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SYMMETRIC PLANES

RAINER LOWEN

Symmetric planes are defined as stable planes carrying
an additional structure of a symmetric space whose sym-
metries are automorphisms of the plane. An example of a
stable plane is the geometry induced by a topological pro-
jective plane on any of its open subsets. We consider
several examples of this type which are, in fact, symmetric
planes.

Working with the Lie triple system, we construct a
linear local approximation to both the geometric and the
differential geometric structure of a symmetric plane M.
We show that under some reasonably mild restrictions, this
so-called tangent translation plane determines the global
structure of M as a symmetric plane. Later, this result
will be used in order to determine all symmetric planes in
low dimensions. The two-dimensional case of this classifica-
tion is given in the present paper. Symmetric planes often
turn up inside stable planes of sufficient homogeneity, and
their classification may then be applied.

Among all stable planes with a point set homeomorphic to the
real affine plane, K. Strambaeh [24] has determined those which
admit a reflection at each point. The purpose of this paper, together
with two subsequent ones [17, 18], is to extend Strambach's result
to 2-dimensional locally compact planes with an arbitrary point set
and, moreover, to arbitrary 4-dimensional locally compact stable
planes. (The definition of a stable plane is given below; examples
are provided by all open subsets of compact protective planes.)

The present paper deals with the case where the reflections of
a plane generate a transitive group of collineations containing
exactly one reflection in each point. Such planes turn out to be
what we call symmetric plane; that is, the reflections are the sym-
metries of some differentiable symmetric space structure on the
point set (Theorem A). The proof depends on the fact that the
collineation group of a locally compact stable plane is locally compact
in the compact-open topology [15]. Motivated by this result we
proceed to a systematic treatment of symmetric planes.

The main result (Theorem B) states that it is possible to con-
struct a "linear approximation" to the local structure of a symmetric
plane, called the tangent translation plane. It consists of a topologi-
cal translation plane, defined on some tangent space of the symmetric
space of points and compatible with the Lie triple structure present
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on that tangent space. The triple multiplication is considered as
part of the structure of the tangent translation plane. Theorem C
says that under some rather mild restrictions, the structure of a
symmetric plane is completely determined globally by its tangent
translation plane.

It would be of some interest to have a converse to Theorem B:

Problem. Does every structure composed of a topological trans-
lation plane and a Lie triple system which have the properties
asserted in Theorem B arise as the tangent translation plane of
some symmetric plane?

While the results A and B are rather direct consequences of
known theorems on symmetric spaces, they provide the principal
tool for our subsequent work. Specifically, Theorem B makes it
possible to apply results on topological translation planes in the
study of symmetric planes. Owing to their linear structure, trans-
lation planes are much better understood than any other class of
topological aίfine planes. (Indeed, the most homogeneous ones have
been classified in sequences of papers by D. Betten and H. Hahl; see
[3, 9], and references given there. This fact will, however, not be
used here.) Therefore, Theorems B and C together provide enough
information to serve as a basis for our classification of 4-dimen-
sional symmetric planes [17]. As an illustration of the techniques
employed there, we give the classification of the 2-dimensional
symmetric planes in the present paper. Theorem A is the germ of
the less directly accessible result of the third paper [18], namely:
any 4-dimensional locally compact stable plane which possesses
reflections at each point contains a symmetric plane, and the com-
plement is a point or a line, or empty. The proof uses the classi-
fication of symmetric planes and, this time, the classification of
translation planes.' Finally, all planes with a reflection at each point
will be determined in [18].

In §1, we give the definition of a symmetric plane, and some
easy consequences of that definition. Section 2 opens with the proof
of Theorem A and continues with a list of examples of 2- and 4-
dimensional symmetric planes. The list contains all non-desarguesian
affine translation planes and 14 open subplanes, defined by quadratic
forms, of the real and complex protective planes; it is actually com-
plete, as will be shown in Theorem F of §5 for the 2-dimensional
case, and in [17]. In the next section, §3, we give a brief account
of all notions and results pertaining to symmetric spaces that we
need in the sequel. Section 4 contains the main Theorems B and C,
and a characterization of affine translation planes among all symmetric
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planes (Theorem D). Theorem E in the same section asserts that
the global uniqueness theorem (Theorem C) applies to most of the
examples given in §2.

Notation. For a group Σ acting on a space X, the isotropy
group of p e l will be denoted Σp. The centralizer of a subgroup
Γ in Σ will be written CΣ(Γ), and the symbol Φ x Ψ will designate
a semidirect product of groups, Φ being the normal factor. Δ1 will
stand for the identity component of a topological group Δ.

1Φ Definitions and preliminaries*

DEFINITION 1.1. A symmetric space is a finite dimensional
differentiate manifold M with a differentiate multiplication M x
M -+ M: (x, y) —> x ' y, such that x y may be interpreted as the image
x°y of x under an involutory diffeomorphism σy, called the symmetry
around y, which has the properties (a) and (b):

(a) y is an isolated fixed point of σy;
(b) σy is an automorphism of the entire structure; that is, it

m a p s Z'W t o z°y w°y.

The automorphism groups generated by all symmetries respectively,
by all products σxσy of two symmetries are called the groups of
motions, or displacements, of the space and denoted Σ respectively,
Σ+. Obviously, Σ+ is normal in Σ, and \Σβ+\ ^ 2.

The axiom stating that the symmetries are automorphisms may
also be expressed as follows: For xeM and aeΣ one has ol = σxa,
where σ% denotes the conjugate a~γσxa.

Concerning symmetric spaces, we use the terminology of [14].
Results which we use without proof can mostly be found there.

DEFINITION 1.2. A stable plane (M, Sf) consists of a Hausdorff
space M together with a system Sf of subsets of M, called lines,
and a topology on jSf such that the following properties (a), (b),
and (c) hold:

(a) any two distinct points ( = elements of M) x, y are on a
unique line xΌ y depending continuously on {x9 y);

(b) the pairs of distinct lines that do intersect form an open
subset 3f of £? x £f (*'axiom of stability97))

(c) £& is mapped continuously into M under intersection.
The pencil of all lines containing x e M is denoted ^ . A con-

tinuous collineation (also termed automorphism or simply collinea-
tion) of a stable plane is a homeomorphism of the point set that
takes lines into lines. Collineations form a group Γ, which is usually
given the compact-open topology. An involutory collineation y is
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called a reflection at a point xeM if it fixes each line through x.
The point x is then called the centre of 7.

