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DERIVATIONS AND COMMUTATIVITY
OF RINGS II

LUNG 0. CHUNG, JIANG LUH AND

ANTHONY N. RICHOUX

Let R be a ring with center C, and ^ be the additive
group of all inner derivations of R. An additive group &
of derivations of R is said to be a primary class of deriva-
tions of R if (i) for any d e & and δ e ~P, [d, δ] e &, (ii) for
any xeR, dx = O for all de& if and only if %eC, and (iii)
for any prime ideal P in R and any x e R, dxeP for all
de^ if and only if δxeP for all δe^.

Suppose R has a primary class & of derivations. First
we assume, for each XGR and de£&, there is a peR such
that dx — (dx)2p 6 C. Then all nilpotent elements in R form
an ideal N of R and R/N is a subdirect sum of division rings
and commutative rings. If R is prime, then R has no non-
zero divisors of zero. Next, we assume that, for each x e R
and de&, there is a polynomial p(t) of t with integral
coefficients such that dx—{dxYp{dx) eC or, for each xeR and
a 6 &, there is a p e C such that dx — (dx)2p e C. Then dx 6 C
for all xeR and de&. If R is prime, then R is necessarily
commutative.

1* Introduction* In a previous paper [1], the authors extended
the concept of inner derivation to the concept of primary class of
derivations for rings and generalized several commutativity theorems
given by Wedderburn, Jacobson, Kaplansky, Herstein, Ligh, Putcha,
Wilson and Yaqub. Let R be a ring having a primary class & of
derivations whose definitions and basic properties will be recalled
later. Among others, the following results were proved:

(1) Suppose, for each x e R and degϊ, there is a p e R which
depends upon x and 3, such that dx = (dx)2p. Then the nilpotent
elements in R form an ideal N in R, and R/N is a subdirect sum
of division rings and commutative rings.

(2) Suppose, for each x e R, d e £%f such a p is a polynomial of
dx with integral coefficients. Then R is commutative.

(3) Suppose, for each x e R, d e & such a p described in (1)
is central. Then R is a commutative.

The purpose of this paper is to generalize these results further
by relaxing the condition "dx = (dxfp." We will consider the con-
dition "dx — (dx)2p e C, the center of R" instead. More precisely we
will consider rings R having a primary class of derivations which
satisfies one of the following conditions:
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(AC) For each xeR and 3 e 3f, there is a p — p(x, d)eR such
that dx - {dxfp e C;

(BC) For each xeR and de&, there is a polynomial p(t) of t
with integral coefficients such that dx — (dxfp(dx) e C;

(CC) For each xeR and de£3?, there is a p 6 C each that 3# —
(3x)2p 6 C.

We will show that a prime ring satisfying condition (AC) has
no nonzero divisors of zero and consequently, for any ring R satisfy-
ing the condition (AC), the prime radical N of R consists of all nil-
potent elements of R and R/N is a subdirect sum of division rings
and commutative rings. A prime ring satisfying the condition (BC)
or (CC) must be commutative. In any ring R satisfying the condi-
tion (BC) or (CC), dx is central for all de& and xeR. These not
only generalize some results in [1] but also generalize a result of
Martindale [9].

Finally, we will exhibit an example of a primary class of deriva-
tions in which not all derivations are inner. This gives an affirma-
tive answer to a problem raised in [1]. Complementing other ex-
amples in [1], this shows that the concept of a primary class of
derivations is a much more general concept than that of inner
derivations.

2* Preliminaries* Let R be a ring, C be its center and ^ be
the additive group of all inner derivations of R. An additive group
J2^ of derivations of R is said to be a primary class of derivations
of R if

( i ) For any 3 6 3f and δ e J?, [3, δ] e 3f\
(ii) For any xeR, dx = 0 for all 3e & if and only if xeC;
(iii) For any prime ideal P in R and any xeR, dxeP for all

3 e 3? if and only if δxeP for all δ e J?.
It is clear that <J^ itself is a primary class of derivations of R,
(iii) => (ii) for any prime ring R, and (i) is true if and only if, for
any 3e 3f and xeR, the inner derivation δdx: r -»[dx, r] lies in £^.
It is also easy to see that, for all 3 e 3f, dxeN, the radical of R,
if and only if, for all δ e J^, δx e N. For convenience, we denote by

the set of elements dx where 3 e £2f and xeR.

PROPOSITION 2.1. Let R be a ring iϋ* be a prime ring which
is a homomorphic image of R under a homomorphism φ. Suppose
& is a primary class of derivations of R. For each d e &, define
3*: # * - > # * by d*(φ(x)) = φ(dx) for all xeR. Then the set &* of
all 3*, where de&, forms a primary class of derivations of iϋ*.

