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INTEGRAL COMPARISON THEOREMS FOR THIRD
ORDER LINEAR DIFFERENTIAL EQUATIONS

L. ERBE

By means of a change of variable in the Riccati equa-
tion corresponding to the third order linear equation Ly =
y'"+p(t)y'+q(t)y = 0 a, nonlinear integral equation is obtained
which has a solution obtainable by successive approximations
under certain conditions on p and q. This technique allows
one to obtain new sharp comparison theorems for Ly=0.
Several examples are given to illustrate the results.

Introduction* The third linear differential equation

(1.1) Ly = ym + p{t)y' + q(t)y = 0

where p, q eC[α, 6), 0 < α < &<; +co, has a very extensive literature
relating to the oscillatory and asymptotic behavior of its solutions,
with much of the recent impetus coming from the work of Hanan
[7], Lazer [10], Azbelev and Caljuk [1], and Barrett [2]. (See also
Swanson [12].) In this paper a technique for obtaining some new
sharp comparison theorems for (1.1) and a related equation

(1.2) LlV = y'" + Pl(jb)y' + q,{t)y - 0 , pl9 qx e C[α, b)

will be introduced. Section 2 below will be devoted to some theorems
which are consequences of more general results to be proved in §3.
A comparison of the results obtained and their sharpness will also
be discussed and illustrated by several examples.

2* Recall that equation (1.1) is said to be disconjugate on an
interval I in case no nontrivial solution has more than two zeros on
7, counting multiplicity. If I— [α, + ©o)(or (α, +<»)), then (1.1) is
said to be oscillatory if it has at least one nontrivial oscillatory
solution (i.e., a solution with an infinite number of zeros) and non-
oscillatory iff all of its solutions are nonoscillatory (i.e., have finitely
many zeros).

A useful comparison equation for third order linear equations is
the Euler equation

(2.1) y'" + αt~2y' + βt~*y = 0 , α, β real constants .

It is known (cf. [12]) that (2.1) is disconjugate on (0, +©o) iff α ^ 1
and I α + β \ ̂  2((1 — α)/3)V2. There are various tests for oscillation
and disconjugacy using the Euler equation in conjunction with known
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comparison theorems. For example, Hanan [7] has shown that if
the inequalities

(2.2)

and

(2.3) 2ί(ί) > p'(ί) , 2q1(t) > p[(t)

hold for all large t and if Ly = 0 is nonoscillatory, then so is LJJ = 0.
Using (2.1) as a comparison equation, it was further shown in [7]
that Lλy = 0 is nonoscillatory if Pl e C'[a, + °o) and

(2.4) Pl(t) ^ 0, 2q1(t) > P[(t)9 te[a, + °°), and if there exists a number
k, 0 < fc < 1, with

(2.5) lim sup fPl(t) < & and

(2.6) lim sup ί ^ ί ) < 2((1 - A)/3)3/2 - k .

In particular, if Pl = 0 and qx is of constant sign, then Lxy — 0
is oscillatory if

(2.7) \imint1*\q1{t)\>^=

and is nonoscillatory if

(2.8)

It will be seen that examples of equations can be given with
lim supί̂ oo q1 (t) = + °° which are, nevertheless, disconjugate on
[a, +°°). This is a consequence of the fact that the criteria obtained
here are of an integral type. Theorems of this type seem to be
scarce in the literature although some results in this direction were
obtained by the author in [4] for the case p = Pl = 0. To motivate
the more general results of §3 (which involve more complicated
hypotheses) several special cases will now be stated and briefly
discussed. More elaborate examples will be given in § 3, along with
the proofs (see Remark 3.8). To simplify the statements of the
theorems, the following notation will be used:

Pi(t) = \\t - s)(s - a)*Pl(8)d8 ,

(2.9)

P(ί) Ξ= \ (ί - s)(s - a)2p(s)ds , t ^ a

and
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4(t) = \\t - «)(« -

Q(t) = ( t - s)(s - a)3q(s)ds , t ^ a .
Ja

THEOREM 2.1. Let p == px = 0, g ^ 0 αwd ΐ O o w cm?/ subinterval,
t^ a, and assume Ly = i/'" + g?/ = 0 is disconjugate on [α, +©o).
Assume further that

(2.11) Γ(ί - s)(s - a)*qt(8)d8 ^ Q(ί) , ί > α and
Ja

(2.12) ί ' ( ί - s)(s - a)3qτ(s)ds ^ Q ( t ) , t > a ,
Jα

where qΐ(t) = max [^(ί), 0], gr(ί) = max [—&(*), 0]. T/̂ β^ L ^ = 0 is
disconjugate on [a, +<*>).

