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A CHARACTERIZATION OF DIMENSION OF TOPOLOGICAL
SPACES BY TOTALLY BOUNDED PSEUDOMETRICS

JEROEN BRUIJNING

For a compact metrizable space X, for a metric d on
X, and for $>0, the number N(ε, X, d) is defined as the mini-
mum number of sets of d-diameter not exceeding ε required
to cover X. A classical theorem characterizes the topolog-
ical dimension of X in terms of the numbers N(s, X, d). In
this paper, two extensions of this result are given: (i) a
direct one, to separable metrizable spaces, involving totally
bounded metrics; (ii) a more complicated one, involving the
set of continuous totally bounded pseudometrics on the
space as well as a special order on this set.

The dimension function involved is the so-called Katetov dimen-
sion, i.e., covering dimension with respect to covers by cozero sets.
Let d be a metric for the compact metrizable space X. Define

k(X,d) = Sui>\ini\-^N^X'^ k>θl .
logs

Then we have the classical

THEOREM A (L. Pontrjagin and L. Schnίrelmann [4]).

dim X = inf {k(X, d)\d is a metric for X} .

REMARK. The number log N(ε, X, d) is often referred to as the
ε/2-entropy of X (with respect to d).

The extension of Theorem A to separable metrizable spaces is
given by Theorem 2, while the general case is covered by Theorem
1. The referee has pointed out that Lemma 5 below, needed in the
proof of Theorem 1, can be derived from two theorems by Katetov
([3], Theorems 1.9 and 1.16). The author wishes to thank Professor
J. Nagata for drawing his attention to Theorem A and to the pro-
blem of finding its generalization.

2* Definitions and notations* All spaces considered will be
nonempty. A zeroset (cozeroset) in a space X is a set of the form
/"1({0})(/"1((0, 1])), where /: X->[0, 1] is continuous. The symbols U,
Ui9 V, Vi9 etc. will denote cozerosets throughout; F, Fi9 Ff etc. will
denote zerosets. If Szf — {Ar\yeΓ} is a collection of subsets of X,
the order of Jϊf (ord jzf) is defined as sup{| j&'\ | J ^ ' c j y and
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Π J / ' Φ 0}. DimX will be the Katetov dimension of X, i.e.,

dim X ^ n iff every finite cover ^ = {Uu , Uk} has a

finite refinement T = {Vu , Vt} with

oτdT ^n + 1

dim X — n iff dim X ^ w but not dim X <^ n — 1

dim J = oo iff not dim X ^n for any n .

Note that in the above definition, U* and Vs are cozerosets by nota-
tion. For normal spaces, Katetov dimension coincides with ordinary
covering dimension [1, p. 268].

A continuous pseudometric on a space X is a continuous function
d: X x JSΓ—> [0, oo) which is symmetric, satisfies the triangle inequality
and has the property that d(x9 x) = 0 for all xeX. A pseudometric
d is totally bounded iff for every ε > 0 there exists a finite ε-net in
X with regard to d. & will be the set of all totally bounded, con-
tinuous pseudometrics on X. For d e έ%, ε > 0 and x e X, U?(x) is
defined as the set {yeX\d(x, y) < ε). This is a cozeroset. On &
we introduce the following relation: dλ > d2 iff for all ε > 0 there
exists a δ > 0 such that U}*(x) c U?*(x) for all x e l For de& and
A c l , the diameter of A with regard to d is the number d-diam A =
sup{d(#, 2/) I a?, 2/e A}. We define |d | =eZ-diamX. \d\ is always finite.
Finally, if ^ is a cover of X and d e ^? , we say that ^ is d-uni-
form iff there exists ε > 0 such that the cover {Uε

d(x)\x e X) refines ^Λ

3* An extension of Theorem A For de& and ε > 0, let
N{ε, X, d) be defined as the minimum number of sets of d-diameter
not exceeding ε required to cover X. Put

logε
ε0

So > 0 ,

just as in the introduction.
Then we have

THEOREM 1. // k(X, d) is defined as above, then

dim X = sup{inf{k(X, d)\d> do,de &}\ d0 e

Before we give the proof, we will state and prove a few lemmas.