Proof. See [1].
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COROLLARY 2.2. Let R be a ring and N be the prime radical
of R. Suppose & is a primary class of derivations of R. For
each de&, define 5*: R/N-* R/N by d*(x + N) = dz + N for all xeR.
Then the set £&* of all 3*, where d e &, forms a primary class of
derivations of R/N.

In [1], we considered a ring R having a primary class Sf of
derivations and satisfying one of the following conditions:

(A) For each xeR and 3 e &, there is a p = p(x9 d)eR such
that dx — (dx)2p;

(B) For each xeR and de&, there is a polynomial p{t) of t
with integral coefficients such that dx — (dx)2p(dx);

(C) For each xeR and de 3SF, there is a zeC such that dx —

(dx)2z.

The following theorems have been proved in [1]:

THEOREM 2.3. Suppose R is a prime ring having a primary
class & of derivations which satisfy the condition (A). Then R is
either a commutative ring or a division ring.

THEOREM 2.4. Suppose R is a ring having a primary class 3f
of derivations which satisfies the condition (A). Then R/N is a sub-
direct sum of division rings and commutative rings.

THEOREM 2.5. Suppose R is a ring having a primary class £&
of derivations which satisfies the condition (B). Then R is com-
mutative.

THEOREM 2.6. Suppose R is a ring having a primary class &
of derivations which satisfies the condition (C). Then R is com-
mutative.

As we pointed out earlier, since commutators are images of inner
derivations these theorems generalize some results given by Herstein
[3], Ligh [8], Putcha, Wilson and Yaqub [11].

Throughout this paper, R denotes a ring with center C, % the
ring of integers, ^ + the set of all positive integers and & the field
of rational numbers. For xeR, δx denotes the inner derivation y \-+
[x, y] for all y e R.

3* P r i m a r y classes satisfying (AC)*

D E F I N I T I O N 3.1. Let R be a r ing . An element xeR has t h e



22 LUNG 0. CHUNG, JIANG LUH AND ANTHONY N. RICHOUX

property & if, for any nonzero ideal / of R, there exists n =
n(I)e%T+ such that xnel.

The following lemma which can be found in [4, p. 53] will be
used later.

LEMMA 3.1. A ring R having no nonzero nil ideals is a sub-
direct sum of prime rings Ra, where, for each a, Ra has a non-
nilpotent element having property &*.

LEMMA 3.2. Let R be a prime ring and 5 be a derivation on
R. Suppose dx 6 C, the center of R, for all xeR. Then either
3 = 0 or R is commutative.

Proof Let yeR. For any x e R, 0 = [d(xy)f y] = [dxy + xdy, y] =
dy[x, y\. Since dyeC and R is prime, either dy = 0 or yeC. Let
T = {yeR\dy = 0}. Then R = CU T, a union of two additive sub-
groups of the additive group R. So either C — R or T = R. That
is, either R is commutative or 3 = 0.

A well known fact in ring theory says that, in a 2-torsion free
semiprime ring R, if a commutes with [α, x] for all x e R then a lies
in the center of R. In view of this, we would like to point out
that in the hypothesis of Lemma 3.2, the condition that R being prime
is essential. This can be seen from the following example.

EXAMPLE. Let R = A © F[x]f where A is a noncommutative
prime ring and F[x] is the polynomial ring over a field F. Let
d:R->R be defined by d(a, f(x)) = (0, fix)) for aeA, f(x)eF[x],
where f'(x) denotes the derivative of f(x). Then R is semiprime,
3 is a derivation on R, and dR is contained in the center of R.
However, 3 ^ 0 and R is not commutative.

Throughout the balance of this section, we assume R is a ring
having a primary class & of derivations which satisfies the condi-
tion (AC). Let us start with

LEMMA 3.3. Suppose R is prime. If dxβ&(R) is nilpotent,
then dx = 0.

Proof. Let p e R be such that dx — (dxfp e C. Assume (dx)n = 0
but {dxY'1 =£0 for n> 1. Since [dx — (dxfp, dx] = 0, we obtain
(dxfp = {dxfpdx, and consequently (dx — (dxYpY"1 = (dx)n~ι e C. Since
zero is the only central nilpotent element in a prime ring, we have

1 = 0, a contradiction.
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LEMMA 3.4. Suppose R is prime and a, z, w e R, 3, dι e &. If
a2 = 0 and [dz + d{W, a] — 0, then a[dz + dxw, y] = 0 for all yeR.

Proof. Note that, since δ92 + δaiW 6 &, for any yeR, [dz+dλw, y] =
(ddz + dhw)y 6 3f{JR). Since α[32 + dγw, y]a = [3z + 3 ^ , α /̂α] e ^"(i?)
is nilpotent, [dz + d{ω, ay a] = 0 by Lemma 3.3. It follows that
[dz + dtw, ay] = a[dz + dλw, y] e £&(R) is nilpotent and hence, by
Lemma 3.3 again, a[dz + diW, y] = 0 as we desired.

