A CHARACTERIZATION OF DIMENSION OF TOPOLOGICAL SPACES BY TOTALLY BOUNDED PSEUDOMETRICS

JEROEN BRUIJNING

For a compact metrizable space X, for a metric d on X, and for $\varepsilon > 0$, the number $N(\varepsilon, X, d)$ is defined as the minimum number of sets of d-diameter not exceeding ε required to cover X. A classical theorem characterizes the topological dimension of X in terms of the numbers $N(\varepsilon, X, d)$. In this paper, two extensions of this result are given: (i) a direct one, to separable metrizable spaces, involving totally bounded metrics; (ii) a more complicated one, involving the set of continuous totally bounded pseudometrics on the space as well as a special order on this set.

The dimension function involved is the so-called Katetov dimension, i.e., covering dimension with respect to covers by cozero sets. Let d be a metric for the compact metrizable space X. Define

$$k(X,\,d) = \sup\,\left\{\inf\left\{-rac{\log\,N(arepsilon,\,X,\,d)}{\log\,arepsilon}\,\Big|\,arepsilon0
ight\}\,.$$

Then we have the classical

THEOREM A (L. Pontrjagin and L. Schnirelmann [4]). dim $X = \inf\{k(X, d) \mid d \text{ is a metric for } X\}$.

REMARK. The number log $N(\varepsilon, X, d)$ is often referred to as the $\varepsilon/2$ -entropy of X (with respect to d).

The extension of Theorem A to separable metrizable spaces is given by Theorem 2, while the general case is covered by Theorem 1. The referee has pointed out that Lemma 5 below, needed in the proof of Theorem 1, can be derived from two theorems by Katetov ([3], Theorems 1.9 and 1.16). The author wishes to thank Professor J. Nagata for drawing his attention to Theorem A and to the problem of finding its generalization.

2. Definitions and notations. All spaces considered will be nonempty. A zeroset (cozeroset) in a space X is a set of the form $f^{-1}(\{0\})(f^{-1}((0, 1]))$, where $f: X \to [0, 1]$ is continuous. The symbols U, U_i, V, V_i , etc. will denote cozerosets throughout; F, F_i, F_j^k etc. will denote zerosets. If $\mathscr{A} = \{A_r | r \in \Gamma\}$ is a collection of subsets of X, the order of \mathscr{A} (ord \mathscr{A}) is defined as $\sup\{|\mathscr{A}'| \mid \mathscr{A}' \subset \mathscr{A}$ and $\cap \mathscr{A}' \neq \emptyset$. Dim X will be the Katétov dimension of X, i.e.,

$$\dim X \leq n$$
 iff every finite cover $\mathscr{U} = \{U_1, \dots, U_k\}$ has a finite refinement $\mathscr{V} = \{V_1, \dots, V_l\}$ with ord $\mathscr{V} \leq n + 1$;
 $\dim X = n$ iff $\dim X \leq n$ but not $\dim X \leq n - 1$;
 $\dim X = \infty$ iff not $\dim X \leq n$ for any n .

Note that in the above definition, U_i and V_j are cozerosets by notation. For normal spaces, Katetov dimension coincides with ordinary covering dimension [1, p. 268].

A continuous pseudometric on a space X is a continuous function $d: X \times X \to [0, \infty)$ which is symmetric, satisfies the triangle inequality and has the property that d(x, x) = 0 for all $x \in X$. A pseudometric d is totally bounded iff for every $\varepsilon > 0$ there exists a finite ε -net in X with regard to d. \mathscr{R} will be the set of all totally bounded, continuous pseudometrics on X. For $d \in \mathscr{R}$, $\varepsilon > 0$ and $x \in X$, $U_{\varepsilon}^{d}(x)$ is defined as the set $\{y \in X | d(x, y) < \varepsilon\}$. This is a cozeroset. On \mathscr{R} we introduce the following relation: $d_1 > d_2$ iff for all $\varepsilon > 0$ there exists a $\delta > 0$ such that $U_{\delta}^{d_1}(x) \subset U_{\varepsilon}^{d_2}(x)$ for all $x \in X$. For $d \in \mathscr{R}$ and $A \subset X$, the diameter of A with regard to d is the number d-diam A = $\sup\{d(x, y) | x, y \in A\}$. We define |d| = d-diam X. |d| is always finite. Finally, if \mathscr{U} is a cover of X and $d \in \mathscr{R}$, we say that \mathscr{U} is d-uniform iff there exists $\varepsilon > 0$ such that the cover $\{U_{\varepsilon}^{d}(x) | x \in X\}$ refines \mathscr{U} .