THEOREM 2.2. L ^ = 0 is disconjugate on [a, +<>o) in case

(2.13) -(α/τ/8")(ί - α) ̂  ^(ί) + Qi(ί) ^ (t - α)2/(3i/T) , t > a

and

(2.14) 0 ^ f px(ί) ^ fevo(ί), ί > a for some 0 < k < — + - ^ = ,
2 1/3

(2.15) fvo(t) - α2(l - - ! = ) + - ^ ( t - α)

(2.16) Px(ί) = (*(*- s)s2p1(s)d;s , Qx(t) =

The above results are sharp in some sense because of the Euler
equation. In fact, Theorem 2.2 is obtained from Theorem 3.3 by
using the nonoscillatory Euler equation (2.1) with a = 0 and β =
2/3i/3 as a comparison equation. As special cases of the above
theorems (and the more general results in §3) are included a few
of the results of Hanan [7] mentioned earlier. In particular, the
following result generalizes (2.8):

COROLLARY 2.3. // q(t) has constant sign, then y'" + q(t)y = 0
is disconjugate on [a, +°o) if

(2.17) I j*(ί - s)s*q(s)ds ^ (ί - α)2/3l/T, t> a .

3* Proofs, generalizations, and examples* In this section, the
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more general results needed to obtain the theorems in §2 will be
stated and proved. Examples illustrating the results will also be
given.

The Riccati equation corresponding to Ly = 0 is

(3.1) r" + 3rr' + r3 + p(t)r + q(t) = 0 , r = -^ .

It is known (cf. [5]) that Ly — 0 is disconjugate on an interval /
iff there exist a, β e C2(/) (lower and upper solutions, respectively)
with a{t) < β(t) on / and such that

a" + f(t, a, af) ^ 0 ^ /9" + /(ί, /3, £') , ί e / ,

where /(ί, r, r') = 3rr' + r3 + p(t)r + ?(t). Using this, many effective
criteria may be obtained for disconjugacy of Ly = 0 based, for ex-
ample, on the separation of the roots of the equation σ(p, t) =
P* + p(t)p + g(ί) = 0 by real constants (cf. [3], [8], and [9]).

The change of variable w = 2 — tr transforms (3.1) into

(3.2) ί V + Uw' - %tww' = 3^2 - 2i(; - w* + t2p(t)(2 - w) + ί3(r(ί) .

There are several reasons for this particular change of variable.
The Euler equation (2.1) (in the disconjugate case) always has a
solution V with 1 < y < 2, so that the corresponding w satisfies
0 < w < 1, in which range the kernel of the integral equation cor-
responding to (3.2) is monotone increasing in w. Moreover, this
property is shared by many other disconjugate equations which may
be used as comparison equations. The idea here is to solve the
equation (3.2) by a monotone successive approximations technique
applied to the corresponding integral equation. This leads to lower
and upper solutions for (3.1) and hence disconjugacy. The integral
equation corresponding to (3.2) (obtained by integration by parts
twice) is

(3.3) t2w = g±{a) + g2(a)(t - a) + Γ (ί - s)H(w, s)ds + P(ί) + Q{t)
Ja

+— [ sw'ds
2 Jα

where

(3.4) H(w, s) = w2(— - w ) - s*p(s)w ,

Q

(3.5) g^a) = a2w(a), g2(a) = 2aw(a) + a2w\a) — —aw\a), and
Δ
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(3.6) P(ί) = Γ(ί - s)s-p(s)ds, Q(t) = \\t - s)s3q(s)ds .
Ja Ja

Thus, w — w(t) is a solution of (3.2) iff w solves (3.3). It will now
be shown that, under suitable conditions, a solution of (3.3) can be
obtained by successive approximations. Given the solution w = w(t),
let the sequence wn = wn{t), n — 0, 1, 2, be defined by

(t2w0(t) = g,(a) + g,(a)(t - a) + P(ί) + Q(t)

}t2wn(t) = ί2w0(ί) + ('(ί-sjjffίw,^, s)ώs+—[swl^ds , n ^ 1 .