LEMMA 3,5. Suppose R is prime and aeR. If a2 — 0 ίfcew
daeC for all deSί.

Proof. From 0 = da2 = 3αα + α9α, we have [3α, α]2 = 0. Since
[da, a] e 3ί{J£) [da, a] = 0 by Lemma 3.3.

Since [3α, α] = 0, for any yeR, [da, ay] = 0 by Lemma 3.4.
Thus, 0 = d[da, ay] = 3α[3α, y] + a[d2a, y]. On the other hand 0 =
d[da, a] = [d2a, a] implies that a[d2a, y] = 0 by Lemma 3.4. Hence
0 = 3α[3α, y] and likewise 0 = [da, y]da. By expansion of [da, y]4,
we obtain [da, yf = 0. Therefore, by Lemma 3.3, [da, y] = 0.

LEMMA 3.6. Suppose R is prime and aeR. If a2 — 0 and
[dz, a] = 0, where de&, zeR, then dλadz 6 C for all d1 6 3fm

Proof. By Lemma 3.4, a[dz, y] = 0. Thus 0 = dλ(a[dz, y]) =
dλa[dz, y] + a[dxdz, y] + a[dz, d^y]. On the other hand, since [dz, a] = 0,
0 = d^dz, a] = [dxdz, a] + [dzdlf a] = [dλdz, a] by Lemma 3.5. By
Lemma 3.4, a[dλdz, y] = 0, and a[dz, dxy] = 0. Thus, dχα[d 9̂ y] = 0
for|all ?/6i2, i.e., [d^d^ 2/] = 0 for all yeR. Hence d&dzeC.

LEMMA 3.7. Suppose R is prime and aeR. If a2 = 0, then
d2ad,dyeC for all d, d19 d2e& and yeR.

Proof. By Lemma 3.5, [dy, a]eC which yields [dxdy, a] =
di[dy, a] = 0. I t follows immediately from Lemma 3.6 that d2adβy e C.

LEMMA 3.8. Suppose R is prime and aeR. If a2 — 0, then
dγad2y = 0 for all d, d±e 3f and yeR.

Proof. Since by Lemma 3.5, 0 = dλd(a2) = 2dxada, we get
d{dyβd{ay)) — d&d^ay) = dλa{2day + ad2y) — adλad2y whose square is
zero by Lemma 3.7. Hence adλad2y = 0. It follows that 0 =
dάad&tfy) = (d&f&y + adλad,d2y = {dλa)2d2y by Lemma 3.7. Hence
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= 0. By noting that d,ad2y = dfaady) e &(R)f we obtain
dxad2y = 0.

LEMMA 3.9. Suppose R is prime, 3, dιe &, and a,yeR. If
a2 = 0 and (βafdβ e C ίftew dad.y e C.

Proof. Since (daYfay, z] = [(dafd.y, z] = 0, (dafoy, z])2 = 0. Note
that dαtSiU, z] 6 &{R). Hence Sαfotf, z] = 0 for all z e R, i.e., dadxy e C.

LEMMA 3.10. Suppose R is prime and aeR. If a2 = 0
+ 3α3j/) 6 C /or all 3, 3X, 32 6 3f and y eR.

Proof. Let u = d2a{dxady + dadλy). Then w + ad2adxdy — d2ad1d(ay)
which is central by Lemma 3.7. Since d&dxdy e C, [u, a] = 0. Note
that u — diβ^ad^y) + d^aday). Thus by Lemma 3.4, for all zeR,
a[u, z] = 0, from which 0 = d2(a[u, z]) = d2a[u, z] + a[d2u, z]. The last
term is zero since d2u = 32α(31α323ί/ + dad&y) e C by Lemma 3.7.
Thus, 32α|>, z] = 0. Suppose u Φ 0. Then 32α Φ 0 and [u, z] = 0 for
all a? 6 i?. Hence u 6 C as we desired.

LEMMA 3.11. Suppose R is prime and aeR. If a2 = 0 then
= 0 /or αZZ 3, dλ 6 ^ α^d /̂ 6 i2.

Proo/. By Lemma 3.10, (β&fdy + d^dad.yeC. Applying 3X and
using Lemma 3.8, we get (d&Ydβy = 0. Thus, (d^d^y)2 = 0. Since
31α3132/ = d&ady) e ^(i2), SiαS t̂/ = 0.

LEMMA 3.12. Suppose R is prime and aeR. If a2 — 0
eC for all 3 e 2f and y eR.

