AMENABLE GROUPS FOR WHICH EVERY TOPOLOGICAL LEFT INVARIANT MEAN IS INVARIANT

ALAN L. T. PATERSON

Let G be an amenable locally compact group. It is conjectured that every topological left invariant mean on $L_{\infty}(G)$ is (topologically) invariant if and only if $G \in [FC]^-$. This conjecture is shown to be true when G is discrete and when G is compactly generated.

1. Introduction. Let G be an amenable locally compact group and let $\mathfrak{L}_{i}(G)(\mathfrak{R}_{i}(G))$ be the set of topological left (right) invariant means on $L_{\infty}(G)$. A natural question to ask is: when does $\mathfrak{L}_{i}(G) =$ $\mathfrak{R}_{i}(G)$? Obviously, $\mathfrak{L}_{i}(G) = \mathfrak{R}_{i}(G)$ if G is compact or abelian. The results of this paper strongly support the conjecture that $\mathfrak{L}_{i}(G) =$ $\mathfrak{R}_{i}(G)$ if and only if $G \in [FC]^{-}$, the class of those locally compact groups each of whose conjugacy classes is relatively compact. Theorem 3.2 (Theorem 4.4) establishes this conjecture when G is discrete (compactly generated).

The present writer's interest in the above question arose from his inability to prove [1, Theorem 7]. The latter result asserts that if G is an exponentially bounded discrete group, then $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$. This result is false. (See (3.3).)

I am indebted to Dr F. W. Ponting for help in translating portions of [1].

2. Preliminaries. The cardinality of a set A is denoted |A|. Let G be a group. The identity of G will be denoted by e, and if $x \in G$, then $C_x = \{yxy^{-1}: y \in G\}$ is the conjugacy class of x in G. If $a, x \in G$, then

$$C(x) = \{y \in G : xy = yx\}, \quad C_a(x) = \{y \in G : yxy^{-1} = a\}.$$

Now let G be a locally compact group. The family of compact subsets of G is denoted by $\mathscr{C}(G)$ and the family of compact neighborhoods of e in G is denoted by $\mathscr{C}_e(G)$. The algebra of continuous, bounded, complex-valued functions on G is denoted by C(G). Throughout the paper, λ will be a left Haar measure on G. The group G is called an $[FC]^-$ group if C_x is relatively compact for all $x \in G$. The class of discrete $[FC]^-$ groups is denoted by [FC]. The group G is called an [IN] group if there exists $D \in \mathscr{C}_e(G)$ such that xD =Dx for all $x \in G$. (For information about the classes $[FC]^-$ and [IN], see [4].)

Let G be a locally compact group. For $\phi \in L_{\infty}(G)(=L_1(G)^*)$ and $\mu \in L_1(G)$, define $\phi \mu$, $\mu \phi \in L_{\infty}(G)$ by setting

$$\phi\mu(\nu) = \phi(\mu*
u)$$
, $\mu\phi(\nu) = \phi(\nu*\mu)$ $(\nu \in L_1(G))$.

Let P(G) be the set of probability measures in $L_1(G)$. A mean M on $L_{\infty}(G)$ is said to be a topological left (right) invariant mean if

$$M(\phi\mu) = M(\phi) \quad (M(\mu\phi) = M(\phi))$$

for all $\phi \in L_{\infty}(G)$ and all $\mu \in P(G)$. The set of topological left (right) invariant means on G is denoted by $\mathfrak{L}_t(G)(\mathfrak{R}_t(G))$. A mean M on $L_{\infty}(G)$ is said to be a topological invariant mean if $M \in \mathfrak{L}_t(G) \cap \mathfrak{R}_t(G)$. The group G is amenable if and only if $\mathfrak{L}_t(G)(\mathfrak{R}_t(G))$ is not empty. If G is discrete, then $\mathfrak{L}_t(G)(\mathfrak{R}_t(G))$ coincides with $\mathfrak{L}(G)(\mathfrak{R}(G))$, the set of left (right) invariant means on $\mathscr{L}_{\infty}(G)$. It is a simple consequence of the structure theory of $[FC]^-$ groups that every $[FC]^-$ group is amenable ([7], [5], [6]).

A measurable subset T of G is said to be topologically left (right) thick if

$$\sup_{x\in \widehat{C}} \lambda(C\cap Tx) = \lambda(C) \quad \left(\sup_{x\in \widehat{C}} \lambda(C\cap xT) = \lambda(C)
ight)$$

for all $C \in \mathscr{C}(G)$. The subset T is topologically left (right) thick if and only if there exists $M \in \mathfrak{L}_t(G)(M \in \mathfrak{R}_t(G))$ such that $M(\chi_T) = 1$. (See [2, Theorem 7.8] and [12].) If G is discrete, then T is topologically left thick if and only if, for every finite subset F of G, there exists $x_F \in G$ such that $Fx_F \subset T$. In this case, T is said to be left thick ([10]).