LEMMA 3.1. Let w = w(ί) be a solution of (3.3) with 0 < w(t) < 1
on [a, 6), 0 < α < δ <Ξ + °°, and assume

(3.8) ί/2(α)(ί - α) + P(ί) + Q(ί) ̂  0 , ί > α .

Assume further that

(3.9) H(wQ(t), ί) ^ 0 , ί ^ α α^ώ

(3.10) ^('M', ί) ^ 0 /or <?αcfc ^ecZ ί and wo(t) ^ u ^ w(t) ,

where Hu(u, t) = dH/du(u, t) = 3^(1 - w) - t2p(t).
Then the sequence {wn}n^Q converges uniformly to w on each

compact subset of [a, b).

Proof. By (3.8) it is seen that t2w0(t) > 0, t ^ α. Also,

tXwtf) - wo(t)) = Γ (ί - s)iJ(w0, s)ώs + — Γswξds > 0 .
Ja 2 Jα

Hence, for n > 1

Γ * - s)(H(wn_lf s) - H(wn-i9 s))ds

for t > α, by induction and (3.10), provided wft(t) < w(t), t > a. But

,{t)) = Γ (ί - s)if(w, s)ώs + — Γ sw2ds > 0 and

- w.(ί)) = Γ (ί - β)[iΓ(w, s) - ίfίw.-!, β)]dβ
Jα
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again by induction, using (3.9), (3.10). It follows therefore, by the
Monotone Convergence Theorem, that the sequence {wn}SU converges,

lim wn(t) ΞΞ w*(ί) <; w(t) , for each t ,
n-*oo

and w*(t) satisfies equations (3.3) with the same initial conditions as
w(t). Hence, w*(t) Έ= w(t). By Dini's Theorem, the convergence is
uniform on compact subset of [a, 6). This completes the proof.

REMARK 3.2. If p(t) ^ 0, then (3.9), (3.10) hold trivially. It will
be seen that, for purposes of applying Lemma 3.1, w(t) and wo(t)
are often explicitly computable and that as a consequence, the validity
of (3.9) and (3.10) becomes a simple matter to verify. Note also
that if q(t) ^ 0, t ^ α, then the existence of a solution of w of (3.3),
with 0 < w(t) < 1 implies that (1.1) is disconjugate. (Here a = 0
is a lower solution of (3.1) and r(ί) == (2 — w)/t > 0 is an upper
solution.)

It will now be shown that, under suitable hypotheses, the
existence of a solution of (3.3) on [a, b) can be used to obtain the
existence of a solution of the integral equation corresponding to
LM = 0. The Riccati equation corresponding to Ljf = 0 is

(3.11) p" + Zpp' + p* + Vλt)p + ?!(*) - 0 , p = £
y

and the integral equation obtained via the transformation v = 2 — tp
is

tfv = G,(a) + G2(a)(t - a) + [\t ~ sϊH^v, s)ds + Px

(3.12) J α

where

(3.13) ^(t;, s) = v 2( |- - v) - s'Pί(s)v

(3.14) P^ί) = Γ (t - s)s22>1(s)(is, Q,(ί) = Γ(ί - βKfcWdβ , and
Jα Ja

(3.15) Gx(α) = α2v(α), Gt(a) = av(a)(2 - A v ( α ) ) + αV(o) .

Thus, if v = v(t) solves (3.12) on [a, 6) then p = p(ί) defined by

is a positive solution of Lλy = 0.
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Given a solution w = w(t) of (3.3) with 0 < w(t) < 1 on [α, 6),
0 < a <b <> +°o,let the sequence {vn(t)}ζ=0 be defined for a ^ t < b by

(t2v0(t) = gt(a) + g2(a)(t - α) + Px(ί) + Qx(ί) ,
(3.16) \ f* Q ft

(^.(O = *X(*) + ] β ( ί - s ) # i ( t ^ w ^ l ,

where ^(α), #2(α) are as in (3.5).

THEOREM 3.3. Let w = w(ί) be a solution of (3.3) with 0 <

1 on [α, 6), 0 < a < b <; + o°, α^d assume(3.17) flr8(α)(ί - α) + Px(ί) + Q1(t) ^ 0 , ί > α

where g2(a) is as in (3.5). Assume further that

(3.18) p(t) ^ ^( ί ) α^rf

(3.19) Px{t) + Qtf) ^ P(ί) + Q(t) , ί ^ a .