Proof. By Lemma 3.5, [dy, a]eC. So 0 = dx[dy, a] = [dβy, a].
By Lemma 3.11, 0 = dadd^ay) = daidad^ + dxady + addxy) = daidad^ +
dλady). Consequently d^dad^ya)) — da(dxdya + dλyda + dydxa) — dadβya.
Since dadβya e &(R) and its square is zero by Lemma 3.6, dadβya = 0
by Lemma 3.3. It follows that dadλdy = 0 because dadβyeC and R
is prime. That is, d^dady) = 0 for all 3X 6 ^ . Hence dady e C.

Now we are in a position to prove one of our main results.

PROPOSITION 3.13. Suppose R is a prime ring having a primary
class of derivations £? which satisfies the condition (AC). Then R
has no nonzero nilpotent elements and hence R has no zero divisors.

Proof. Let 0 Φ b e R be a nilpotent element and bn = 0, δ*"1 Φ 0
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where n > 1. We set a = bn~\ Then a2 = 0. By Lemma 3.12
dadiay) e C for all 3 e 3Γ and yeR. So [(3α)ty + daady, a] = 0. Since
Sααds/ = αdαd?/ commutes with α, we have a{dafya = ~[(3α)22/, α]α = 0.
Note that # is arbitrary and R is prime. Thus a{daf — 0. Again
by the primeness of R and the fact that da e C, we obtain (3α)2 = 0
and hence by Lemma 3.3, da = 0 for all de&. Therefore aeC
which yields a = 0, i.e., fr""1 = 0, a contradiction. This completes the
proof.

THEOREM 3.14. Let R be a ring having a primary class & of
derivations which satisfies the condition (AC). Then the nilpotent
elements in R form an ideal in R.

Proof. R/N is a subdirect sum of prime rings Ra, ae I, where
JV denotes the prime radical of R. According to Proposition 2.1,
each Ra has a primary class 3f of derivations which also satisfies
the condition (AC). By Proposition 3.13, each Ra has no nonzero
nilpotent elements. Let ψa be the epimorphism of R into Ra such
that N = Γiaei Ker ψa. Then for any nilpotent element x e R, ψa(%) = 0,
i.e., x 6Kerψa for all a el. So x eN. Therefore N contains the set
of all nilpotent elements in R.

PROPOSITION 3.15. Let R be a subdirectly irreducible prime ring
having a primary class & of derivations which satisfies the condi-
tion (AC). Then R is a division ring.

Proof. Let S be the minimal ideal of R and C be the center
of R.

Suppose S Q C. Let 0 Φ x e S. Then xS = S and xe = x for
some eeS. It can be seen easily that e is an identity of R and S =
R = C and hence R is a field.

Thus we may assume now that S §£ C There exist d e & and
xeS such that dx Φ 0. By condition (AC) there exists peR such
that u = dx — (dxfp 6 C. We claim that i? has identity 1 and that
there exists voeS such that dv0 is invertible. Indeed, if u = 0
then, by Proposition 3.13, dxp is an identity element in R and dx
is invertible. Suppose u Φ 0. Then uS = S and w = # for some
v 6 S. dx = d(uv) = udv = dx(dv — dxpdv) implies that dv — dxpdv is
an identity element in R and dv is invertible by Proposition 3.13.

Now we assert that R — S. For otherwise there would exist
a prime ideal P of R such that S £ P and P Φ R. Since v o eS
and δvoeP for all inner derivations δ of JS, dvoeP. This would
imply that P contains the identity 1 of 22, a contradiction. Thus
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In view of Theorem 2.4, to show that R is a division ring it
suffices to show the condition (A) holds for R. In fact, let de£&
and yeR and u = dy — (dy)2q e C where q e R . Suppose u Φ 0. Then
since R = S, uR — R and u is invertible. It follows that dy is
invertible. Hence dy satisfies the conditions (A). This completes
the proof.

In preparation for the proof that R/N is a subdirect sum of
commutative rings and division rings, we first establish the follow-
ing lemmas.

LEMMA 3.16. Suppose R is a prime and suppose there is a non-
zero element in R which has the property 3? (see Definition 3.1).
Then there exists a nonzero central element in R which also has
the property &.

Proof. Let 0 Φ a e R have the property ^ . Suppose α?C, the
center of R. Then there is a 9 6 ^ such that da Φ 0. By the con-
dition (AC), for some peR, u — da — (dafpeC.

Case 1. u = 0. Using Proposition 3.13, one can verify that dap
is an identity 1 of 12. Suppose R is not simple. There exists a
maximal ideal M of R. R/M is a subdirectly irreducible prime ring
which, by Proposition 2.1, has a primary class of derivations satisfy-
ing the condition (AC). By Proposition 3.15, R/M is a division ring.
Since an e M for some positive integer n, a e M. Since δaeM for
all inner derivations δ of R, da e M. Hence 16 M, a contradiction.
Therefore R must be simple and leC has the property &*.