3. An extension of Theorem A. For $d \in \mathscr{R}$ and $\varepsilon > 0$, let $N(\varepsilon, X, d)$ be defined as the minimum number of sets of d-diameter not exceeding ε required to cover X. Put

$$k(X,\,d) = \sup\left\{ \inf\left\{ -rac{\log\,N(arepsilon,\,X,\,d)}{\logarepsilon} \left| arepsilon < arepsilon_{_0}
ight\} \left| arepsilon_{_0} > 0
ight\}
ight.
ight.$$
 ,

just as in the introduction.

Then we have

THEOREM 1. If k(X, d) is defined as above, then

 $\dim X = \sup\{\inf\{k(X, d) | d \succ d_0, d \in \mathscr{R}\} | d_0 \in \mathscr{R}\} \ .$

Before we give the proof, we will state and prove a few lemmas.

LEMMA 1. Let $\delta > 0$, and let $\mathscr{U} = \{U_1, \dots, U_k\}$ be a cover of X. Then there exists $d \in \mathscr{R}$ such that \mathscr{U} is d-uniform and $|d| \leq \delta$.

Proof. For the sake of completeness, we include an elementary proof. Let $f_i: X \to [0, 1]$ be continuous, with $f_i^{-1}((0, 1]) =$

284

285

 $U_i(1 \leq i \leq k).$ Define $f: X
ightarrow R^k$ by the formula

$$f(x)=\left(rac{f_1(x)}{\Sigma_{i=1}^kf_i(x)},\ \cdots,\ rac{f_k(x)}{\Sigma_{i=1}^kf_i(x)}
ight).$$

Define $d_1: X \times X \to [0, \infty)$ by $d_1(x, y) = ||f(x) - f(y)||$. It is not difficult to show that $d_1 \in \mathscr{R}$. Now

$$f(X) \subset \varDelta = \{(\lambda_1, \ \cdots, \ \lambda_k) | \Sigma_{i=1}^k \ \lambda_i = 1 \quad ext{and} \quad \lambda_i \geqq 0 (1 \leqq i \leqq k) \}$$

Denoting the set $\{(\lambda_1, \dots, \lambda_k) \in \mathcal{A} | \lambda_j > 0\}$ by V_j , we have $U_j = f^{-1}(V_j)$ $(1 \leq j \leq k)$. $\{V_1, \dots, V_k\}$ is an open cover of the compact set \mathcal{A} , so there exists $\varepsilon > 0$ such that the cover $\{U_{\varepsilon}(p) \cap \mathcal{A} | p \in \mathcal{A}\}$ refines $\{V_1, \dots, V_k\}$. Let $x \in X$. Then there exists $j, 1 \leq j \leq k$, such that $U_{\varepsilon}((f(x)) \subset V_j$. It follows that $U_{\varepsilon}^{d_1}(x) \subset f^{-1}(V_j) = U_j$. Thus \mathscr{U} is d_1 -uniform. Finally putting $d = \delta/|d_1| \cdot d_1$ we get the desired element of \mathscr{R} .

LEMMA 2. (a) Let $d_1, d_2 \in \mathscr{R}$. Then $d_1 + d_2 \in \mathscr{R}$. (b) Let $d_i \in \mathscr{R}(i \in N)$ and let $\sum_{i=1}^{\infty} |d_i| < \infty$. Then $\sum_{i=1}^{\infty} d_i \in \mathscr{R}$.