Assume αZso ίfeαί

(3.20) H^Voit), t) ^ 0 , ί ^ α α^ώ

(3.21) ^^Hy, t)^0 for each fixed t and vo(t) ^ v ^
3t;

ΓΛe^ the sequence {v„}*=<> defined in (3.16) converges, uniformly on
compact subsets of [α, b)9 to a solution v = v(t) of (3.12) with 0 <
v(t) ^ w(t) on [a, 6).

Proof Notice first that (3.20) and (3.21) imply that H(w, t)
satisfies (3.9) and (3.10), provided vQ(t) ^ wQ(t).

As in Lemma 3.1, t\(t) >0,t^a by (3.17) and vn(t) > vn^(t),
n = 1, 2, by induction. Furthermore, if the wn are as defined
in (3.7), then t\wo(t) - vo(t)) ^ 0 by (3.19) and for n ^ 1 we get
after some rearranging

t\wn(t) - vn{t)) = Γ(« - sXH^w^, s) - Hάv^, s))ds

Γ(ί - β)*1!©..^^) - p(β))dβ + P(ί)
Jα

(wi_i - vl-i)A» ^ 0

by (3.21), (3.19), (3.18) and induction. Hence, lim%_>oo vn(t) = v(t)
as in Lemma 3.1, the convergence being uniform on compact subsets
of [a, 6), and v(t) is a solution of (3.12). This completes the proof.
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REMARK 3.4. Notice that the solution v = v(t) of (3.12) obtained
in the previous theorem satisfies v(a) = #i(α)/α2 = w(a). If, in the
definition of the sequence {vn} in (3.16), g^a) is replaced by g(a)9

0 < g(a) < g^a) (i.e., vo(t) is replaced by v*(t), where vf(t) is defined
as in (3.16) with g(a) instead of gλ(a)) then Theorem 2.3 may be
applied to the new sequence {v*} so obtained, provided that (3.20)
and (3.21) hold with v0 replaced by v*. Therefore, a second solution
v*(t) may be obtained with 0 < v*(t) ^ v(t) on [α, 6). Moreover,
since v*(a) < v(a), it follows (by uniqueness of solutions of initial
value problems) that v*(t) < v(t) on [α, 6). Thus, a(t) = (2 — v(t))/t <
β(t) = (2 — v*(t))/t are lower and upper solutions of (3.11) so that
Lλy = 0 is disconjugate on [a, b). This may be summarized as

COROLLARY 3.5. Lλy = 0 is disconjugate on [a, b) provided that
the hypotheses of Theorem 3.3 hold and, in addition, that (3.20) and
(3.21) hold with vo(t) replaced by v*(t), where vf(t) is defined as in
(3.16) with g^a) replaced by g(a), for some 0 < g{a) < g^a).

Before stating the next theorem the following definition and
some notation will be introduced.

DEFINITION 3.6. Ly = y"r + pyr + qy = 0 is said to have property
A on the interval [α, b) in case the solution with y(a) = y\a) —
y"(a) - 1 = 0 satisfies y > 0, y' > 0, y" > 0, y"' ^ 0 on (α, 6), and
yf" ί 0 on any subinterval of (α, 6).

A sufficient condition for property A to hold on [a, +°°) is (cf.
[10], Lemma 3.1) that Ly = 0 be disconjugate on [a, + °°) and p ^ 0,
^ ^ 0, 2# — pf ^ 0 and Ξ£0 on any subinterval of [a, +°°). Another
sufficient condition is (cf. [6]) that Ly — 0 be disconjugate on [α, + <χ>)
and p ^ 0, q > 0, and p\q nondecreasing on [α, + oo).

If Ly = 0 has property A and y > 0, j / ' > 0, y" > 0, yf" ^ 0 on
(α, 6), then r(t) = y'(t)/y(t), t>a satisfies limf_>α+(ί - α)r(ί) = 2. There-
fore, if w = w(t) is defined by

ϋo{t) = 2 - (ί - α)r(ί), ί > α
(3.22) / . Λw{a) = 0

then noting that the function F(t) Ξ (ί — α)u'(ί) — i/(t) satisfies ^(α) =
0, JF" > 0, t > a it follows that 1 < (ί - a)y'(t)/y(t), t > α, i.e., that
w(t) < 1, t > α. Similarly, by considering the function Fλ(t) =
(ί - α)i/'(ί) - 2y(ί) which satisfies ^(α) = F[(a) = 0 and .FΓ ^ 0 and
ί θ on any subinterval t ^ a, it follows that, Fx < 0, t ^ α, which
implies 0 < w(t), ί > α. It follows that w e C[a, b) Π C2(α, 6). Fur-
thermore,

(3.23) lim(ί - a)w\t) = lim(ί - afw"(t) = 0
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by {'Hospital's rule and some elementary manipulations. Therefore
w satisfies the equation

f(ί - afw" + 4(ί - a)w' - 3(ί - a)wwr

(3.24)
I = - ώ 8 + 3 w 2 - 2 i & + ( ί - a ) 2 p ( t ) ( 2 - w ) + ( t - a ) * q ( t ) , t > a .