Case 2. u Φ 0. Let I be an arbitrary nonzero ideal in R. We
claim that for some n e JΓ+, (da)n e I. Suppose not. Then, by Zorn's
lemma, there exists a prime ideal M in R containing I such that
(da)m ί M for all m 6 %*+. Since 12/Λf is a prime ring having a primary
class of derivations which satisfies the condition (AC), by Proposition
3.13 R/M has no nonzero nilpotent elements. But ameM for some
me^Γ + . So aeM and consequently daeM, a contradiction. Hence
(da)n e I for some n e %T+. By noting that [da - (dafp, da] = 0, we
obtain (dafpda — (dafp which implies that un = (da — (dafpY e I.
Thus u is a central element in R which has the property &.

LEMMA 3.17. Suppose R is prime and suppose there exists aΦ§
in R which has the property &*. Then R is either a commutative
ring or a division ring.
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Proof. Suppose R is not commutative. By Lemma 3.2, there
exist 3 e ^ and xeR such that dxίC. By Lemma 3.16, there
exists aeC, a Φ 0, which has the property &. Let J be a nonzero
ideal in R and an e /, where n e ̂ +. Noting that andx = d(anx) e
&(R) we have, by the condition (AC), andx — (andx)2p 6 C for some
p G R. I t follows that an(dx - an(dx)2p) e C and hence dx - an(dx)2p e C.
Since 3#g C, [d#, 2/]^0 for some y eR. But from [dx—an(dx)2p, y] = 0,
we obtain 0 Φ dxy — ydx = an(dx)2py — yan(dx)2p e I. This is true for
all nonzero ideals I in R. Hence R is subdirectly irreducible. By
Proposition 3.15, R is a division ring.

The following theorem is a generalization of Theorem 2.4.

THEOREM 3.18. Let R be a ring having a primary class & of
derivations which satisfies the property (AC). Let N be the prime
radical of R. Then R/N is a subdίrect sum of commutative rings
and division rings.

Proof. R/N is a subdirect sum of prime rings Ra, aeA. Each
Ra has a primary class of derivations which satisfies the condition
(AC) by Proposition 2.1. By Theorem 3.14, R/N has no nonzero
nilpotent elements and hence, by Lemma 3.1, we may assume that
each Ra has a nonzero element which has the property & Thus,
by Lemma 3.17, each Ra is either a commutative ring or a division
ring.

We should note that if we replace the condition (AC) by the
following condition for a ring R:

(AC)' For each de £& and x e R, there is a p e R, such that
dx - p(dx)2 6 C,

all the above results remain true.
It would be interesting to consider the following condition

which is clearly weaker than the condition (AC) for a ring R having
a primary class of derivations.

(AC)* There exists a nonnilpotent central element ceR, such
that, for each de& and x e R, cdx — (dxfp e C for some p 6 R.
The condition (AC)* is equivalent to the condition (AC) if R is
prime. In fact, assuming R is prime and satisfies the condition
(AC)*, for any yeR, c(d(cy)) — (d(cy))2peC for some peR implies
c\dy - (dy)2p) e C which yields dy - (dy)2p e C.

One would wonder whether Theorem 3.18 will be true if one
replaces the condition (AC) by the condition (AC)*. The following
counter example is suggested by the referee.

EXAMPLE. Let Fbe any field, S any ring and R = . F 0 S. Let
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3f be the primary class of all inner derivations and c = (1, 0). Then
the condition (AC)* holds for all dxe^(R) with p = (0, 0).

4* Primary classes satisfying (BC)* Throughout this section
we assume R is a ring having a primary class Ξί of derivations
which satisfies the condition (BC) defined in §1.

LEMMA 4.1. Suppose R is a division ring and F is the prime
field of R. If da e £&(R) is transcendental over F then da e C, the
center of R.

Proof. Suppose to the contrary that da g C. Let u = da —
(da)2p(da)eC, where p(t)e^[t]. Since u is transcendental over F
and F[u] is an Euclidean domain there are infinitely many prime
elements in F[u\, say au a2, α3, •••. By the condition (BC) and the
fact that oίida = d(ata) e 2f{JEt\ there exists pt(t) e F[u][t] of least
degree such that a^a — (αi9α)2pί(αΐ9α) e C. Here we would note that
Pi(t) Φ 0 for otherwise atda e C would imply da e C. Now, we claim
that deg pt ^ deg / where f(t) = t - fp(t) - u e F[u][t]. Indeed, let
n = deg / and m£ = deg pt. Suppose to the contrary m f > n for
some i. Let /<(ί) = aftfiaTH) e ,?[%][*] and let Ŝ and 7 be the leading
coefficients of ft(t) and p4(ί) respectively. Let g(t) — p4(t) —
vβ-HTi-'fβ). Note that since ,SeF, ί ^ e F M I * ] . Also flr(t) ̂  0
because f^a^da) — 0 and g^da) — p^a^a) Φ 0. Since deg g <mt and
tfidα — (otidaygίaCida) = α δ̂α — ( α ^ ^ ^ ^ α ^ α ) 6 C, we arrive a con-
tradiction of the choice of pim Hence m ^ % for all i as we desired.
Thus, we obtain a sequence of polynomials gt(t) e F[u][t], gt(t) =
Σ?=i /3ϊî , jSln< ^ 0, which satisfies the following properties:

( i ) aί\βiS and a\\βiγ in F[u];
(ii) Λ(3α)eC;
(iii) rit^ n + 2.