3. The discrete case.

LEMMA 3.1. Let G be an amenable discrete group which is not an [FC] group. Then $\mathfrak{L}(G) \neq \mathfrak{R}(G)$.

Proof. The result will follow once we have constructed a left thick subset T of G which is not right thick: for then any left invariant mean M on G for which $M(\chi_T) = 1$ will not be right invariant.

To this end, let α be the smallest ordinal of cardinality |G|, and let $\{F_{\beta}: \beta \in \alpha\}$ be an enumeration of the family of finite subsets of G. Since $G \notin [FC]$, we can find $z \in G$ such that C_z is infinite. Choose z_1, z_2 in G such that $z_1^{-1}z_2 = z$. The lemma will be proved once we have constructed (by transfinite recursion) a subset $\{x_{\beta}: \beta \in \alpha\}$ of Gsuch that for all $x \in G$ and all $\beta \in \alpha$,

392

(1)
$$x\{z_1, z_2\} \not\subset \cup \{F_{\delta}x_{\delta}: \delta \in \beta\}$$

(For then we can take $T = \bigcup \{F_{\beta}x_{\beta}: \beta \in \alpha\}$.) Suppose that $\beta \in \alpha$, and that elements $x_{\delta}(\delta \in \beta)$ have been constructed so that

$$x\{z_1, z_2\} \not\subset \cup \{F_{\gamma}x_{\gamma}: \gamma \in \delta\}$$

for all $x \in G$ and for all $\delta \in \beta$. Let $C = \bigcup \{F_{\delta}x_{\delta}: \delta \in \beta\}$. Note that $x\{z_1, z_2\} \not\subset C$ for all $x \in G$.

Let $y \in G$ and suppose that there exists $x \in G$ such that

$$(2)$$
 $x\{z_1, z_2\} \subset C \cup F_{\beta}y$

Then either $xz_1 \in C$, $xz_2 \in F_{\beta}y$ or $xz_2 \in C$, $xz_1 \in F_{\beta}y$ or $xz_1 \in F_{\beta}y$, $xz_2 \in F_{\beta}y$. If $xz_1 \in C$ and $xz_2 \in F_{\beta}y$, then $z = (xz_1)^{-1}(xz_2) \in C^-F_{\beta}y$. Applying a similar argument to each of the other cases, we see that either $z \in C^{-1}F_{\beta}y$ or $z^{-1} \in C^{-1}F_{\beta}y$ or $z \in y^{-1}F_{\beta}^{-1}F_{\beta}y$. Let $A = F_{\beta}^{-1}Cz \cup F_{\beta}^{-1}Cz^{-1}$. Note that |A| < |G|. Let $B = \{u \in G: uzu^{-1} \in F_{\beta}^{-1}F_{\beta}\}$. Then $y \in A \cup B$. We now show that $|G \sim B| = |G|$. It is elementary that if $a \in G$ and if $x_a \in G$ is such that $x_a zx_a^{-1} = a$, then $C_a(z) = x_a C(z)$. If follows that $|C_a(z)| =$ |C(z)| for all $a \in C_z$. If |C(z)| = |G| and if $a \in C_z \sim F_{\beta}^{-1}F_{\beta}$, then $|G \sim B| \ge |C_a(z)| = |G|$, and so $|G \sim B| = |G|$. If, on the other hand, |C(z)| < |G|, then $|B| \le |F_{\beta}^{-1}F_{\beta}| |C(z)| < |G|$, and again $|G \sim B| = |G|$.

Since |A| < |G| and $|G \sim B| = |G|$, we can find $x_{\beta} \in G \sim (A \cup B)$. As $A \cup B$ is the set of elements y for which there exists x satisfying (2), it follows that $x\{z_1, z_2\} \not\subset C \cup F_{\beta}x_{\beta}$ for all $x \in G$. This completes the construction of $\{x_{\beta}: \beta \in \alpha\}$ and hence the proof of the lemma.

THEOREM 3.2. Let G be an amenable discrete group. Then $\mathfrak{L}(G) = \mathfrak{R}(G)$ if and only if $G \in [FC]$.

Proof. By (3.1), if $\mathfrak{L}(G) = \mathfrak{R}(G)$, then $G \in [FC]$. Conversely, suppose that $G \in [FC]$. We could appeal to the result mentioned in (4.5), but the following easy proof is available.