Proof. (a) It is easy to see that $d_1 + d_2$ is a continuous pseudometric. To prove that is totally bounded, let $\varepsilon > 0$ and $\{x_1, \dots, x_k\}$ be an $\varepsilon/3$ -net for (X, d_1) . Let, for $1 \leq i \leq k$, $\{y_1^i, \dots, y_{n_i}^i\}$ be an $\varepsilon/3$ -net for $U_{\varepsilon/3}^{d_1}(x_i)$, with regard to d_2 (the restriction of d_2 to any subset of X is again totally bounded, as can be proved in a standard manner). Put $Y = \{y_j^i | 1 \leq i \leq k, 1 \leq j \leq n_i\}$. It is not difficult to prove that Y is an ε -net for X with respect to $d_1 + d_2$. This proves (a).

(b) $\Sigma_{i=1}^{\infty} d_i$ is, as a uniform limit of continuous functions, itself continuous. It is easily seen to be a pseudometric. Let $\varepsilon > 0$, and $N \in N$ so, that $\Sigma_{i>N} |d_i| < \varepsilon/2$. Since by (a), $\Sigma_{i=1}^N d_i \in \mathscr{R}$, there exists a finite $\varepsilon/2$ -net for X with respect to $\Sigma_{i=1}^N d_i$. The same set is easily proved to be an ε -net for $(X, \Sigma_{i=1}^{\infty} d_i)$, which proves (b).

LEMMA 3. Let Y be a dense subset of X, and let $d \in \mathscr{R}$. Then $k(X, d) = k(Y, d | Y \times Y)$.

Proof. It is easy to see that $N(\varepsilon, X, d) = N(\varepsilon, Y, d | Y \times Y)$ for all $\varepsilon > 0$. From this the result follows by the very definition of k(X, d) and $k(Y, d | Y \times Y)$.

Now we are ready to go on with the proof of Theorem 1. For shortness, denote $\sup\{\inf\{k(X, d) | d > d_0, d \in \mathscr{R}\} | d_0 \in \mathscr{R}\}$ by k(X). First we prove: $k(X) \ge \dim(X)$. This will follow from the following

JEROEN BRUIJNING

LEMMA 4. Let $n \ge 0$ and dim $X \ge n$. Then there exists $d_0 \in \mathscr{R}$ such that, for all $d \in \mathscr{R}$ with $d > d_0$, $k(X, d) \ge n$. (This formulation also takes care of the case dim $X = \infty$.)

Proof of Lemma 4. Let $\mathscr{U} = \{U_1, \dots, U_k\}$ be a cover such that every refinement $\mathscr{V} = \{V_1, \dots, V_l\}$ of \mathscr{U} has order $\geq n + 1$. By Lemma 1, there is a $d_0 \in \mathscr{R}$ such that \mathscr{U} is d_0 -uniform. Let $d > d_0$, $d \in \mathscr{R}$. Then there exists $\delta > 0$ such that the cover $\{U_{\delta}^d(x) | x \in X\}$ refines \mathscr{U} .

Consider the equivalence relation \sim on X defined by $x \sim y$ iff d(x, y) = 0. Let X' be the set of evuivalence classes, and $\phi: X \to X'$ the natural projection. Define $d': X' \times X' \to [0, \infty)$ by $d'(\phi(x), \phi(y)) =$ This definition turns (X', d') into a totally bounded metric d(x, y). space. Since d is continuous, ϕ is continuous if we equip X' with the metric topology. Furthermore, if $A \subset X$, then d-diam A =d'-diam $\phi(A)$; and if $B \subset X'$, then d'-diam B = d-diam $\phi^{-1}(B)$. It follows that $N(\varepsilon, X, d) = N(\varepsilon, X', d')$ for all $\varepsilon > 0$, thus k(X, d) =k(X', d'). Let (X'', d'') be the metric completion of (X', d'). Since (X', d') is totally bounded, (X'', d'') is compact. From Lemma 3 it follows that k(X', d') = k(X'', d''). From Theorem A we deduce $k(X'', d'') \ge \dim X''$. Combining the above results, we infer $k(X, d) \ge$ dim X''.