In fact, #*(£) = α ί̂ — (α^)2Pi(α^), ί = 1, 2, , is a such sequence.
Without loss of generality, we may choose each gt(t) to be poly-
nomial over F[u] with least degree satisfying the conditions (i), (ii)
and (iii). Since nt 5* n + 2 for all i, there is a subsequence of {#*(£)}
which again may be called gλ(t), g2(t), having the same least
degree m say. Suppose m > 1. Let ht{t) = βlmgt(t) — βimgi{t) =
ΣiT^Ύiit'f where Ύu = βlmβ<, - βimβu. Then clearly λ,(ί) e F[w][ί]
and deg h^ < m and αί |7ϋ for i = 1, 2, , m — 1. If αi|7*i =
βi»βa - βtmβuf then since α^|/5ίm and α | | / S α we must have α£|/3 lm.
But /3lm has only a finite number of prime divisors in F[u], we must
have an infinite subsequence {aik}ΐ=1 of {αJΓ=i for which 0^17^1,
k = 1, 2, . This indivisibility also guarantees that deg Λijfc ^ 1 for
all k. Now, since 1 ̂  deg Λifc < m and the sequence {hiJc} also satisfies
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the conditions (i), (ii) and (iii), this contradicts the minimality of m.
Thus, m = 1 and hence da e C. This completes the proof.

LEMMA 4.2. Suppose R is a division ring and F is the prime
field of R. If da e 2ί(R) is algebraic over F and if the characteristic
of R is zero then da e C

Proof. We may assume F is the field of rational numbers.
Since da is algebraic over F, there exists 0 Φ f(t) e %\t\ such that
f(da) = 0. Let y be the leading coefficient of f(t) and n = deg/(ί).
Then yda e £έ?(R) has a monic minimal polynomial over %*. For each
prime p e %*, let gp(t) e %*[t\ be a polynomial of least degree such
that pyda — {pydafg p{pyda) e C. We will show first that deg gp ^
deg/. Let m ^ d e g ^ and h(t) = y^p^ip^y^t). Then clearly
h(t) 6 ^[t] is monic and h(pyda) = 0. Suppose to the contrary that
m *zn. Then pyda ~ (pyda)2(gp(pyda) — aipyda^'^hipyda)) e C, where
a is the leading coefficient of gp, and gp(t) — atm~nh(t) e ^[t] is of
degree less than m. This contradicts the minimality of m. Hence
m ^ n.

Now let Λ(ί) = irr (γ3α, ί7), i.e., /x(ί) 6 F[t] is irreducible over F
and f^yda) = 0. For each prime pe%T+, let /p(ί) = irγ(pyda, F).
Note that degfp = deg/x. Let λp(ί) = (pt)2gp(pt) — pt + ap, where
ap = (ί9τ3α) - {pydafgp{pyda) e C. Then hp(yda) = 0. Thus for each
prime pe>T + we obtain /^(ί)eC[£] such that all coefficients except
the constant term are in JΓ, and 1 <S deg/^ ^ deg/x + 2. Thus we
must have an infinite set of primes {Pi\ie^+} such that deghPi = k
for all i 6 JΓ+ and some fixed Λ e ^ + . We obtain a sequence of
polynomials {/̂ O0}Γ=i over C having the following properties:

( i ) deg ^ = A;
(i i) hi(yda) = 0;
(iii) If ^(ί) = Σy=o α*,-̂ , then α<y 6 % and p^ | ai3- for all i ^ 1,

and PiJfCίn in ^ .
Without loss of generality, we may choose these p/s such that

the deg hi = k is Zeαs£.
Suppose fc > 1. We set qt(t) = alkht(t) - α,Λ(ί) Then deg g4 < fc

and if ff,(t) = ΣJ-ί Ay«y then βiQeC and for i ^ 1, ^ e ^ r , pί|/9«,.
It is also clear that ^(τ3α) = 0. Now if pJI/Sw, then since p\\aik

(we've assumed k > 1) and pDίailf we must have p j ^ . Since there
are only a finite number of divisors of alk, we can choose an infinite
subset of {pJΓ=i which again may be called {pJΓ=i such that pllfβu.
Note that deg qt ^ 1. But then since q^yda) = 0 and 1 <: deg ĝ  < k,
we can pick an infinite subset of these g/s all of the same degree.
This contradicts the minimality of k. Hence k = 1, and τ3α satisfies
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a linear polynomial at + β where aeF and βeC. Thus daeC as
we desired.