Let $M \in \mathfrak{L}(G)$, $x \in G$ and $E \subset G$. Since C_x is finite, we can find x_1, \dots, x_n in G such that G is the disjoint union of the sets $x_rC(x)$. We can write $E = \bigcup_{r=1}^n x_rE_r$ where $E_r \subset C(x)$ for all r. Then

$$M(Ex) = \sum_{1}^{n} M(x_{r}E_{r}x) = \sum_{1}^{n} M(x_{r}xE_{r}) = \sum_{1}^{n} M(x_{r}E_{r}) = M(E)$$

and $M \in \mathfrak{R}(G)$. It now follows that $\mathfrak{L}(G) = \mathfrak{R}(G)$.

NOTE 3.3. Contrary to the assertion of [1, Theorem 7], there are exponentially bounded groups G for which $\mathfrak{L}(G) \neq \mathfrak{R}(G)$. An example of such a group is the (nilpotent) discrete group of upper triangular, real, 3×3 matrices with diagonal entries equal to 1. (The latter group does not belong to [FC].)

4. The nondiscrete case. We require three preliminary results.

LEMMA 4.1. Let $G \in [IN]$ be such that for each $C \in \mathcal{C}(G)$, we have

(1)
$$\sup_{D \in \mathscr{C}(G)} \left[\inf_{x \in G} \lambda(xCx^{-1} \cap D) \right] = \lambda(C) .$$

Then the set $\cup \{xCx^{-1}: x \in G\}$ is relatively compact for each $C \in \mathscr{C}(G)$.

Proof. Let U be an open, relatively compact subset of G. Approximating U by compact subsets and using the equation (1), the fact that G is unimodular, and the inner regularity of λ , we see that (1) is valid when C is replaced by U.

The desired result will follow once it has been shown that there exists $D_0 \in \mathscr{C}(G)$ such that $x U x^{-1} \subset D_0$ for all $x \in G$. Let N be a compact, invariant neighborhood of e. Since \overline{U} is compact, we can find x_1, \dots, x_r in U such that

$$(2) U \subset \bigcup_{i=1}^r x_i N.$$

Then $k = \min_i \lambda(U \cap x_i N)$ is positive. Find $E \in \mathscr{C}(G)$ such that for all $x \in G$,

$$\lambda(U\cap x^{-1}Ex)=\lambda(xUx^{-1}\cap E)>\lambda(U)-k\;.$$

Let $x_0 \in G$. By (2) and (3), we can find, for each *i*, an element $n_i \in N$ such that $x_i n_i \in x_0^{-1} E x_0$. So

$$x_i N \! \subset \! x_i n_i N^{-_1} N \! \subset \! x_0^{-_1} E \! x_0 N^{-_1} N = x_0^{-_1} (E N^{-_1} N) \! x_0 \; ,$$

and it follows that $x_{\scriptscriptstyle 0}Ux_{\scriptscriptstyle 0}^{\scriptscriptstyle -1} \subset EN^{\scriptscriptstyle -1}N$. Now take $D_{\scriptscriptstyle 0} = EN^{\scriptscriptstyle -1}N$.

LEMMA 4.2. Let G be an amenable, compactly generated, locally compact group for which $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$. Then $G \in [IN]$.

Proof. Assume that $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$, and that G is not an [IN] group. By [11, Theorem 1.8], we have

$$\inf_{x \in G} \lambda(N \cap x^{-1}Nx) = 0$$

for all $N \in \mathcal{C}_{e}(G)$. It easily follows that

(1) $\inf_{x\in G}\lambda(N\cap x^{-1}Mx)=0$

for all $N, M \in \mathcal{C}(G)$.

Let $C \in \mathscr{C}_{\epsilon}(G)$ be such that $G = \bigcup_{n=1}^{\infty} C^n$, and let $\varepsilon = (1/2)\lambda(C)$. Using (1), we can find, for each *n*, an element $x_n \in G$ such that

$$(2) \qquad \qquad \lambda(C^{-1}C\cap x_n^{-1}C^{-n}C^nx_n) < \varepsilon 2^{-n} .$$

Let $T = \bigcup_{n=1}^{\infty} C^n x_n$. It is obvious that T is topologically left thick in G. The lemma will be established (by contradiction) once we have shown that T is not topologically right thick.

Let $x \in G$, and, for each n, let $C_n = xC \cap C^n x_n$. Let $c_n \in C_n$. Then

$$\lambda(C_n) = \lambda(c_n^{-1}C_n) \leq \lambda(C^{-1}C \cap x_n^{-1}C^{-n}C^nx_n) < \varepsilon 2^{-n}$$

using (2). It follows that $\lambda(xC \cap T) < \varepsilon \sum_{1}^{\infty} 2^{-n} = \varepsilon$, and so

$$\lambda(xC \cap T) \leq \frac{1}{2}\lambda(C)$$

So T is not topologically right thick.