What is left to prove, is that $\dim X'' \ge n$. So suppose $\dim X'' \le n-1$. Then there is an open cover $\mathscr{W} = \{W_1, \dots, W_s\}$ (consisting of cozerosets) such that $\operatorname{ord} \mathscr{W} \le n$ and d''-diam $W_i < \delta$ for $1 \le i \le s$. Then $\{\phi^{-1}(W_i) | 1 \le i \le s\}$ is a refinement of \mathscr{U} , consisting of cozerosets, with $\operatorname{order} \le n$. This is a contradiction. Thus $k(X, d) \ge \dim X'' \ge n$, which completes the proof of Lemma 4.

Next we will prove: $k(X) \leq \dim X$. If $\dim X = \infty$, we have nothing to prove. So suppose dim $X = n < \infty$.

Then the result will follow from

LEMMA 5. Let $d_0 \in \mathscr{R}$, and $\varepsilon_0 > 0$. Then there exists $d \in \mathscr{R}$, $d > d_0$, such that $k(X, d) \leq n + \varepsilon_0$.

Proof. First we prove the following

Claim. There exist $d^* \in \mathscr{R}$, $d^* > d_0$, and $\mathscr{F}_k = \{F_1^k, \dots, F_{m_k}^k\}$ $(k \ge 0)$ such that

(i) \mathscr{F}_k is a cover and $\operatorname{ord} \mathscr{F}_k \leq n+1$ $(k \geq 0)$

(ii) d^* -diam $F_i^k \leq 1/k$ $(k \in N, 1 \leq i \leq m_k)$

(iii) For every $\mathscr{F}' \subset \mathscr{F}_k$ with $\cap \mathscr{F}' = \emptyset$, the cover $\{X \setminus F | F \in \mathscr{F}'\}$ is d^* -uniform $(k \in N)$.

Proof of Claim. We will construct inductively sequences $(d_k)_{k=0}^{\infty}$ of elements of \mathscr{R} and $(\mathscr{F}_k)_{k=0}^{\infty}$ of cozero covers of X in the following way: d_0 is given, put $\mathscr{F}_0 = \{X\}$; let $k \in N$, and suppose d_0, \dots, d_{k-1} and $\mathscr{F}_0, \dots, \mathscr{F}_{k-1}$ have been defined in such a way that (a) $\mathscr{F}_l = \{F_1^l, \dots, F_{m_l}^l\}$ is a cover and ord $\mathscr{F}_l \leq n+1$ $(0 \leq l < k)$

(b) $(d_0 + \cdots + d_{k-1})$ -diam $F_i^l < 1/l$ $(0 < l < k, 0 \le i \le m_l)$

(c) For every $\mathscr{F}' \subset \mathscr{F}$ such that $\cap \mathscr{F}' = \emptyset$, the cover $\{X \setminus F \mid F \in \mathscr{F}'\}$ is d_l -uniform (0 < l < k)

(d) $|d_l| \leq 2^{-l} \ (0 < l < k).$

Since $d_0 + \cdots + d_{k-1} \in \mathscr{R}$, by Lemma 2, and since dim X = n, there exists a cover $\mathscr{F}_k = \{F_1^k, \cdots, F_{m_k}^k\}$ of X such that ord $\mathscr{F}_k \leq n+1$ and $(d_0 + \cdots + d_{k-1})$ -diam $F_i^k < 1/k$ $(1 \leq i \leq m_k)$: simply take \mathscr{F}_k to be a suitable shrinking of a finite cover $\mathscr{U} = \{U_1, \cdots, U_s\}$ with ord $\mathscr{U} \leq n+1$ and $(d_0 + \cdots + d_{k-1})$ -diam $U_i < 1/k$ (compare e.g., [1, p. 267]).