By (3.23) and (3.24) the corresponding integral equation is

(3.25) (ί - a)2w(t) = Γ (ί - s)iϊ(w, s)ώs + P(t) + $(ί)

+ —I (s — a)w as
2 Jα

where

, ί) = w2(—
\ 2

- ( t - a)2p(t)w, P(t) = \\t - s)(s - aYp(s)ds

and Q(t) = \* (t - «)(« - afq(s)ds .

Ja

Similar notation P^t), Qi(ί), H1{
/d91) will be used in the integral

equation corresponding to L^y = 0:

(3.26) (t - α)2v(ί) = \ (t - 8)fli(v, s)ds + Px(ί) + Q,(t)
Ja

3 f*4- — \ (§ — a)v2ds .
2 Jα

The sequences {vn}»=0, {wn}ζ=Q are defined for t > a by

(t - α)2ώ0(ί) = P(ί) + Q(t) ,

(3.27) (t - afwn(t) = [\t- 8)6(βm_u s)ds
Ja

+ A Γ (ί - sW^ds + P(ί) + Q(ί)
£t ja

and

(3.28)

(ί - α)2v0(ί) = A

The following theorem may now be proved:

THEOREM 3.7. Assume Ly = 0 Λαs property A <m [α, 6) α?tcί



44 L. ERBE

( 3 . 2 9 ) 0 ^ Λ ( ί ) + & ( « ) ^ P(t) + Q(t) , t^a .

Assume further that p(t) 5ί ^( ί ) cmώ ίΛ-αί

(3.30) HAvoit), t) = £jj(-| - v0) - (ί - afp^v, ^ 0 and

v, t) = 3v(l - v) - (ΐ — a)2Pi(£) ^ 0 /or eacΛ, fixed t and
(3.31) 3 v

vo(t) ^ v <^ ίΰ .

Then equation (3.26) has a solution v = #(ί) wiίfe 0 < v(t) ̂  tδ(t) o^
(a, 6) and Lxy = 0 feas a positive solution on (a, 6). Further, if
Qι 2̂  0, £ ̂  a, £fce% L ^ = 0 is disconjugate on [a, 6).

Proof. The proof is similar to the proof of Theorem 3.3. The
sequence {ie>ft(£)}?=0 converges monotonically to w(t) (uniformly on
compact subsets of [a, 6)). Likewise the sequence {vn(t)}n=0 is monotone
increasing for each t and satisfies

wn{t) - vn(t) ^ 0 , n = 0, 1, 2, .

Therefore, {#»(£)}?=o converges to a solution v(t) of (3.26) with

0 < v(t) ^ iί>(ί) < 1, t > α. Hence, ^(t) = expΠ μ(s)c2β\ where p(t) =

(2 — v(t))/(t — α), and α < ί0 < 6, is a positive solution of L ^ = 0 on

(α, 6). Finally if ^ ^ 0, t Ξ> α, then α(ί) = 0 and β(t) = ρ(t) are lower

and upper solutions of (3.11) so that Lxy — 0 is disconjugate on (a, b)

and hence on [α, &).

REMARK 3.8. The proof of the theorems in §2 follow from the
previous results:

Proof of Theorem 2.1. By the comments following Definition
3.6, it follows that Ly = 0 has property A. Therefore, conditions
(2.11) and (2.12) imply that both Ltv = y"' + qtv = 0 and Lrv =
y"r + QΓV = 0 are disconjugate on [a, +°o), by Theorem 3.7. Hence,
the equation yr" — qry = 0 is also disconjugate on [α, +°o) (cf. [7],
Theorem 4.7). Since -qr(t) ^ q,(t) ̂  qt(f), it follows (cf. [11]) that
Lγy = 0 is disconjugate on [α, +oo),