By the dimension of a stable plane we shall always mean the
topological dimension of its point set. Locally compact stable planes
of positive dimension have been studied in [15, 16]. The reader is
referred there for more information.

DEFINITION 1.3. Let M be a Hausdorff space and assume that
there is given a structure (xfy)-+x*y of a symmetric space of
(finite) positive dimension and a structure (Λf, J9f) of a stable plane
on M. If the two structures are compatible, in the sense that all
symmetries σx are collineations of the plane (M, J*f), then M together
with these structures is called a symmetric plane.

PROPOSITION 1.4. The symmetry at a point x of a symmetric
plane is a reflection in the geometric sense (see 1.2).

This will follow from the following more general fact.

LEMMA 1.5. Let σ be an involutory collineation of a locally
compact positive dimensional stable plane (M, Jέf). If σ has an
isolated fixed point x, then σ is a reflection at x.

Proof. If p eM is not fixed under σ, then Lp: = p U Pσ is a
fixed line, which depends continuously on the nonfixed point p. As
p approaches x, the lines Lp accumulate at some fixed line L through
x, by [15:1.5, 1.17].

(2) By [15:1.7, 1.12], the space £fx\{L) is acyclic. A theorem
of P. A. Smith [23] therefore gives us a second fixed line K through
x.

( 3) Assume that σ operates nontrivially on £fΛ. We may then
take for K a fixed line which is a limit of nonfixed lines Kn e J*fx.
K contains a nonfixed point p. Choose a sequence pn e Kn converging
to p. Then for large n the intersections LPn Π L Φ x exist and
converge to x, contrary to the assumption that x be isolated.

PROPOSITION 1.6. Let p be a point of a symmetric plane M.
Then the isotropy group Σp of p in the motion group Σ is equal to
the centralizer of σp.

Proof In any symmetric space one has Σp ^ CΣ(σp), because
motions are automorphisms. For the converse inclusion, one notes
that each image of p under a collineation centralizing σp is a centre
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of σpf and that a nontrivial collineation cannot have more than one
centre.

1.7. Remark on the topology of the motion group. The colline-
ation group Γ of a connected symmetric plane M is point transitive,
since the same is true of the motion group Σ <; Γ, see [14: p. 91].
Γ1 is a second countable locally compact transformation group of M
with respect to the compact-open topology T [15: §2], hence is a Lie
group [20, 26]. On the other hand, Σ+ is also a Lie transformation
group of M in some topology Tλ [14: p. 88]. By [1], 2\ is finer than
the topology induced on Σ+ by T, and the inclusion Σ+ ~> Γ1 is con-
tinuous with respect to the topologies Tl9 T. Therefore, Σ+ is a Lie
subgroup of Γ1 by [10: p. 84], and is in fact the smallest Lie sub-
group of Γ1 containing all products of two symmetries. If Σ+

happens to be closed in Γ, then the topologies T and 2\ coincide on
Σ+.

We shall always think of Σ+ as carrying the topology 2\. Oc-
casionally, we shall apply to Σ+ theorems on collineation groups
which have been formulated in [15, 16] referring to the compact-
open topology. This is justified, since most of those theorems hold
equally well for any locally compact group acting continuously as a
group of collineations.

2 Examples* The only effective way of introducing a sym-
metric structure on a stable plane is to derive it from a transitive
group action. The procedure is described in the following theorem.
Let (M, J*f) be a locally compact stable plane of positive dimension,
and let Δ <̂  Γ be a closed subgroup of the collineation group, with
Δ/Δ1 compact. Alternatively, let Δ <; Γ be a Lie group acting
topologically on M. Then we have

2.1. THEOREM A. In addition to the above hypotheses, assume
that the group Δ is transitive on the stable plane M and that some
isotropy group Δo contains in its centre a reflection p0 at the point
o.

Then (M, ,Sf) may be given the structure of a symmetric plane
in such a way that the symmetry at a point y is equal to the uni-
que reflection pyeΔ at y conjugate to ρ0.

REMARK, (a) Note that the motion group of M may be a proper
(normal) subgroup of Δ.

(b) If Δ contains only one reflection at o then the hypothesis
p0 e C(Δ0) is evidently satisfied. This situation will occur frequently.
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Proof. The full collineation group Γ is locally compact and has
a countable basis for its topology [15: §2]. Furthermore M is
locally contractible [15: 1.12]. Therefore, any transitive closed sub-
group A <* Γ, with A/A1 compact, is a Lie group by [26]. It is only
the latter property of A which we use in the sequel.

Our hypothesis and the uniqueness of the centre for any non-
trivial central collineation now imply that Δo = CΔ{p0). By [14: p.
73], the coset space A/Ao becomes a symmetric space with the quotient
differentiable structure if one defines the symmetric structure by

Aod Aoτ. = AoPoδy-'PoΎ .

The homeomorphism

A/Ao > M: Aoδ > oδ

takes this product into the multiplication defined by x-y: — xpy. •

Affine translation planes will be the first example of symmetric
planes illustrating the situation described in Theorem A. Other, less
trivial examples will follow. There is no hope, however, of obtaining
any new information on translation planes by introducing this addi-
tional structure. In fact, in translation planes, there is no interplay
at all between the geometric and symmetric structures. As sym-
metric spaces, all translation planes of a given dimension are iso-
morphic. Yet there are a vast number of nonisomorphic translation
planes, see [3, 9, 13].

Instead of a definition of translation planes we give here the
following description, which covers all locally compact connected
affine translation planes (cf. [22: 7.23; 11: VII. 3]): They may be
obtained as stable planes defined on the point set of real affine space
E2% of dimension 2n, where 1 ̂  n ^ 4, with a translation invariant
system of 2%"1-dimensional affine subspaces as the set Sf of lines.
Of course, J& may be recovered from the pencil ^ of lines through
a point o, the origin, say. The condition for any set £<?Q of 2W-1-
dimensional subspaces through o to be the pencil for a (unique)
topological translation plane is that (a) any point other than o be
on a unique element of S^o and that (b) £f0 be compact in the
topology induced by the Grassmann manifold of 2%~1-dimensional
vector subspaces of R2n; cf. [5].

PROPOSITION 2.2. Each locally compact connected affine trans-
lation plane is in a natural way a symmetric plane, and the motion
group coincides with the group R2n of all translations of E2n.