LEMMA 1. Let δ > 0, and let <%f = {Ulf - , Uk} be a cover of

X. Then there exists de& such that ^ is d-uniform and \d\ ^ <5.

Proof. For the sake of completeness, we include an elementary
proof. Let /;:X->[0, 1] be continuous, with f71((0,ϊ\) =
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Define f:X^Rk by the formula

Define dx\ X x X-» [0, «>) by ^(α, y) - ||/(αθ -/(y) | | . It is not dif-
ficult to show that dxe&. Now

f(X) c z/ = {(λx, , λ,)|Jtx λ, = 1 and λ, ^ 0(1 ̂  i £ fc)} .

Denoting the set {(λx, , λfc) e J |λ, > 0} by F, , we have Uά = f~\Vό)
(1 S i ^ fc). {Vu , Vk} is an open cover of the compact set Δ, so
there exists ε > 0 such that the cover {Uε(p) f] J\peΛ} refines
{Vu , Vk}. Let xeX. Then there exists j , 1 g j ^ i;, such that
P.((/(*))c7 y. It follows that U*(x)c:f-1(Vi)=Uj. Thus ^ is
cίΓuniform. Finally putting cί = 3/1^ (-ĉ  we get the desired element
of ^ .

LEMMA 2. (a) Let dl9 d2e&. Then dx + d2e&.
(b) Let d.e^iieN) and let ΣT^\dt\ < oo. Then ΣtLιdte^.

Proof, (a) It is easy to see that dλ + d2 is a continuous pseudo-
metric. To prove that is totally bounded, let ε > 0 and {xl9 •••,&*}
be an ε/3-net for (X, dλ). Let, for 1 ̂  i ^ k, {y[, , i/ίj be an ε/3-
net for Utι\{x%), with regard to d2 (the restriction of d2 to any sub-
set of X is again totally bounded, as can be proved in a standard
manner). Put Y — {yj 11 <; i ^ k, 1 ̂  i ^ wj. It is not difficult to
prove that Y" is an ε-net for X with respect to dx + d2. This
proves (a).

(b) Σ?=1dt is, as a uniform limit of continuous functions, itself
continuous. It is easily seen to be a pseudometric. Let ε > 0, and
NeN so, that Σi>N\dt\ < ε/2. Since by (a), Σf^d^^y there exists
a finite ε/2-net for X with respect to Σf=1 d€. The same set is easily
proved to be an ε-net for (X, Σΐ=1d^)9 which proves (b).

LEMMA 3. Let Y be a dense subset of X, and let c£e^?. Then
k(X,d) = k(Y,d\YxY).

Proof It is easy to see that N(ε, X, d) = N(e, Y, d\Y x Y) for
all ε > 0. From this the result follows by the very definition of
k(X,d) and k(Y,d\YxY).

Now we are ready to go on with the proof of Theorem 1. For
shortness, denote sup{inf{k(X, d)\d> do,de&}\d0 e&} by k{X).

First we prove: k(X) ̂  dim(X). This will follow from the following
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LEMMA 4. Let n ^ 0 and dim X ^ n. Then there exists d0 e &
such that, for all de& with d > d0, k(X, d) ^ n. (This formula-
tion also takes care of the case dimX = <».)

Proof of Lemma 4. Let ^ = {Uu , Uk} be a cover such that
every refinement T* = {Fx, , Vt} of ^ has order ^n + 1. By
Lemma 1, there is a d0 e & such that ^/ is d0-uniform. Let d > d0,
de&. Then there exists d>0 such that the cover {Uδ

d(x)\xeX}
refines ^Λ

Consider the equivalence relation ~ on X defined by x ~ y iff
d(x, y) = 0. Let X' be the set of evuivalence classes, and φ: X—>X'
the natural projection. Define d'\ Xr x Xr —> [0, °o) by d'(φ(x), Φ(y)) =
d(x, y). This definition turns (X', dr) into a totally bounded metric
space. Since d is continuous, φ is continuous if we equip X' with
the metric topology. Furthermore, if AaX, then c£-diamA =
d'~diamφ(A); and if BaX\ then d'-diam 5 = d-diam ^ ( S ) . It fol-
lows that N(ε, X, d) = N(ε, X', df) for all ε > 0, thus Jc(X,d) =
k(X', d'). Let (X", d") be the metric completion of (X', d'). Since
(X', d') is totally bounded, (X", d") is compact. From Lemma 3 it
follows that fc(X', d') = &(X", d"). From Theorem A we deduce
k(X", d") ^ dim X". Combining the above results, we infer k(X, d)}>
dim X".