Proof of Theorem 2.2. Let a = 0, β = 2/3ι/"3" in the Euler
equation (2.1), (i.e., p(ί) = 0, g(ί) = (2/3i/T)ί"3 in Theorem 3.3. Then
(2.1) has the solution P, y — 1 + 1/τ/ 3, and the corresponding solution
of (3.3) i s w Ξ = 2 — 7 = 1 — l/l/"3"< 1. Also, g,(a) = α2τ0 and gr2(α) =
α/i/ΊΓ so that if (2.13) holds, then (3.17) and (3.19) in Theorem 3.3
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hold. Now (2.14) implies, on the one hand, that (3.18) holds and on
the other, since tfp^t) ^ kvo(t), 0 < k < 1/2 + 1/VT, it follows that
(3.20) and (3.21) also hold. To see this, notice that (3/2 - vo(t)) ^
(3/2 - w{t)) = 1/2 + 1/1/8 so that fptf) ^ kvQ(t) < vo(ί)(3/2 - vo(t)),
if 0 < k < 1/2 + 1/τ/ 3. Similarly, (3.21) holds if 3v(l - t;) ^ ^ ( t )
for vo(t) ^ v ^ w(t) = 1 - l/τ/~3 < 1/2. But since the function f(v) =
Zv(l — v) is increasing for 0 < v < 1/2 it suffices to have

3i;0(t)(l - vo(t)) ^ ί2^i(ί)

in order to satisfy (3.21). Again, since 1 — vQ(t) ^ 1 — w(t) — 1/VΊξ
it follows that Sv(l - v) ^ l/Tvo(ί) > fcvo(t) ^ ^^( ί ) . Therefore, all
of the conditions of Theorem 3.3 hold. Furthermore, if 0 < g(a) <
fiTi(α) is chosen so that (1/2 + 1Λ/ Z)g{a) > kg^a), then (2.14) implies
that (3.20) and (3.21) hold with vo(t) replaced by i;0*(t), where <(t)
is defined as in (3.16) with g^a) replaced by g(a) Hence, Corollary
3.5 implies that Lλy = 0 is disconjugate on [α, 6). This completes
the proof of Theorem 2.2.

Proof of Corollary 2.3. If q(t) has constant sign, it may be
assumed that q ^ 0 since the equation y"' + q(t)y = 0 is disconjugate
iff yf" — q{t)y = 0 is disconjugate. Suppose then that (2.17) holds,
q ^ 0. The conclusion then follows immediately from Theorem 2.2.

Several additional examples will now be considered in order to
more fully illustrate the results.

EXAMPLE 3.9. Consider the Euler equation (2.1) with — 2 < a <; 1
and β = 2((1 — α)/3)3/2 — α, so that (2.1) is disconjugate and has the
solution f, 7 = 1 + ((1 - a)β)υ\ Then w(t) = 2 - 7 = 1 - ( ( 1 - α)/3)1/2

satisfies 0 < w < 1, g,(a) = α2γ, ̂ (α) = α(α/2 + ((1 - α)/3)1/2). Therefore,
(3.17), (3.18), and (3.19) of Theorem 3.3 hold if

(3.32) a ^ fp^t), t^a a n d

(3.33) - α ( | - + ( - L ^ ) 1 / 2 ) ( ί - α) ^ Px(ί) + QS)

Further, since Φ0(t)(3/2 - vo(t)) ^ φ,(t)(8/2 - w(t)) = (l/2+((l-α)/3)1/2)t;0(t)

and 8»(1 - v) ^ 3vo(ί)(l - w(ί)) = i/ 3 (1 - α) t?β(ί), for t>0(ί) ^ v, it
follows that both (3.20) and (3.21) hold if

(3.34) fp.it) ^ kvo(t) , where k satisfies

(3.35) k < k0 = min [l/ 3 (1 - a), | - + ( l ^ ) 1 ' 2 ] .
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Finally, if 0 < g(a) < gλ(a) is chosen so that

(3.36) kog(a) > kgx{a)

then (3.34) implies that (3.20) and (3.21) hold with vo(t) replaced by
vf(f) where v*(t) is defined as in (3.16) with g(a) replacing g^a). It
is worth noting that if a > 0 and if (3.32) and (3.34) hold, then

(3.37) at2 ^ t*Pl(t) S kt2v0(t) ^ k ί1 ~ aY\2 + 0(t) ,

Thus, it is necessary that

(3.38) a <

so that by (3.35) it is necessary that

(3.39) <*<<*-«? and α < d ~
3 99 2 \ 3

To summarize this example: Lλy = 0 is disconjugate on [α, +°°)
if there exists a, - 2 < a < 1 so that (3.32)-(3.36) and (3.39) hold.