LEMMA 4.3. Let G be an amenable, compactly generated, locally compact group for which $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$. Then

$$\sup_{D \in \mathscr{C}(G)} \left[\inf_{x \in G} \lambda(x C x^{-1} \cap D) \right] = \lambda(C)$$

for all $C \in \mathscr{C}(G)$.

Proof. Suppose that $C_0 \in \mathscr{C}(G)$ is such that for some $\varepsilon > 0$,

$$(1) \qquad \qquad \sup_{D \in \mathscr{C}(G)} \left[\inf_{x \in G} \lambda(xC_0 x^{-1} \cap D) \right] \leq \lambda(C_0) - \varepsilon$$

By (4.2), $G \in [IN]$, and hence is unimodular. It follows that (1) remains valid when C_0 is replaced by any larger compact subset of G. This fact will be used in the remainder of the proof.

Let N be a compact, invariant neighborhood of e and let $C \in \mathscr{C}(G)$ be such that $G = \bigcup_{n=1}^{\infty} C^n$ and $C_0 \cup N \subset C$. We can suppose that $\lambda(N) \geq \varepsilon$.

We now claim that if $D \in \mathscr{C}(G)$, and $\eta < \varepsilon$, then the set A, where

$$A = \{x \in G \colon \lambda(xCx^{-1} \cap D) \leq \lambda(C) - \eta\}$$
 ,

is not relatively compact. For if $\overline{A} \in \mathscr{C}(G)$, and if $E = \overline{A}C(\overline{A})^{-1} \cup D$, then for all $x \in G$, we have $\lambda(xCx^{-1} \cap E) \geq \lambda(C) - \eta > \lambda(C) - \varepsilon$, and the fact that (1) is valid, with C_0 replaced by C, is contradicted.

We now construct by induction a sequence $\{x_n\}$ in G such that for each $x \in G$ and each positive integer n, we have

(2)
$$\lambda\left(xC\cap\left(\bigcup_{r=1}^{n}C^{r}x_{r}\right)\right)\leq\left(\lambda(C)-\frac{1}{2}\varepsilon\right).$$

Let *m* be a positive integer and assume that x_1, \dots, x_{m-1} have been constructed such that (2) is valid for $1 \leq n \leq m-1$. Let $D = \bigcup_{r=1}^{m-1} C^r x_r$. Choose x_m such that:

(i) $x_m \notin C^{-m}DC^{-1}C;$

(ii) $\lambda(x_m C x_m^{-1} \cap N C^{-m} C^m) \leq (\lambda(C) - (1/2)\varepsilon).$

Let $x \in G$. We cannot have both of the sets $xC \cap D$ and $xC \cap C^m x_m$ not empty: for if this were so, then $DC^{-1} \cap C^m x_m C^{-1} \neq \emptyset$, and (i) is contradicted. So if $xC \cap D \neq \emptyset$, then (2) is trivially true with n = m.

Suppose then that $xC \cap D = \emptyset$, and set $E = xC \cap C^m x_m$. To complete the induction step, we show that

(3)
$$\lambda(E) \leq \left(\lambda(C) - \frac{1}{2}\varepsilon\right).$$

Two cases have to be considered. Suppose firstly that $xN\cap E= \oslash$. Then

$$\lambda(E) \leq \lambda(xC \sim xN) \leq \lambda(C) - \varepsilon < \left(\lambda(C) - \frac{1}{2}\varepsilon\right)$$

and (3) is established. Now suppose that $xN \cap E \neq \emptyset$, and let $u \in N$ be such that $xu \in E$. Then

$$(xu)^{\scriptscriptstyle -1}E \subset u^{\scriptscriptstyle -1}C \cap x_m^{\scriptscriptstyle -1}C^{\scriptscriptstyle -m}C^m x_m$$
 ,

and since $Nx_m^{-1} = x_m^{-1}N$, it follows that

$$\lambda(E) \leq \lambda(C \cap ux_m^{-1}C^{-m}C^mx_m) \leq \lambda(x_mCx_m^{-1} \cap NC^{-m}C^m) .$$

The inequality (3) now follows using (ii).

Now let $T = \bigcup_{n=1}^{\infty} C^n x_n$. The set T is obviously topologically left thick in G. However, by (2), $\lambda(xC \cap T) \leq \lambda(C) - 1/2\varepsilon$ for all $x \in G$, and so T is not topologically right thick. It follows that $\mathfrak{L}_i(G) \neq \mathfrak{R}_i(G)$, and the resultant contradiction establishes the lemma.