What is left to prove, is that dim X" ^ w. So suppose
dimX"^n — l. Then there is an open cover <%^={W1, •••, TFJ (con-
sisting of cozerosets) such that ord ^ " ^ w and d"-diam Wt <8 for
1 ^ i ^ s. Then {̂ ~1('FΓi)|l <; i ^ s} is a refinement of ^ , consisting
of cozerosets, with order ^ n. This is a contradiction. Thus
k(X, d) ^ dim X" ^n, which completes the proof of Lemma 4.

Next we will prove: &(X)<^dimX. If d i m X = <χ>, we have
nothing to prove. So suppose dimX = n < oo.

Then the result will follow from

LEMMA 5. Let doe&, and ε0 > 0. Then there exists de&,
d > d0, such that k(X, d) ^ n + ε0.

Proof. First we prove the following

Claim. There exist d* e &, d* > d0, and ^ = {F?, , F^J
(A; ̂  0) such that

( i ) ^l is a cover and ord ^l ^ n + 1 (k ^ 0)
(ii) d*-diam F! ^ 1/fc (fc e JV, 1 ^ i ^ mk)
(iii) For every ^ - / c &\ with n ̂ " ' = 0 , the cover {X\F \ F e ^f]

is d*-uniform (keN).
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Proof of Claim. We will construct inductively sequences (dk)ΐ=Q

of elements of £% and (J^l)^ of cozero covers of X in the follow-
ing way: d0 is given, put ^ — {X}; let keN, and suppose
dQ, * *, dfc-i and <β^, , ^^_i have been defined in such a way that

(a) jrχ = {pif ...9 j p y j s a cover and ord J^ ^ n + 1 (0 ^ ί < k)
(b) (do+ +4-i)-diam F}<1/1 (0<l<k,0^i^ mt)
(c) For every ^ ' c z ^ such that Γ ϊ ^ ' = 0 , the cover

{X\F | .Fe j^ ' } is dΓuniform (0 < I < k)
(d) |d,I ^2~ι (0<l<k).
Since dQ-\ Ydk_1e^ί, by Lemma 2, and since dimX = ^,

there exists a cover ^ = {F}9 , JPiΛ} of X such that ord
^l<kn + l and (do + h4_1)-diam F} < 1/fc (1 ^ i <; wfc): simply
take , ^ to be a suitable shrinking of a finite cover & = {Ulf , t/J
with ord ^ ^ w + 1 and (d0 H hd^J-diam ?/< < 1/k (compare e.g.,
[1, p. 267]).

Let 0 < δ < min{2~&, min{l/Z - (dQ + + d^O-diam F\0 <l Sk,

Let {^, - , ̂ } be the set of all covers of the form {X\F \ F e JΓ'},
where ^ ' a ^ and n ^ ' = . 0 . By Lemma 1, there exist dιe^B
such that Id'l^δ/t and ^ is d'-uniform (1 ^ i ^ ί). Put 4 =
dιΛ \-d\ It is not difficult to prove that for these choices of
J?l and dk the conditions (a)-(d) are satisfied for k instead of k — 1.
This completes the inductive construction.

Now put cί* = ΣZ=Q di. By Lemma 2, d * e ^ ? . It is easy to see
that ώ* > d0. The conditions (i)-(iii) are readily verified. This
proves our claim.

Now, let as before — be the equivalence relation on X defined
by x — y iff d*(x, y) = 0. Let Xτ be the set of equivalence classes
and φ: X ~> Xf be projection. Let d': X' x X' ~> [0, oo) be defined by
d'(φ(x), φ(y)) = d*(x, y). Again φ is continuous. Let (X", d") be the
(compact) completion of (X',d'). We will prove: d i m X " ^ ^ . It
will suffice to show that, for every keN, there exists a closed cover
of X" with o r d e r ^ n + 1 and such that its elements have d"-diameter
not exceeding 1/fc. So, let keN. Define G, = C\(φ(Ft

k)) (1 ^ i ^ m*),
where the closure is taken in X", and put & = {Gx, , G m J. Then
? is a closed cover of X", and cΓ-diam (?< = d"-diam ^(ί?) =
d'-diam ^(ί7^) = d*-diam JF? ^ I/A.