Let $0 < \delta < \min\{2^{-k}, \min\{1/l - (d_0 + \cdots + d_{k-1}) \text{-diam } F \mid 0 < l \leq k, F \in \mathscr{F}_l\}.$

Let $\{\mathscr{U}_1, \dots, \mathscr{U}_i\}$ be the set of all covers of the form $\{X \setminus F \mid F \in \mathscr{F}'\}$, where $\mathscr{F}' \subset \mathscr{F}_k$ and $\cap \mathscr{F}' = \emptyset$. By Lemma 1, there exist $d^i \in \mathscr{R}$ such that $|d^i| \leq \delta/t$ and \mathscr{U}_i is d^i -uniform $(1 \leq i \leq t)$. Put $d_k = d^1 + \dots + d^t$. It is not difficult to prove that for these choices of \mathscr{F}_k and d_k the conditions (a)-(d) are satisfied for k instead of k-1. This completes the inductive construction.

Now put $d^* = \sum_{i=0}^{\infty} d_i$. By Lemma 2, $d^* \in \mathscr{R}$. It is easy to see that $d^* > d_0$. The conditions (i)-(iii) are readily verified. This proves our claim.

Now, let as before ~ be the equivalence relation on X defined by $x \sim y$ iff $d^*(x, y) = 0$. Let X' be the set of equivalence classes and $\phi: X \to X'$ be projection. Let $d': X' \times X' \to [0, \infty)$ be defined by $d'(\phi(x), \phi(y)) = d^*(x, y)$. Again ϕ is continuous. Let (X'', d'') be the (compact) completion of (X', d'). We will prove: dim $X'' \leq n$. It will suffice to show that, for every $k \in N$, there exists a closed cover of X'' with order $\leq n + 1$ and such that its elements have d''-diameter not exceeding 1/k. So, let $k \in N$. Define $G_i = \operatorname{Cl}(\phi(F_i^k))$ $(1 \leq i \leq m_k)$, where the closure is taken in X'', and put $\mathscr{G} = \{G_1, \dots, G_{m_k}\}$. Then \mathscr{G} is a closed cover of X'', and d''-diam $G_i = d''$ -diam $\phi(F_i^k) =$ d'-diam $\phi(F_i^k) = d^*$ -diam $F_i^{'k} \leq 1/k$.

It is left to prove that $\operatorname{ord} \mathscr{G} \leq n+1$. Let $\mathscr{G}' \subset \mathscr{G}$, $|\mathscr{G}'| = n+2$. For convenience we assume that $\mathscr{G}' = \{G_1, \dots, G_{n+2}\}$. Let $\mathscr{F}' = \{F_1^k, \dots, F_{n+2}^k\}$. Since $\operatorname{ord} \mathscr{F}_k \leq n+1$, $\cap \mathscr{F}' = \emptyset$. Thus the cover $\{X \setminus F_i^k \mid 1 \leq i \leq n+2\}$ is d*-uniform and there exists $\delta > 0$ such that for all $x \in X$ $U_{\delta}^{**}(x) \subset X \setminus F_i^k$ for some i with $1 \leq i \leq n+2$.

Suppose $\cap \mathscr{G}' \neq \emptyset$, say $z \in \cap \mathscr{G}'$. Since $G_i = \operatorname{Cl}(\phi(F_i^k))$, there exists $x_i \in F_i^k$ such that $d''(\phi(x_i), z) < \delta/2$ $(1 \leq i \leq n+2)$. Thus

 $d^*(x_i, x_j) = d'(\phi(x_i), \phi(x_j)) < \delta$ for $1 \leq i, j \leq n+2$. It follows that $U_{\delta}^{d*}(x_1) \cap F_i^k \neq \emptyset$ $(1 \leq i \leq n+2)$, which is a contradiction. So $\cap \mathscr{G}' = \emptyset$, and ord $\mathscr{G} \leq n+1$. This proves dim $X'' \leq n$.