Proof. We identify E2n with the real vector space R2n by
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choosing an origin o. The system £t?0 is always invariant under
multiplication by real scalars, and so is the union of its translates
£f. The map σ0: = (cc —> — x) is a reflection, and the group

Δ - {x >±x + y yeR2"}

has all the properties used in Theorem A. Since σoσy = (x ~> x + 2y),
the motion group Σ+ consists of all translations.

REMARK. The dilation groups of an affine translation plane are
isomorphic to the multiplicative group of its kernel, which is one
of the three classical (skew) fields; cf. [11: 7.8]. Therefore, the
reflection at any point is uniquely determined, and so is the struc-
ture of symmetric plane generated by the reflections.

DEFINITION 2.3. Let K be one of the three classical (skew)
fields R, C, and H, and let a: K —> K be the identity or conjugation
(in K = Cor H). Further let / be any hermitian sesquilinear form
on Kz with respect to a. We allow / to be degenerate. If / is
positive definite on some one-dimensional subspace of Kd, we define Mf

to be the open subplane of P2K whose points are all one-dimensional
subspaces with this property. In the case K — C, a = id, where
this definition does not apply, let Mf be the set of nonisotropic one-
dimensional subspaces. The lines of an open subplane N £ P2K are,
by definition, the intersections N Π L with the lines L of P2K. The
plane Mf will be called the plane defined by the hermitian form f.

PROPOSITION 2.4. The plane Mf defined by a hermitian form
f over K = R, C or H is a connected symmetric plane.

In fact, the protective unitary group PU (/) satisfies all require-
ments of Theorem A. The motion group Σ+ is a connected normal
Lie subgroup o/PSU(/). In particular, if f is nondegenerate, Σ+

is the the simple connected component PSU (f)1.

Proof. Transitivity of the unitary group follows from a theorem
of Witt. To apply Theorem A, one uses existence and uniqueness
of unitary reflections at each point of Mf. The details are left to
the reader. Π

We wish to describe in some detail the various possible examples
of this type for the complex and real cases. We shall need this
material later in our proof that the given list of examples is com-
plete [17]. We start with planes defined by complex nondegenerate
forms, where the motion group is known from the preceding
proposition.
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For α, δ, c e C, we define on C3 a hermitian form, and a symmetric
one, as follows.

2.5. If / =/i,i,i, then M/ consists of the entire point set of P2C
and is called the complex elliptic plane. The motion group Σ+ =
PSU3 (C, 0) = Σ is compact and 8-dimensional.

2.6. If / = /_i,i,i, then ML/ is the open unit ball in the afϊine
plane z1 — l (the complex hyperbolic plane, cf. [15: §7; 4]), and Mf

is the exterior of ML/ in P2C. Their common motion group Σ+ =
PSU3 (C, 1) = Σ is 8-dimensional and noncompact. Sometimes we
employ the term "hyperbolic plane" for Mf as well, and use the
specifications interior and exterior to distinguish between M_f and
Mf.

2.7. If g = g1ΛΛ, then Σ+ = PSO3 C = 2 is isomorphic to PSL2 C.
To describe the geometric features of Mg9 we remark that the com-
plement P2C\Mg is a topological oval, cf. [6]. Mg will be called the
complex oval plane.

We continue with the degenerate forms, where it takes a few
computations to determine the motion groups. The following pre-
paratory definition will be useful:

DEFINITION 2.8. Assume that a hermitian form / on K3 is
expressed as f(zl9 z2, z9) = f\zί9 z2), where / ' is a nondegenerate form
in two variables. Then define

AeSU(/'), UeK2

Clearly, Φ ^ S U ( / ) . Further, let the subgroups Ψf2zSU(f') and
T = K2 of Φ; be defined by U = 0 and A = 1, respectively. Note
that T is normal.

2.9. Let / = /1)1)0. Then there is exactly one isotropic one-
dimensional subspace oo = <0, 0, 1>. The complement is the punctured
complex protective plane Mf — P2C\{co}. We claim that Σ+ = PΦ)
and Σ — PΦf, where Φf — Φ$ x <α>, and

α =
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T is the radical of Φj, and Ψf ^ Spin3, a Levi complement, acts
irreducibly on T.

Proof. Note first that the action of Ψf on T is contragredient
to the standard representation of SU2, hence is irreducible. PΦf is
easily seen to be transitive on Mf. Indeed, T consists of all elations
with centre &o, and the action of Ψf on the x-axis (z5 — 0) is the
transitive action of PSU2C on the protective line PXC. Therefore,
we have Σ — PΔ <; PΦf, where Δ ^ Φf is the Lie subgroup generated
by the reflection

σ =

at the point <1, — 1, 0> together with its conjugates in Φf; cf. 2.4
and 1.7.

In fact, we can see that Δ = Φf, since the conjugates of σ under
Ψf generate the group Ω: — Ψf x (a), by simplicity of Ψf. Indeed,
normality of Δ and irreducibility of the action of Ψf < Ω < Δ on T
together imply that the Lie algebra of Δ contains that of T.

2.10. Let / = /lf_1>0. Then the two stable planes

Mf = {(I,s2,38);|32| < 1}

and M_f are isomorphic. Mf is called the complex cylinder plane;
this geometry has been discussed in [15: 7.3]. The motion groups
are given by Σ = PΦf and Σ+ = PΦ}, where Φf = Φ} XJ <σ>, and

— ̂

Here again, T is the radical, and Ψf ~ SL2 R, a Levi complement,
acts on T with two irreducible invariant subspaces ϊ\, T2. These
consist of the elements given by U = (u, ΰ) and U = (u, — ΰ),
respectively.

The proof is similar to the preceding one. Note that σ is the
reflection at the origin <1, 0, 0>, and that Ψf is transitive on the
cc-axis {<1, z2, 0>; \z2\ < 1} of Mf; in fact, there, Ψf induces the real
hyperbolic motion group PO3

+ (R, 1).

2.11. Let g — gOtlΛ. For technical reasons, we prefer instead
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of g to use the equivalent form h(zl9 z2, z3) = z1z2. Then Mh =
P2C\LJ\Y, where L^ is the line at infinity (z± = 0), and Y is the
2/-axis (#2 = 0). Mh is called the complex Minkowski plane. The
motion groups are Σ+ = PΦ£ and J = PΦΛ, where Φh = Φt x <<7>,
and

The subgroup ?ΓA induces on the commutator subgroup T of Σ+ the
group

); ceCxj = SU(A')

of complex linear transformations.