EXAMPLE 3.10. Consider the Euler equation (2.1) again and
assume —2 < a < 0 and

(3.40) a ^ fp.it) ^ 0 , t ^ a .

In this case conditions (3.20) and (3.21) hold trivially so that L.y — 0
is disconjugate on [α,+°°) in case (3.40) and (3.33) hold. As a
specific example, let a — — 1 = t2px(t) and let

tfqx(t) = kλ + 1 - (fcx + Jk2) cos (ί - α) ,

where 0 < α < + oo,&1- 2(2/3)3/2, &2 = α((2/3)1/2 - 1/2). Then i8

Pl(t) +
ί3gx(ί) = ^ - (fcx + Λ2) cos (ί - α) so that P,(t) + Q^ί) = (Λ1/2)(ί - α)2 +
(k, + &2)(cos(ί - α ) - l ) ^ (2/3)3/2(ί - α)2, t > a. Also, Px(ί) + Q±(t) +
k2(t — a) > 0, t > α, and hence jfy^ = 0 is disconjugate on [α, +©o).
This behavior may not be deduced from any other criteria known
to the author.

The examples given above are, of course, sharp by virtue of
the Euler equation and, as noted, reasonably simple examples may
be found whose disconjugate behavior may not be determined by
known criteria.

EXAMPLE 3.11. To find an example of a disconjugate equation
Lxy — 0 with lim sup^^ qx(t) = + °° is straightforward. For conve-
nience assume ^ Ξ O and let qx e C[l, + <*>) with q^t) > 0 and
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(3.41) qi(n) = n and [sq^ds < f
Ji 3v 3

Clearly, (3.41) can be satisfied by infinitely many g x e C [ l , +°°).
Disconjugacy follows by Theorem 2.1.

EXAMPLE 3.12. As a final example using an equation other than
the Euler equation for comparison, notice that equation

(3.42) Ly = ym + q(t)y = 0,qe C[a, b], q ^ 0, a < b < + co

has property A on [a, b] provided

(3.43) \\s - a)2q(s)ds ^ \ .

To see this, let y — y(t) be the solution of (3.42) with y(a) = y'(a) =
y"{a) — 1 = 0 and suppose there exists a < t0 ^ 6 with y"(t0) = 0 and
y" > 0 on [a, to) Multiplying (3.42) by 2/ and integrating by parts
yields

(3.44) Γ q(s)y\s)ds - IffiOl #

By the Mean Value Theorem, y(t) < y'(t)(t — a), a < t < tQf so by
(3.44) we obtain

(3.45) M ΐ°q(s)(s - af
2 Jα

S t 0

9(s)(β — afds > 1/2, a contradiction. Now using q(t) Ξ=
3/2(6 - α)?, p(t) Ξ 0 in Theorem 3.7, it follows by (3.43) that Ly = 0
has property A (and is disconjugate) on [α, 6]. Therefore, Lxy =
I/"' + tfi2/ = 0 is disconjugate on [a, b] in case either

0 ^ Γ (t - s)(s - ayqi(s)ds ^ Z Γ (t - s)(s -
(3.46) l 2 ( & ) J

40 (6 - α)3

(by Theorem 3.7)

or

(3.47)

40 (6 — α ) 3

a < t£ b

Γ (t - β)(β - α)8ίΓ(β)cfc ^ - ? - .(* """ a l , α < ί ^ δ
Jα 40 (6 )3
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(by Theorem 2.1).
It is not claimed that the conditions of this example are sharp.

The point of this example is that it may occasionally be preferable
to test disconjugacy for an equation on a particular interval where
a comparison using the Euler equation gives an inferior result. For
example, with pλ = 0, qx = k > 0, Theorem 2.2 implies that y'" + ky =
0 is disconjugate on [α, + oo) if k <^ 2/3l/"3" (and hence is disconjugate
on any subinterval of [α, +©o)). On the other hand y"' + ky = 0 is
disconjugate on [α, b] in case k <; kQ = 3/2(6 — α)s and &0 > 2/3τ/~3~ if
b - a < (9ι/ΊΓ/4)1/3 - 1.573
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