It is left to prove that ord gf ^ w + 1. Let gf' c ^ , | ^ ' | =
n + 2. For convenience we assume that gf' = [Glf , (τ»+2}. Let
^ • ' = {ί\*, . . . , Fί+ 2}. Since o r d ^ ^ n + 1, Π ^ ' ' = 0 . Thus the
cover {X\Fi \ 1 <£ i ^ n + 2} is d*-uniform and there exists δ > 0 such
that for all xeX Uf{x)aX\F! for some i with 1 <: i ^ n + 2.

Suppose Π ^ ' ^ 0 , say ^ n ? ' . Since G, == Gl(φ(Ft)), there
exists α̂ , e Ff such that d"(^(a?t), ») < δ/2 ( l ^ i ^ w + 2). Thus
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d*(xif Xj) = d\φ(Xi)9 φ(Xj)) < δ for 1 ^ i, i ^ w + 2. I t follows t h a t
UfXxi) Π Fi Φ 0 (I <Z i ^, n + 2), which is a contradiction. So
Γ) gf' = 0 , and ord gf ^ w + 1. This proves dim X " ^ ^.

Thus φ:X->X" is a continuous map into the compact metric
space X", which satisfies dimX" ^ w. By Theorem A, there exists
a metric d' on X " with k{X", d') <>n + ε0. Put d(α, 2/) = d"(̂ (aj), Φ(y))
for x, y eX. From the compactness of X " and the continuity of φ
it follows that de&. Also cϊ" > d" on X", again since X " is com-
pact. From the formulas d*(x, y) = d"(φ(x), φ(y)) and d(xfy) =
d\Φ(x)9 Φ{y)) it follows then that d > d*. Since c£* >• cZ0, we also
have ώ > d0. Furthermore, just as before, k(X, d) = k(X", d') S
n + e0. This completes the proof of Lemma 5.

Combining Lemma 4 and Lemma 5, finally, we get the proof of
Theorem 1.

REMARK. If X is a compact, nonempty, metrizable space, then
(a) all (pseudo) metrics on X are totally bounded
(b) for every two metrics dx and d2, we have dx > d2

(c) for every metric d and every pseudometric d\ df > d im-
plies that d' is a metric, compatible with the topology.
(N. B. all these (pseudo) metrics are supposed to be continuous.)

We did prove:

d i m X = s u p { i n f { k ( X , d)\d > dQ,

It follows, that for fixed dx 6 &

dim X = sup{inf{k(X, d)\d> do,de&}\d0 > dl9 d0 e

(Here the fact that the pseudo-order > is directed (cf. Lemma 1) is
needed.) Now, if we take dx to be a fixed metric for X, we infer
from (a)-(c):

d i m X = s u p { i n f { k ( X , d)\d> dQ,de&}\do> d19

= inf{&(X, d)\d is a metric for X}

which is Theorem A. Thus our result includes Theorem A as a
special case.

4* The separable metrizable case* In the case of a separable
metrizable space X another, more direct generalization of Theorem
A is available. Namely, we have

THEOREM 2. Let X be a nonempty, separable metrizable space.
Then dimX = inf{fc(X, d)\d is a totally bounded metric for X}.
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Proof. Denote k(X) = inf{h(X, d)\d is a totally bounded metric
for X}. First we prove: k(X) <;dimX. If dimX = oo, we have
nothing to prove. So suppose dim X = n ^ 0. Let X be a metri-
zable compactification of X with dimX = n[2, p. 65]. Let ε > 0 and
d0 be a metric for X such that k{X, d0) ̂  n + ε (Theorem A). The
restriction of d0 to X is totally bounded, and by Lemma 3,
k(X, do\Xx X) = k(X, do)^n + e. Thus k{X) ^ n = dim X

Next we prove: k{X) ^ dim X Let d be any totally bounded
metric for X. The completion (X, d) of (X, d) is then compact, so
k(X, d) ̂  dim X, again by Theorem A. By Lemma 3, k(X, d) =
Λ(X, d). This completes the proof of Theorem 2.
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