Sketch of proof. PΦh is transitive on Mf and contains the
reflection σ at the point <1, 1, 0>, which induces inversion on Ψh.
Using the latter fact, it is easy to see that the group generated by
the conjugates of σ contains Ψh and hence Φh.

2.12. If/ = /liO,o and g = g1}0>0, then Mf = Mg is the affine plane
zγ Φ 0. We call Mf the complex euclidean plane.

2.13. We conclude with a brief discussion of the case K = R,
the real field. Again let ga>b>c be the symmetric form given by
9a,b,o(%i, %2, &s) = <wl + bx\ + cίc'. For flr = gltltl, we g e t t h e elliptic

plane Mg = P2iί, with motion group PSO3. The form g = g-ul>1

yields the real hyperbolic plane M_g, and its exterior Mg, both with
motion group i;+ = PO3(JB, I)1 (but with Σ = T?O3ΦΣ+ in the latter case).
For g = 0lflfO we obtain the real punctured protective plane Mg -
P2R\{(0, 0, l>}. The motion group Σ is dual to the group of isometries
of the euclidean affine plane. The plane Mg for g = flrlf_lf0 is the
strip between two parallel affine lines; we call it the real cylinder
plane. Its motion group is isomorphic to the extension of R2 by
the one-parameter group

) ; 0<teR

of automorphisms. Finally, Mg for g = gUOiO is the real euclidean
plane.

2.14. It should perhaps be added that among the Examples 2.5
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through 2.13, only six are Riemannian symmetric spaces, namely,
the real and complex euclidean, elliptic, and interior hyperbolic
planes. Clearly, non-desarguesian translation planes are Riemannian
as well. (Note that a symmetric space is Riemannian if and only
if the isotropy group Σo is compact [14: p. 148].)

3* Summary of facts concerning symmetric spaces* Let M be
a connected symmetric space. In all symmetric spaces a base point,
denoted o, is assumed to be preassigned. Morphisms are to pre-
serve base points.

3.1. The motion group Σ is transitive on M [14: p. 91]. An
easy proof may be based on the inverse function theorem, observing
that p -> o p has a nonsingular tangent map at o [14: p. 76]. More-
over, Σ is a Lie transformation group of M [14: p. 88].

3.2. The isotropy group Σo is contained in the centralizer C_(σ0).
Equality holds in symmetric planes (1.6). In general, the orbit of o
under C(σ0) consists of isolated fixed points of σ0. Therefore, Σo

and C(σ0) have the same Lie algebra.

3.3. The symmetry σ0 induces on the Lie algebra <3 of Σ the
automorphism Ad σ0 = Tβ of order two, where θ denotes the inner
automorphism of Σ induced by σ0, and Tβ denotes the tangent map
at 1 e Σ. Let ©+ and @~ be the eigenspaces corresponding to the
eigenvalues 1 and —1 of Ad<70. The following relations are easily
observed.

3.4. From 3.2, we infer that @+ is the Lie algebra of Σo, using
that θ = log o Tφ o exp on an exponential neighborhood in Σ. Con-
sequently, dim @~ = dim ΣJΣ0 = dim M.

3.5. (a) By [14: p. 91], 3.3 may be sharpened as follows:

This expresses in the Lie algebra the fact that Σ is generated by
the conjugacy class of σ0. Actually, a proof may easily be given by
observing that @" 0 [@~, @~] is an Ad (/.-invariant ideal in @. This
implies

(b) dim © ^ — n{n + 1)
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where n = dim 8~~ = dim M. Indeed, dim @+ <; dim A2 @~ = w(n — l)/2
by (a); here, A2 denotes the exterior power.

(c) Again by (a), @ is abelian if and only if β = @"

3.6. ©+ contains no ideal of @, since I' operates effectively on M.

DEFINITION 3.7. We call Lie algebra with involution any pair
(SJΪ, a) consisting of a Lie algebra 9ΐ and an automorphism a of 9ϊ,
of order two. (91, a) will be called a reflection algebra if 9ϊ is
generated by 9ϊ~ (property 3.5a), and an effective reflection algebra
if in addition 9ΐ+ contains no ideal of 91 (property 3.6). We say
that a reflection algebra (91, a) is of type (p, n), if dim 9ϊ+ = p,
dim 9t" = n.

3.8. If (9t, α) is a Lie algebra with involution, then 9ΐ~ becomes
a Lie triple system if endowed with the trilinear multiplication
[x, y, z]: = [[#, 7/], 2]. (For the axioms, see [14: p. 78].) An effective
reflection algebra (9t, a) is uniquely determined by its Lie triple
system. More precisely, if Sί is the vector space spanned by the
set of endomorphisms z —> [x, y, z] of 91", where x, y e 91", then 9ΐ is
isomorphic to the algebra Sί 0 3ί~ with the obvious multiplication,
under an isomorphism fixing 91" and sending 9l+ onto Sί; this Lie
algebra is called the standard embedding of 91". The easy proof
uses the fact that the centralizer of 91" in 9t+ is an ideal in 91.

3.9. The triple system Θ~ of M may be identified as a vector
space with the tangent space T0M, in such a way that the tangent
map Toφ of each morphism φ of symmetric spaces becomes a mor-
phism of triple systems. We shall always make this identification
and choose the notation ©~ or T0M according to the aspect prevail-
ing in a particular situation.

3.10. There is an exponential function Exp: T0M—> M, which
is a local diffeomorphism around 0, and which commutes with mor-
phisms [14: Chapters I. 2 and II. 2]; that is,

(a) Expoφ = TυφoExp .

With respect to the above identification of T0M and ©", the
exponential function is related to the exponential function exp: © —> Σ
of Σ by the formula

(b)

which holds for all xe T0M = 8 " [14: p. 95].
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With some loss of generality, but still general enough for most
of our purposes, the facts 3.9 and 3.10 can be easily deduced from
similar results about Lie groups: Consider the projection p = pM:
Σ —> M: σ —> o\ Identify @" with T0M via the restriction of the
tangent map Txp: © = TγΣ —> T0M. A surjective morphism φ: ilf—> N
induces a morphism φ: ΣM —> ΣN of motion groups in an obvious
way, and pM°φ = φ°pN. By differentiating this equation one gets
3.9, since Txφ is a morphism of reflection algebras. Using the
identification @~ = T0M, one defines the exponential map by the
relation 3.10b, and one infers 3.10a for surjective morphisms from
the fact that exp commutes with group morphisms.

