced from
the example of Stampfli of (3.13) above, simply by choosing the
sequence {zlf z2, •••} so that, for instance, Re« Λ 9 f c ±l/2 for all n.
Then Reσ(T) consists of 0 and the real parts of the zn's while
σ(Re T) = Re σ(T) U{±l/2}. A consideration of the operator T
constructed in Theorem 1, where now the disks Dn are chosen so
that Re z Φ ±1/2 for z e Dn(n = 1, 2, - •), shows that (6.1) may hold
properly also if T is completely Gx.

It is known that (6.2) always holds for hyponormal operators;
see Putnam [12], p. 46. In view of certain known results concerning
the spectra of completely subnormal and completely hyponormal
operators one has the following

THEOREM 4. Let T have the rectangular form T = H + iJ and
let X be a compact subset of the real line. Then:

( i ) X is the spectrum of H = Re ϊ7 for some completely sub-
normal T if and only if X is the closure of an open subset of the
real line;
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(ii) X is the spectrum of H = Re T for some completely hyponor-
mal T if and only if, for every open interval I, meas^JΓ Π /) > 0
whenever X Π I Φ 0 , where meaSi denotes linear Lebesgue measure.

Proof of (i). First, let X be the closure of an open set of real
numbers, so that X— (U/»)", where Ilf I2, is a countable set of
pair wise disjoint open intervals. Since the unilateral shift V is
subnormal and σ(V) is the closed unit disk (see, e.g., Halmos [7]),
one need only put T = Σ © (an V + bn) where an, bn are real, a% > 0,
and I% = ( — an + bn, an + bn). Clearly, Xaσ(T), while the reverse
inclusion follows from the fact that each term anV + bn is Gx.

Conversely, suppose that H = Re T where T is completely sub-
normal and let X = (int σ(H))~. It will be shown that X = σ(H). If
Xφ σ(H), then there exists some ceσ(H) — X and an open interval
Ic containing c such that σ(H) Π Ic has no interior. In view of (6.2),
there exists an open disk D intersecting σ{T) for which Y = σ(T) f) D~
is nowhere dense and has a connected complement. Hence C(Y) =
P{Y), by Lavrentiev's theorem (cf. Gamelin [5], y. 48), and hence T
has a normal part with spectrum Y; see Clancey and Putnam [4].
Thus, T is not completely subnormal, a contradiction.

Proof of (ii). First, suppose that X Π I has positive linear
measure whenever / is an open interval and X (Ί /is not empty. Let
T=H+iJ on φ = L2(X), where (Hx)(t) = tx(t) and (Jx)(t) =
— (ίπ)"1 I (s — t ) " 1 ^ ) ^ , the integral regarded as a Cauchy principal

value. Then T is completely hyponormal, σ(T) = I x [ — 1, 1], and
Re σ(T) = X; cf. Clancey and Putnam [3], p. 452.

Next, suppose that H = Re Γ where Γ is completely hyponormal.
Then σ(T) Π D has positive planar measure whenever D is an open
disk for which σ(T) Π D is not empty; see Putnam [15], p. 324. Since
T satisfies (6.2), it is clear that σ{H) Π / has positive linear measure
whenever I is an open interval for which o(H) Π / is not empty.
This completes the proof of Theorem 4.

As was noted in § 1, a necessary and sufficient condition on a
compact set of the plane in order that it be the spectrum of a
completely Gλ operator is not known. Also, we do not have an
analogue of Theorem 4. However, it is possible to prove the following

THEOREM 5. In order that a compact set X of the real line be
the spectrum of the real part of a completely G1 operator T it is
necessary that X be uncountable (equivalently, that X contain a
perfect set).
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Proof. In view of (6.1) it is clear that if T is any Gx operator
and if X = σ(Re T) then <j(T) is contained in the set consisting of
all lines {z: Re z — c) where ceX. Further, since T of the theorem
is completely G19 then {z: Re z = c} ΓΊ tf(Γ) is empty whenever c is an
isolated point of X, as can be seen from (6.1) and Stampfli's result
([22], [23]) mentioned in §1. Consequently, σ(T) is contained in the
union of lines {z: Re z = c} where c e X', the first derived set of X.
As above, no point of o(T) can lie on {z: Re z = c} if 2 is an isolated
point of X', that is if c g X". It follows as in the proof of Theorem
2 that if 7 is the least ordinal (necessarily of finite or denumerable
cardinality) with the property that X(r) = X(r+1) then necessarily σ(T)
is contained in the union of lines {2: Re 2 = c) with ceXir). Conse-
quently, X(r) Φ 0 , hence is perfect, and the proof of Theorem 5 is
complete.

REMARKS. In Theorem 5 it is possible that X contains some
isolated points. One need only consider the example mentioned at
the beginning of this section illustrating that (6.1) may be a proper
inclusion with T completely Gλ. We do not know whether the con-
dition of Theorem 5 on X is also sufficient, that is, whether any
uncountable compact set of the real line must be the spectrum of
the real part of some completely G1 operator.
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