THEOREM 4.3. Let R be a division ring having a primary class
& of derivations which satisfies the condition (BC). Then R is a
field.

Proof. Suppose the characteristic of R is zero. The theorem
follows immediately from Lemmas 3.2, 4.1, and 4.2. Thus we may
assume that the characteristic of R is p Φ 0. Suppose to the con-
trary that R is not commutative. Then according to Lemma 3.2,
for each d e 3f where 3 ̂  0, there is an x e R such that dx 0 C.
Here dx must be algebraic over the prime field F of R by Lemma
4.1. Since F i s finite, (dx)pk = dx for some he %T+. By Lemma 3.1.1
in [4] there exists a, yeR such that ydxy'1 = (dxY Φ dx for some
ie%r. Now 0 Φ [dx, y] e &(R) and [dx, y]dx = dxydx - y(dx)2 =
(dxY[dx, y\. In addition, [3#, y] is algebraic over ί7 by Lemma 4.1.
Let S = {Σih.i 0Lhj(dx)h[dx, y\'\θLhi e F). Then S is a finite division ring
and hence, by the Wedderburn Theorem, S is a field. Particularly,
[dx, y]dx = (9a;)[3α5, #], a contradiction. Hence R is commutative.

As we pointed out earlier, a commutator is simply the image
of an element under an inner derivation, and the additive group of
all inner derivations on a ring D forms a primary class of deriva-
tions. Thus we obtain immediately from Theorem 4.3 the following.

COROLLARY 4.4 (Mαrtindαle). Suppose D is α division ring
such that for each commutator ue D, un — ueC, the center of D for
some n 6 %f, n> 1. Then D is a field.

THEOREM 4.5. Let R be an arbitrary ring having a primary
class ££? of derivations which satisfies the condition (BC). Then
daeC for all d e & and aeR.

Proof. By Theorems 3.17 and 4.3, R/N is a commutative ring
where N denotes the prime radical of R. Thus, for all x, y e iϋ,
[x, y] 6 N. Noting that N is the intersection of all prime ideals in
R, we see that dxeN, i.e., dx is nilpotent for all de£& and xeR.

Suppose to the contrary that there are an a e R and de£& such
that da $ C. Since da is nilpotent, (da)n = 0 for some n e ̂ + , n > 1.
By the condition (BC), there is p(t) e ST[t\ such that dx - (dxfpiβx) e C.
Also, there is an integer j > 1 such that (dx)3', (dx)j+1, , (dxY^eC
but idxY"1 g C. From (dx-ipxfplβx))*-1 e C, we obtain {dxY"1+g(βx) e C
where g(t) e %*[t] is a polynomial in which each term is of degree
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greater than j — 1. Since g(dx) e C, (to)'"1 6 C which contradicts the
choice of j .

The following corollary was conjectured by Herstein and was
first proved by Martindale [9].

COROLLARY 4.6. Suppose A is a ring such that, for each com-
mutator ueA, un — ueC, the center of A, for some n e %*, n > 1.
Then every commutator lies in C.

THEOREM 4.7. Suppose R is a prime ring having a primary
class S& of derivations which satisfies the condition (BC). Then R
is commutative.

Proof. This is an immediate consequence of Theorem 4.5 and
Lemma 3.2.

5* Primary classes satisfying (CC)* Throughout this section
we assume R is a ring having a primary class of derivations which
satisfies the condition (CC) defined in §1. We should note that
(CC) => (AC) and, under the condition (CC), (dx)2 e C if and only if
dx e C, and [y, (dx)2] = 0 if and only if [y, dx] = 0.

LEMMA 5.1. Suppose R is a division ring. Then R is a field.

Proof. Assume the characteristic of R is two. Suppose to the
contrary that R is not commutative. By Lemma 3.2, there exist
3 e <& and xeR such that dxg C. By the condition (CC), dx +
(dx)2p e C for some peC. It follows that dy + (dy)2 e C where y = px,
and dy £ C. Let d± be an arbitrary element in 3f. We shall show
didy = 0. 0 = d,(dy + (dy)2) = d,dy + dβydy + dydβy yields dxdy(l + dy) =
dydβy, i.e., (dβy^dyidβy) = l + dy. It follows that {d^yY^dyid^dyf =
(3i3»)-1(l + dy)(d,dy) - 1 + 1 + dy = dy. So [3j/, (dβy)2] - 0 and hence
[dy, dxdy] = 0. Consequently, dxdy = dxdydy + dydxdy = 0. Since this
holds for all 3X e i^, dy eC, a contradiction. Hence J? is commuta-
tive.