3.11. The centre congruence C(M) may be described [14: p. 134]
as the equivalence relation

{(x,y);σxσyeC(Σ+)}

on M. The centre C0(M) of M is the equivalence class of the base
point.

3.12. In connection with the centres, the Lie triple systems
play the same role for symmetric spaces as Lie algebras do for Lie
groups. Namely, assigning to M the triple system ©~ sets up a
one-to-one correspondence between all simply connected symmetric
spaces and all Lie triple systems [14: p. 116]. Moreover, among the
symmetric spaces with a given Lie triple system ©~, there is a
unique simply connected one, M, and (provided the centre of © is
zero) a unique centre-free one, the quotient M/C(M). Furthermore,
for any other symmetric space N with the same triple system,
there are covering morphisms M-+ N—> MJC(M). In addition, these
may be so chosen as to induce any preassigned isomorphism of the
triple systems. A proof of these facts may be pieced together from
[14: pp. 115, 135, 136, 177].

3.13. Each closed subset N ζZ M with the property that
N N £ N is a symmetric subspace of M; that is, N is a differenti-
able submanifold which is a symmetric space with respect to the
induced multiplication [14: p. 125].

3.14. By 3.9, the tangent space T0N of a subspace N ξZ M
containing the base point is a sub-Lie triple system of TύM. Con-
versely, given a subsystem 31 ̂  T0M, there is a unique connected
subspace N ^ M with 31 = T0N. It may be obtained as the orbit
of o under the group Δ ^ Σ+ whose Lie algebra is the subalgebra
<3l> ^ © generated by 31 [14: pp. 121, 122].
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4* The tangent translation plane of a symmetric plane* We

begin with a lemma on stable planes that will be essential in the
proof of Theorems B and C:

LEMMA 4.1. Let (M, Sf) he a locally compact stable plane of
positive dimension, and U an open neighborhood of peM. Then
the union V of the connected components of p in L Π U, for all
L e £fp, is also an open neighborhood of p.

Proof. If V were not a neighborhood there would be a con-
vergent sequence pn —> p, such that pn and p are in different com-
ponents of UΠ (p Up*). By compactness of £f9 [15: 1.17], we may
assume that the lines Ln = p U pn converge to a line L e ̂ fp. Choose
a point q not on L, nor on any Ln9 and project {pn} into L from q.
The image sequence {p'n} would converge to p. Now L is locally
connected [15: 1.11]. Hence by stability, p has a connected neigh-
borhood W in L such that W can be projected from q back into
each Ln within U. Almost all the points p'n would lie in W, a
contradiction.

Openness of V is proved in a similar way. Indeed, given veV,
there is a path P £ UΠ (p U v) joining p to v. Using a compact-
ness argument, one sees that from a point q & L = p U v, both p and
some small neighborhood T of v in L may be projected inside U
into each line Ke^fp sufficiently close to L. The images of P and
T are contained in V and cover a neighborhood of v in M.

PROPOSITION 4.2. j&αcfe iwβ of a symmetric plane is a symmetric
subspace of the point set.

Proof. A line L is easily seen to be closed. Since L is invariant
under the symmetry at each of its points (1.4), the assertion follows
from 3.13. •

This fact allows to construct the tangent translation plane.
Before we do this, let us note the following consequence of 4.2,
which could also be viewed as a corollary to Theorem B and known
results on topological translation planes [22: 7.22].

COROLLARY 4.3. The point set of a symmetric plane has dimen-
sion 2n, where 1 ̂  n <; 4. The pencil of all lines through a given
point is a sphere of dimension 2n~~1.

Proof. This has been proved for any stable plane whose lines
are manifolds of positive dimension in [15: §1],
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DEFINITION 4.4. For a symmetric plane (M, J*f) with base point
o e M, let T0J5f0 be the set of tangent spaces T0L <* T0M, where L
ranges over £f0. Further denote by T0J*f the union of all translates
of To£?o in TυM Then the tangent plane T0(M, £?) is defined to
be the geometric structure

T0(M, J2f) - {T0M,

together with the structure of Lie triple system present on TUM.

NOTATION 4.5. For σ e Συ, denote by Toσ the tangent map of
the action of σ on M, and by Ada the action of a on @ given by
T^Ύ -> σ~xyσ). For x e @+, define ad x: @ -> @: y --> [j/, a;], and denote
by ad#|@~ the restriction to @~ (cf. 3.3).

4.6. THEOREM B. (a) The tangent plane T0{M, <2f) of a sym-
metric plane (M, Js?) is a topological translation plane, henceforth
called the tangent translation plane.

(b) The line pencil TUS^O through the origin consists of Lie
triple subsystems of T0M.

(c) For σ e Σo, the mappings Ad σ and Toσ coincide on TϋM=&~.
In particular, Ad σ leaves @~ invariant.

(d) The linear transformations Ad σ j ©~ = Toσ of T0M {for
σeΣ0) are automorphisms of the translation plane (TυM, T0^f) and
of the Lie triple system.

(e) The identity component of the group T0Σ0 = Ad Σo | @~ of
automorphisms depends only upon the triple system T0M. More
precisely, its Lie algebra is ad©+ |(3~.

(f) The action of Σo on @~ is faithful.

Proof. (1) If we are able to show that each nonzero x e T0M
lies on a unique tangent space T0L 6 T0^f0 then, from the fact that
dim T0M = 2 dim T0L, it follows easily that T0(M, £f) is a (not
necessarily topological) translation plane, cf. [11: VII. 3]. Obviously
it suffices to prove the above assertion when x belongs to some
suitable neighborhood W, £ T0M of 0.

(2) Let W £ T0M be any convex open neighborhood of 0 on
which Exp: J^—>Exp W=U is a diίfeomorphism (3.10). For Le^f0,
Exp induces on T0L the exponential function of the subspace L, see
3.10a. Therefore the convex set TFΠ T0L, which is open in T0L
and closed in W, is mapped under Exp onto a connected, closed and
open subset UL of L n U. Then the union V — U {UL; Le^f0} is an
open neighborhood of o by 4.1, and Wλ = Exp" x(F) = \J{W(] T0L;

has the properties wanted in (1).
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(3) In order to show that the translation plane T0(M, S/f) is
topological, we consider the map

p: ToM\{0} > To£fo: x > x U O .