THEOREM 4.4. Let G be an amenable, compactly generated, locally compact group. Then $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$ if and only if $G \in [FC]^-$.

Proof. Assume that $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$. By (4.3) and (4.1), we have $G \in [FC]^-$. Conversely, assume that $G \in [FC]^-$. Let H be the closure of the commutator subgroup of G. By [4, Theorem 3.20], the group H is compact. Let μ be the normalized Haar measure of H. In the obvious way, μ will be regarded as a probability measure on G. Note that if $M \in \mathfrak{L}_t(G)(\mathfrak{R}_t(G))$ then $M(\phi\mu) = M(\phi)(M(\mu\phi) = M(\phi))$ for all $\phi \in L_{\infty}(G)$. Note also that $\delta_h * \mu = \mu = \mu * \delta_h$ for all $h \in H$.

Define

 $A = \{ \phi \in C(G) \colon \phi(xh) = \phi(x) \text{ for all } x \in G \text{ and all } h \in H \} .$

If $\phi \in A$ and $x, y \in G$, then, since G/H is abelian, we have $xy = yxh_0$ for some $h_0 \in H$, and it follows that $\phi(xy) = \phi(yx)$, and hence that $\nu\phi = \phi\nu$ for all $\nu \in P(G)$.

Now let $M \in \mathfrak{R}_{t}(G)$, ν_{0} , $\nu \in P(G)$ and $\psi \in L_{\infty}(G)$. Then if $x \in G$ and $h \in H$, we have

$$(\mu
u_0)\psi(xh)=\mu(\llbracket (
u_0\psi)x
bracket |_{_H}h)=(\mu
u_0)\psi(x) \;,$$

and so $(\mu\nu_0)\psi \in A$. Now if $\nu \in P(G)$, we obtain

$$M(\psi) = M(
u(\mu
u_0)\psi) = M([(\mu
u_0)\psi]
u) = M(\psi
u)$$
 ,

and $M \in \mathfrak{L}_t(G)$. It easily follows that $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$.

NOTE 4.5. The two theorems of this paper suggest the following conjecture: if G is an amenable locally compact group, then $\mathfrak{B}_t(G) = \mathfrak{R}_t(G)$ if and only if $G \in [FC]^-$. More evidence in support of this conjecture is found in the following result ([3], [8], [9]): if $G \in [SIN] \cap [FC]^-$, then $\mathfrak{L}_t(G) = \mathfrak{R}_t(G)$.

References

1. G. Adelson-Veskii and Ju. A. Šreider, *The Banach mean on groups*, Uspehi Mat. Nauk. (N.S.), **12** (1957), 131-136.

2. M. M. Day, *Semigroups and amenability*, Proceedings, Symposium on Semigroups, Wayne State University, Edited by K. Folley, Academic Press, 1969.

3. P. Gerl, Gleichverteilung auf lokalkompakten Gruppen, Math. Nachr., **71** (1976), 249-260.

4. S. Grosser and M. Moskowitz, Compactness conditions in topological groups, Jour. für die Reine und angewandte Math., **246** (1971), 1-40.

5. A. Hulanicki, On the spectral radius of hermitian elements in group algebras, Pacific J. Math., 18 (1966), 277-287.

6. _____, On positive functionals on a group algebra multiplicative on a subalgebra, Studia Math., **37** (1971), 163-171.

7. H. Leptin, Zur harmonischen Analyse klassenkompakter Gruppen, Invent. Math., 5 (1968), 249-254.

8. W. Maxones and H. Rindler, Asymptotisch gleichverteilte Massfolgen in Gruppen vom Heisenberg-Typ, Sitzungsber. Wien, Math. Nat. Kl IIa, **185** (1976), 485-504.

9. _____, Bemerkungen zu einer Arbeit von P. Gerl Gleichverteilung auf lokalkompakten Gruppen, Math. Nachr., **79** (1977), 193-199.

10. T. Mitchell, Constant functions and left invariant means on semigroups, Trans. Amer. Math. Soc., 119 (1965), 244-261.

11. W. Moran and J. H. Williamson, *Isotone measures on groups*, Math. Proc. Camb. Phil. Soc., **84** (1978), 89-107.

12. J. C. S. Wong, A characterization of topological left thick subsets in locally compact left amenable semigroups, Pacific J. Math., 62 (1976),295-303.

Received November 6, 1978.

UNIVERSITY OF ABERDEEN, ABERDEEN, SCOTLAND