Thus $\phi: X \to X''$ is a continuous map into the compact metric space X'', which satisfies dim $X'' \leq n$. By Theorem A, there exists a metric d' on X'' with $k(X'', d') \leq n + \varepsilon_0$. Put $d(x, y) = d'(\phi(x), \phi(y))$ for $x, y \in X$. From the compactness of X'' and the continuity of ϕ it follows that $d \in \mathscr{B}$. Also d' > d'' on X'', again since X'' is compact. From the formulas $d^*(x, y) = d''(\phi(x), \phi(y))$ and d(x, y) = $d'(\phi(x), \phi(y))$ it follows then that $d > d^*$. Since $d^* > d_0$, we also have $d > d_0$. Furthermore, just as before, $k(X, d) = k(X'', d') \leq$ $n + \varepsilon_0$. This completes the proof of Lemma 5.

Combining Lemma 4 and Lemma 5, finally, we get the proof of Theorem 1.

REMARK. If X is a compact, nonempty, metrizable space, then (a) all (pseudo) metrics on X are totally bounded

(b) for every two metrics d_1 and d_2 , we have $d_1 > d_2$

(c) for every metric d and every pseudometric d', d' > d implies that d' is a metric, compatible with the topology.

(N. B. all these (pseudo) metrics are supposed to be continuous.) We did prove:

$$\dim X = \sup\{\inf\{k(X, d) \, | \, d \succ d_{\scriptscriptstyle 0}, \, d \in \mathscr{R} \, | \, d_{\scriptscriptstyle 0} \in \mathscr{R}\}$$

It follows, that for fixed $d_1 \in \mathscr{R}$

 $\dim X = \sup\{\inf\{k(X, d) | d > d_0, d \in \mathscr{R}\} | d_0 > d_1, d_0 \in \mathscr{R}\}.$

(Here the fact that the pseudo-order > is directed (cf. Lemma 1) is needed.) Now, if we take d_1 to be a fixed metric for X, we infer from (a)-(c):

 $\dim X = \sup\{\inf\{k(X, d) | d > d_0, d \in \mathscr{R}\} | d_0 > d_1, d_0 \in \mathscr{R}\}$ $= \inf\{k(X, d) | d \text{ is a metric for } X\}$

which is Theorem A. Thus our result includes Theorem A as a special case.

4. The separable metrizable case. In the case of a separable metrizable space X another, more direct generalization of Theorem A is available. Namely, we have

THEOREM 2. Let X be a nonempty, separable metrizable space. Then dim $X = \inf\{k(X, d) | d \text{ is a totally bounded metric for } X\}.$ **Proof.** Denote $k(X) = \inf\{k(X, d) \mid d \text{ is a totally bounded metric for } X\}$. First we prove: $k(X) \leq \dim X$. If $\dim X = \infty$, we have nothing to prove. So suppose $\dim X = n \geq 0$. Let \widetilde{X} be a metrizable compactification of X with $\dim \widetilde{X} = n[2, p. 65]$. Let $\varepsilon > 0$ and d_0 be a metric for \widetilde{X} such that $k(\widetilde{X}, d_0) \leq n + \varepsilon$ (Theorem A). The restriction of d_0 to X is totally bounded, and by Lemma 3, $k(X, d_0 \mid X \times X) = k(\widetilde{X}, d_0) \leq n + \varepsilon$. Thus $k(X) \leq n = \dim X$.

Next we prove: $k(X) \ge \dim X$. Let d be any totally bounded metric for X. The completion (\tilde{X}, \tilde{d}) of (X, d) is then compact, so $k(\tilde{X}, d) \ge \dim X$, again by Theorem A. By Lemma 3, k(X, d) = $k(\tilde{X}, \tilde{d})$. This completes the proof of Theorem 2.

References

1. R. Engelking, Outline of General Topology, North-Holland, Amsterdam, 1968.

2. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1948.

3. M. Katětov, On the dimension of non-separable metric spaces II, Czechosl. Math.

J., (6) 81 (1956), 485-516 (Russian).

4. L. Pontrjagin and L. Schnirelmann, Sur une propriété métrique de la dimension, Ann. of Math., (2) 33 (1932), 152-162.

Received June 7, 1978 and in revised form February 20, 1979.

UNIVERSITEIT VAN AMSTERDAM ROETERSSTRAAT 15, AMSTERDAM