We endow T0£f0 with a Hausdorff topology by insisting that
a: Jΐf0 —> T0^f0: L —» T0L be a homeomorphism. We show that p is
continuous and open with respect to this topology. It suffices to
check this assertion on an exponential neighborhood, where it is
equivalent to continuity and openness of p':M\{o} -»£fo\ x-> xU o,
since Exp and a are homeomorphisms. Finally, to see that pf is
open, let V be a neighborhood of xeM\{o} such that o ? 7 . Choose
a line ϊ e ^ i ^ . By the stability axiom, (VΠ K)p' is a neighbor-
hood of x [J o.

Since p is continuous and open, p is a quotient map. This
implies that T0(M, Sf) is a topological translation plane [5: p. 34],
since TQ^f0 is Hausdorff by definition. Thus (a) is proved.

(4) Assertion (b) follows from 3.14.
( 5 ) For σeΣof the exponential map exp: @ —• Σ commutes with

the automorphism Θ — θσ = (T —> σ~lrtσ) of Σ; that is Adσoexp =
expoβ. This formula, together with those from 3.10, is used in the
following computation, which proves (c) locally and hence globally:

Exp (xτ°°) = (Exp x)σ = o

σ~ l ( e x p ί C ) σ = o

e x p ( χ A d σ ) = Exp (xλάσ) .

( 6 ) It is clear that Toσ leaves T0£f0 invariant, for σ e Σo. The
rest of assertion (d) follows from 3.9.

(7) ad @+ is the Lie algebra of Adl'J. Therefore, Ad27J is
generated by the elements exp ad x, where x e @+. Since both ad x
and exp ad x leave the decomposition @ = @+ φ @~ invariant,
exp(ad©+|@~) generates Adi^i|@", whence (e). Note that @+ and
ad©+ are determined by the triple system (3.8).

(8) Let σ e Σo. Because σ commutes with the exponential map
(3.10), Toσ = id implies that σ induces the identity on some open set,
hence that σ — 1. •

The first step in the determination of all 4-dimensional symmetric
planes will be to determine the possible 4-dimensional triple systems
T0M (equivalently, the possible symmetric algebras (@, Ad σo))t

making use of the additional structure present on T0M. Given T0M,
we shall then use the Ad ̂ -invariance of T0£f0 in order to determine
this set of sub-Lie triple systems. The final step will be to apply our
Theorem C, which we approach next. Roughly speaking, Theorem
C asserts that (Λf, &) is uniquely determined by its linearized
local structure T0(M, ̂ f). This is perhaps surprising if compared
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to the situation with symmetric spaces in general. It is in ac-
cordance, however, with other occurrences in geometry, cf. [7: §31].
The basic fact is that there are no proper covering morphisms of
stable planes:

DEFINITION 4.7. Let (M, 3ίΓ) and (N, £f) be stable planes. A
continuous map φ: M-+ N will be called a weak homomorphism of
the planes, if for each connected component A of a line KeJ?f,
the image Aφ is contained in some line L e £?. If each Kφ is entirely
contained in some line then we call φ a homomorphism.

PROPOSITION 4.8. Let φ: (M, 3Z~) —> (N, £<?) be a weak homomor-
phism of locally compact stable planes of finite positive dimension,
which is a covering map of the point sets. Then each of the follow-
ing conditions ensures that φ is an isomorphism:

(a) Each line Le^ίf is connected and there exists a compact

(b) φ is a homomorphism.

Before proving this result, we need the following lemma. Here,
a space is said to have the domain invariance property if for each
pair of homeomorphic subsets, either both of them, or neither of
them are open, and a Cantor manifold is a separable metric space
of dimension n which is separated by no closed subset of a dimension

LEMMA 4.9. If a locally compact stable plane of finite positive
dimension possesses a compact line then each line has the domain
invariance property, and the compact lines are Cantor manifolds.

Proof. We shall show that each compact line is a homogeneous
topological space. Since the lines are locally contractible metric
[15: 1.12], they are ANR spaces [8]. Thus by a result of Lysko
[19], the asserted properties follow for compact lines. Domain
invariance carries over to all lines, since they may be projected
homeomorphically onto open subsets of a compact line [15: 1.15].
(The quoted result says that a compact line meets every other line.)

Now let L be a compact line, and x,yeL. By [15: 1.16], there
is a compact line K meeting L in a point w Φ x,y. Again, using
[15: 1.15], it is easy to project L onto K and back onto itself in
such a fashion that x goes to y.

Proof of 4.8. (1) First assume condition (b). If there exist
x1 Φ x2eM with xf = xt, choose points z, w, such that z&xt\J x2,
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zφ Φ xl , and wψ $L, where L is the line containing the images of
Ki = Xi U z. For yx e Kx near 2;, we have yt — yl, where y2: =
(w U 1/1) (Ί K2 is the projection from w. This is impossible, since φ
is injective near z. Thus <£> must be a homeomorphism. By similar
arguments, φ is easily seen to be injective on each pencil 3t"x and,
hence, on J^T This means that φ is a collineation in the sense of
[15], hence an isomorphism [15: p. 256].

(2) Next assume condition (a). We begin by showing that
every line Le^f contains the image Aψ of some component of some
line K G*3ίΓf and that moreover ψ induces homeomorphisms between
the line pencils J ^ and ^xψ. To do this, consider a neighborhood
U of x such that φ\U is an open embedding, and construct from U
a neighborhood V as in 4.1. J2ΓX and £f%<? are the quotient spaces
of the pierced neighborhoods V\{x} and Vφ\{xφ}9 with respect to
the continuous and open mappings p: y —> y (J & and g: z —• 2 U xφ.
Now by the choice of V, φ commutes with p and q, and by the argu-
ment employed in (1), the factorization φf\ ,5ίΓx —> Sfxψ is injective;
the above assertions follow. Note that this implies that any two
lines K e 3ίΓ and L e J5f are locally homeomorphic and thus extends
the applicability of domain in variance (4.9).

( 3 ) If A is a component of K e J^7 then Aψ e j*f. Indeed, we
know that Aφ is contained in a line L 6 £f\ it suffices to show that
the closure Aφ is contained in the interior of Aφ relative to L. For
xeAφ, choose an open neighborhood U of x in N which has the
covering property, and for which W = U Π L is connected. Let T
be a sheet of Uψ~ι such that T Γ\ A Φ 0 . Since φ maps T homeo-
morphically onto Z7, and by domain invariance, (T f] A)φ is a closed
and open subset of W. Hence, WQ Aφ.