Now we assume the characteristic of R is not two. In view of
Lemma 3.2, we need only to show 2&(R) £ C.

Let 3 e &r.

Case 1. dR Π C = {0}. Suppose to the contrary that dx£C for
some » e iϋ. By the condition (CC), dx — (3£)2p e C for some 0 Φ p 6 C.
Thus, dy — (3#)2 6 C where y = px and dy 0 C. We claim that dR £

Indeed, suppose dR £ C3?/. Then for all u, veR, we have
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0 = [d(uv), dy] = du[v, dy] + [u, dy]dv. Replacing u by du, we get 0 =
d2u[v, dy]. Since dyίC, d2u = 0 for all ueR, i.e., 32 = 0. Thus for
a? 6 R, 0 = 32(α2) = d2a;£ + 2(3ίc)2 + x32£ = 2{dxf and hence 3α = 0, a
contradiction. Hence dR^Cdy. Now let dz&Cdy. By the condition
(CC), dz - (dzfq e C for some 0 Φ q e C. So dw - (dw)2 e C, where
w = gίs, and 3w £ C32/. Again by the condition (CC), d(y — w) —
(3(2/ - w))2q, e C and 3(2/ + w) - (3(2/ + w))2q2 e C where glf q2 e C. From
these and the fact that dy — (dy)2 eC, dw — (3w)2 6 C, one can easily
see that (q1 + q2 — 2q1q2)dy + (ftft — 2qλq2)dw e C. Since dw & Cdy,
q1- q2- 2q,q2 = 0 and q1 + q2 - £^^2 = 0. Thus, ^ = g2 = 0 and
hence d(y — w) e Cn3i2. Consequently 3(2/ — w) = 0, i.e., dw = dy e

a contradiction. Therefore 5(22) £ C.

Case 2. 322 Π C Φ {0}. Suppose to the contrary that 322 g C.
Then as in Case 1, there exists y 6 22 such that dygC and 3?/ —
(3?/)2 e C. So (32/ - 1/2)2 = (dy)2 - dy + 1/4 6 C. Let 0 Φ du e 322 n C
and ί = ll2u(du)-\ Then 3ί = 1/2 and (3(2/ - ί))2 e C. Hence by the
condition (CC), d(y — t)eC, i.e., dy — 1/2 e C. So dy e C, again a con-
tradiction. Hence 322 £ C. This completes the proof.

Using a similar proof of Theorem 4.5 we have

THEOREM 5.2. Lei R be a ring having a primary class & of
derivations which satisfies the condition (CC). Then dxeC for all
de& and xeR.

6. Some remarks and open problems* In [1], we exhibited
examples of primary class of derivations which are much smaller
than the class ^ of all inner derivations. There we raised the
problem on the existence of primary class of derivations 3f such that

NOW, we will present such an example.

EXAMPLE. Let 22 be the subring of the ring of 2 x 2 matrices

(OΛ» 2 Ί / \
Q QJ, where

x, y 6 ST. The prime ideals of 22 are of the form (jj 2%

Q) or (^p^

where p is an odd prime number in %~. The center of 22 is jί ί

Let £2f be the set of all derivations 3 on 22 defined by

2x 2y\ Γ/0 2α\ (2x 2y

b)'[o

where α, 6 6 ^Γ. It is easy to verify that 2f forms a primary class
of derivations on 22 and that, for 6 Φ 0, 3 is not an inner derivation
on 22.
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There are still a lot of open problems concerning the commuta-
tivity of rings and primary class of derivations. We conclude with
some of these problems.

Suppose R is a ring having a primary class £& of derivations.
(1) Suppose, for each 3 e 3f and x e R, there exist m 6 ^Γ+ and

peR such that (dx)m — (dx)m+1peC, the center of R. What can we
say about R? More precisely, do the nilpotent elements of R form
an ideal in RΊ

(2) Suppose R is a division ring, and suppose, for each dx e
£&{R), there exists n e %"+ such that (dx)n e C, the center of R. Is
the dimension of R considered as a vector space over C atmost 4?
The answer is affirmative if 3> is the primary class of all inner
derivations on R (see [5]).

(3) Can the results in the present paper also be extended to
d.g. near rings? Some special cases have been done by Ligh [8].

(4) What kind of ring R such that all its primary classes of
derivations are contained in the class ^ of all inner derivations?

ACKNOWLEDGMENT. The authors wish to express sincere thanks
to the referee for his valuable suggestions.

Added in proof. In this paper "Nilpotent derivation" (Technion
Preprint Series No. MT 453), Amos Kovacs has obtained independently
an example of rings having a drimary class of derivations which is
not contained in the class of all inner derivations.
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