Note that, moreover, A is mapped homeomorphically onto Aφ.
Indeed, if xl — xt for different points xi 6 A then for z sufficiently
close to A, the points xi and z are in the same component of xt U z.
(Use a path in A joining x1 to x2 and project it into xt\Jz.) This
enables us to obtain a contradiction by the argument of (1).

(4) Applying (3) to D, the given compact line, we obtain a
line K e SίΓ and a component A of K such that A ~ D. Then A = K
because, embedding K into £f9 for p $ K via [Jp = (x-^ χ{J p), one
gets AΌP £ Kϋp Q J*fp, and AUp = β5f̂ > by domain invariance and by
connectedness of S/^v [15: 1.14]. Thus we have proved that the set
^ £ J#" of compact lines is nonempty. It is further open by [15:
1.16].

(5) We are now ready to prove that φ is one-to-one, hence a
homeomorphism. It suffices to show that a point x1 on a compact
(hence connected) line C ^ e . ^ satisfies xΓ~ι = {xj. Assume to the
contrary that xl = xl for x2 Φ xλ. By (2) and (3), the line Cf is also
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the (homeomorphic) image of some line C2 6 J ^ 2 , necessarily different
from d . By [15: 1.15], the lines Cλ and C2 meet in a point z, and
zφ Φ xt. Again, a contradiction follows as in (1).

(6) Combining (2), (3) and (5), we see that we may identify Λf
and N and that Jίf consists of the connected components of the
elements of 5Z~. Assume finally that some ί e J Γ is disconnected.
Two points x and y in different components of K may then be
joined by some line L e J*f, and there is a K' e ,JiΓ such that L £ K'.
Then necessarily K Φ K\ a contradiction.

REMARK 4.10. If in 4.8a we drop the requirement that all lines
of N be connected, then the same proof goes through to show that
Ψ is one-to-one and that the set of all connected components of 3ίΓ-
lines and the set of components of £f--lines are the same. Thus the
Jίf-lmes are obtained from the J ^ lines by reshuffling their connected
components. It is not, in general, possible to deduce more than
this. For an illustration, consider the following.

EXAMPLE. Let M = {(x, y); y Φ 0 or x < 0} Q R\ In order to
obtain a new line system J%Γ for this plane, recombine the com-
ponents of the ordinary lines Le^f as follows: Form a new line
by pairing, for each x ^ 0, the upper part of each line through the
point (a?, 0) with the lower part of its parallel through (2a?, 0). Then
<p: = id: (Λf, J2Γ) -> (Λf, £f) is a weak homomorphism, but not a
homomor phism.

4.11. THEOREM C. Let (Λf, 3ίΓ) and (N, £?) be connected sym-
metric planes and let ψ: T0(M, 3ίΓ) —> T0(N, J*f) be an isomorphism
(of the triple systems and the translation planes). Assume that (a),
(b) or (c) holds:

(a) Λf is simply connected and all lines of M are connected.
(b) N has trivial centre, and all lines of M are connected.
(c) JV has trivial centre, has connected lines only and contains

at least one compact line.
Then (Λf, .>£Γ) and (JV, Sf) are isomorphic symmetric planes.

Proof. By 3.12, there is a covering morphism of symmetric
spaces φ:M-±N such that Toφ = ψ. Theorem C follows from 4.8
together with the following lemma:

LEMMA 4.12. Let (Λf, 3ίΓ) and (N, £?) be connected symmetric
planes and φ: M —»JV a morphism of the underlying symmetric
spaces. If Toφ is an isomorphism of the tangent translation planes
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then φ is a weak homomorphίsm of stable planes.

Proof. By hypothesis, φ is a covering morphism of the spaces.
(1) For K 6 J ^ , let A be the connected component of o in K.

Then A is a symmetric subspace of M with tangent space T0K. By
our assumption, Toφ maps T0K to some T0L e T0£f0, and φ maps A
to a symmetric subspace of N with the same tangent space as L.
By 3.14, A* S I/.

(2) Let σeΣM be a motion of M. Then there is a motion S
of N such that σφ — φδ. This is easily seen in the case of a
symmetry σ = σy; then <7y<p = <£*7W, where w — yψ.

(3) Now let B be any component of any line G e 3ίί. For an
arbitrary b e B, choose a motion σ eΣM with oσ = b. Then 5 = Aσ,
where A is a component has in (1). Then by (2), Bφ = Aσ<° = Aφδ is
contained in a line.

REMARK 4.13. By 4.10, the condition that the lines of N be
connected can be dropped in 4.11c, the following weaker assertion
remaining valid: There exists a weak homomorphism φ:M~^N of
the stable planes which is an isomorphism of symmetric spaces and
induces a Injection of the sets of connected components of lines.

4.14. THEOREM D. For a connected symmetric plane (Λf,
the following are equivalent:

(a) (M, Jzf) is an affine plane.
(b) (M, J2f) is an affine translation plane.
(c) T0M is an abelian triple system, that is, has trivial

multiplication.
(d) Σ+ is abelian.
(e) Σo is discrete.
(f) M is an abelian symmetric space; that is, the centre con-

gruence is trivial: C(M) = M x M.

Proof. By a result of R. Baer [21: p. 213], (b) follows from
(a). Alternatively, one could use 3.1 to obtain transitivity of the
group of translations.

Clearly, (b) implies (c). For the converse implication, note that
for any symmetric plane, the plane T0T0(M, Sf) is isomorphic to
T0(M, J*f) as a translation plane, but has trivial triple structure.
Therefore, if (c) holds,

T0T0(M, JZ>) = T0(M,

which implies T0(M, £f) ^ (M, &>) by 4.11a.
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Let (e') be the property @ — @~, which is clearly equivalent to
condition (e). We get equivalence of (c), (d), and (e') from the facts
that [©"", ©"] = @+ (3.5a) and that @ is the standard embedding of
T0M 3.8. Finally, (d) and (f) equivalent by (3.11).

4.15. THEOREM E. Each of the symmetric planes described as
Examples 2.5 through 2.13, with the possible exception of the complex
Minkowski planey is isomorphic to any other connected symmetric
plane which has the same tangent translation plane (comprising the
triple structure).

REMARK. The same assertion does hold for the Minkowski plane,
as will be shown in [17], using condition (b) of Theorem C.

Proof. Each of the examples has connected lines. A symmetric
plane has trivial centre if its motion group Σ+ is centre-free, since
σx = σy implies that σx is a reflection at both x and y, hence that
x — y. Thus the real and complex elliptic, exterior hyperbolic and
punctured protective planes satisfy the criterion (c) of Theorem C.
All aίϊine planes, as well as the real and complex interior hyperbolic
and cylinder planes, are simply connected and satisfy the first
criterion of Theorem C. The only remaining example, the complex
oval plane M, needs special treatment.

M is not simply connected, as will be seen in the course of our
argument, and is centre-free, because Σ = PSO3 C = Σ+ contains the
reflections, hence has no centre. It has no compact line, since each
complex line meets the orthogonal quadric P2C\M. Thus M satisfies
none of our criteria.

To show that, nevertheless, M satisfies our assertion, we shall
prove that the universal covering M~> M is two-sheeted, and that
M has the same motion group Λ ~ Σ, with a smaller isotropy
group Λo < Σo. Thus Λo must be different from the centralizer Σo

of σ0, and M cannot be a symmetric plane by 1.6. Therefore, for
any symmetric plane Mf with the same tangent translation plane as
M, there is a bijective weak homomorphism φ:M—>M'. Now M
has connected lines, and φ is an isomorphism by 4.8b.

By computation one finds Σo ~ O2C ^ Ω <α>, where Ω is the
multiplicative group of complex numbers and a is the automorphism
z —> z"1 of Ω. The symmetric space N: = Σ/Ω is a two-sheeted con-
nected covering of M = (Σ/Ω)/(Σ0/Ω). Our proof is complete as soon
as we show that N is simply connected (hence that JV = M).

By exactness of the homotopy sequence of the fibration Σ —> N,
it suffices to show that πxΩ —> πxΣ is surjective. To verify this, let
T <; Γ be maximal compact subgroups of Ω and Σ, respectively.
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Then Γ = SO3 R, and by the theorem of Malcev-Iwasawa [20: p. 189],
we only have to show that π^-^πJΓ is surjective. This may be
read off from the homotopy sequence of the fibration associated with
the transitive action of Γ on the 2-sphere.

5* Deter initiation of all 2-dimensional symmetric planes*

5.1. Determination of all reflection algebras of type (p, 2).
Reflection algebras are defined in 3.7. For our present purposes it
would suffice to have a list of the effective ones. However in [17],
it will prove useful to know slightly more than that. Since a
reflection algebra satisfies the dimension estimate 3.5b, we must
have p <̂  1 for each reflection algebra (31, a) of type (p, 2). We
find

(1) One abelian reflection algebra (31, a) of type (p, 2),
characterized by p = 0.

If p = 1, then 3ΐ is simple or solvable [12: p. 11 if]. The sub-
space 9ΐ+ is orthogonal to 9ΐ~ with respect to the Killing form of
91, see [14: p. 140]. Therefore, if 91 is simple, a is determined
by the one-dimensional subspace 9l+ < 9ϊ. Now let 91 = @Π3 be the
Lie algebra of Σ = SOZR. Then the adjoint representation of Σ
is the standard action on JB3 and is transitive on one-dimensional
subspaces of 91. Hence there is at most one such algebra (@Q3, a).
One the other hand, the algebra of the real elliptic plane (2.13) is
of this kind. So we have

(2) One reflection algebra (βD*, a) of type (1, 2).
If 9ΐ = ©&>/? is the Lie algebra of SL2i?, then the adjoint group

is the identity component of S03(/ί, 1) = SO3(/), where / is the
Killing form of 91, and has three orbits of one-dimensional subspaces.
Among these, the one-dimensional orbit, consisting of the self-
orthogonal subspaces, gives no reflection algebras, since 9t+ and
at" have to be complementary. Thus, in view of the two examples
associated with the real hyperbolic planes (2.13), we have

(3) Two nonisomorphic reflection algebras (@S2, a) of type
(1, 2). The subgroup Σo <; PSL2J? corresponding to 9i+ is compact
in one case and noncompact in the other.

It remains to consider the solvable reflection algebras of type
(1, 2). Let $ <; 91 be the commutator subalgebra. Then by (3.5a),
& contains 9l+. Furthermore, we have l<;dimSΐ<;2, and $ is
abelian [12: p. 12]. If $ is one-dimensional, then $ = 9l+ must be
central because [9l+, 9l~] £ 9l~. In this case, a basis {α, b, c) of 9ΐ
may be found such that

91+ - <α> , at" = <6, c> , a = [6, c] .
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Thus we have
(4) One nilpotent reflection algebra (31, a) of type (1,2); 3l+

is the centre of 31, and (31, a) is not effective in the sense of 3.7.
If dim$ = 2, then ft - $t+ φ Λ " = <α> φ <δ>, say, since ft is

<x-invariant. Choose ce3ΐr\SΓ. Then adc interchanges B+ and ft",
and is, by the definition of ft, an automorphism of ft. Thus adc
may be represented by a regular matrix of the form

with respect to the basis {a, b) of B. Replacing c and a by suitable
scalar multiples, one may reduce the pair (r, s) to (1, 1) or (1, —1).
The case s = — 1 gives

(5) One reflection algebra (31, a) of type (1, 2), where 31 is
£/fce Lie algebra of the euclidean motion group R% S02, and 3l+ is
contained in the commutator subalgebra.

Finally, for s — 1, ad c is equivalent to the endomorphism
(x, 2/) —> (a?, — y) of ®t and we have

(6) One reflection algebra (91, a) of type (1, 2), where 91 is
£/&β Lie algebra of the motion group of the real cylinder plane, see
2.13, and 9l+ is contained in the commutator subalgebra.

5.2. THEOREM F. The list 2.13 of 2-dimensional connected
symmetric planes is complete.

Proof. In a 2-dimensional affine topological translation plane,
the set of lines through the origin is necessarily the set of all one-
dimensional real subspaces. This, together with Theorem E, shows
that each of the planes listed in 2.13 is uniquely determined by its
Lie triple system. Since by 3.8 the classification of ^-dimensional
triple systems is equivalent to the classification of all effective
reflection algebras of type (p, n) with arbitrary p, the proof of
Theorem F boils down to showing that for n = 2, this latter classi-
fication yields exactly the reflection algebras (@, Ad σ0) associated
with the planes 2.13. This is easily verified by comparing 2.13
with 5.1.
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