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DERIVATIONS AND COMMUTATIVITY
OF RINGS II
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Let R be a ring with center C, and -* be the additive
group of all inner derivations of E. An additive group 2
of derivations of R is said to be a primary class of deriva-
tions of R if (i) for any 0€ 2 and d€ 7, [0,0]l€ Z, (ii) for
any € R, ox =0 for all 0 & if and only if 2€C, and (iii)
for any prime ideal P in R and any € R, dxc P for all
d€ Z if and only if dxe P for all 6~

Suppose R has a primary class Z of derivations. First
we assume, for each x€ R and dc€ Z, there is a p< R such
that ox — (0x)*p» € C. Then all nilpotent elements in B form
an ideal N of R and E/N is a subdirect sum of division rings
and commutative rings. If R is prime, then K has no non-
zero divisors of zero. Next, we assume that, for each xc€ R
and d€ <, there is a polynomial p(f) of ¢{ with integral
coefficients such that 0x—(0x)*p(0x) € C or, for each x€ R and
0€ Z, there is a p<C such that ox — (0x)’pcC. Then oxcC
forallze Randoc 2. If R is prime, then R is necessarily
commutative.

1. Introduction. In a previous paper [1], the authors extended
the concept of inner derivation to the concept of primary class of
derivations for rings and generalized several commutativity theorems
given by Wedderburn, Jacobson, Kaplansky, Herstein, Ligh, Putcha,
Wilson and Yaqub. Let R be a ring having a primary class & of
derivations whose definitions and basic properties will be recalled
later. Among others, the following results were proved:

(1) Suppose, for each xe€ R and 0 € =, there is a pe R which
depends upon z and 0, such that ox = (0x)*». Then the nilpotent
elements in R form an ideal N in R, and R/N is a subdirect sum
of division rings and commutative rings.

(2) Suppose, for each x€ R, 0€ =2 such a p is a polynomial of
ox with integral coefficients. Then R is commutative.

(8) Suppose, for each xc R, e <7 such a p described in (1)
is central. Then R is a commutative.

The purpose of this paper is to generalize these results further
by relaxing the condition “0x = (9x)*»p.” We will consider the con-
dition “0x — (0x)*p € C, the center of R” instead. More precisely we
will consider rings R having a primary class of derivations which
satisfies one of the following conditions:
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(AC) For each x€ R and o€ &, there is a p = p(x, ) € R such
that ox — (ox)*» € C;

(BC) For each xe R and 0 € =7, there is a polynomial p(t) of ¢
with integral coefficients such that ox — (0x)*p(ox) € C;

(CC) For each x€ R and o€ .=, there is a p € C each that ox —
(0x)*p € C.

We will show that a prime ring satisfying condition (AC) has
no nonzero divisors of zero and consequently, for any ring R satisfy-
ing the condition (AC), the prime radical N of R consists of all nil-
potent elements of R and R/N is a subdirect sum of division rings
and commutative rings. A prime ring satisfying the condition (BC)
or (CC) must be commutative. In any ring R satisfying the condi-
tion (BC) or (CC), ox is central for all 0 =2 and e R. These not
only generalize some results in [1] but also generalize a result of
Martindale [9].

Finally, we will exhibit an example of a primary class of deriva-
tions in which not all derivations are inner. This gives an affirma-
tive answer to a problem raised in [1]. Complementing other ex-
amples in [1], this shows that the concept of a primary class of
derivations is a much more general concept than that of inner
derivations.

2. Preliminaries. Let R be a ring, C be its center and .~ be
the additive group of all inner derivations of BR. An additive group
< of derivations of R is said to be a primary class of derivations
of R if

(i) For any 0e =2 and e % [0, 6] =;

(ii) For any ze R, ox = 0 for all e & if and only if xzeC;

(iii) For any prime ideal P in R and any x€ R, oxe P for all
0e = if and only if éxe P for all 6.~
It is clear that .~ itself is a primary class of derivations of R,
(iii) = (ii) for any prime ring R, and (i) is true if and only if, for
any 0e€ < and z € R, the inner derivation 0,,: » — [0z, ] lies in =
It is also easy to see that, for all e &, ox € N, the radical of R,
if and only if, for all 6€._% é6xe N. For convenience, we denote by
Z(R) the set of elements ox where de & and z€R.

ProPOSITION 2.1. Let R be a ring R* be a prime ring which
is a homomorphic image of R under a homomorphism ¢. Suppose
Z 18 a primary class of derivations of R. For each 0€ =, define
0*: R* — R* by 0*(¢(x)) = ¢(0x) for all x€ R. Then the set Z* of
all 0*, where 0 € =, forms a primary class of derivations of R*.

Proof. See [1].
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COROLLARY 2.2. Let R be a ring and N be the prime radical
of R. Suppose & is a primary class of derivations of R. For
each € 2, define 0*: RIN— R|/N by 0*(x + N)=0z+ N for all xe R.
Then the set =2* of all 3%, where o€ =, forms a primary class of
derivations of R/N.

In [1], we considered a ring R having a primary class & of
derivations and satisfying one of the following conditions:

(A) For each xe R and d€ =, there is a p = p(x, 0) € R such
that ox = (0x)*p;

(B) For each x€ R and 0€ =, there is a polynomial p(t) of t
with integral coefficients such that ox = (0x)*p(0x);

(C) For each x€ R and 0€ =, there is a z€C such that oxr =
(0x)*z.

The following theorems have been proved in [1]:

THEOREM 2.8. Suppose R is a prime ring having ao- primary
class 2 of derivations which satisfy the condition (A). Then R is
either a commutative ring or a division ring.

THEOREM 2.4. Suppose R is a ring having a primary class &
of derivations which satisfies the condition (A). Then R/N is a sub-
direct sum of division rings and commutative rings.

THEOREM 2.5. Suppose R is a ring having a primary class &
of derivations which satisfies the condition (B). Then R is com-
mutative.

THEOREM 2.6. Suppose R is a ring having a primaery class <&
of derivations which satisfies the condition (C). Then R is com-
mutative.

As we pointed out earlier, since commutators are images of inner
derivations these theorems generalize some results given by Herstein
[3], Ligh [8], Putcha, Wilson and Yaqub [11].

Throughout this paper, R denotes a ring with center C, 2  the
ring of integers, 2+ the set of all positive integers and & the field
of rational numbers. For x e R, 6, denotes the inner derivation y+—
[z, y] for all yeR.

3. Primary classes satisfying (AC).

DEFINITION 3.1. Let R be a ring. An element € R has the
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property < if, for any nonzero ideal I of R, there exists n =
n(l) e 2+ such that x" € I.

The following lemma which can be found in [4, p. 53] will be
used later.

LeMmA 3.1. A 7ring R having no nonzero nil ideals is a sub-
direct sum of prime rings R,, where, for each o, R, has a mon-
nilpotent element having property 7.

LemMmA 3.2. Let R be a prime ring and d be a derivation on
R. Suppose oxecC, the center of R, for all xc€R. Then either
0 =0 or R is commutative.

Proof. LetyeR. ForanyaxecR, 0=[0(ay), y] = [0xy+xdy, y] =
oylx, y]. Since oyeC and R is prime, either 0y = 0 or yeC. Let
T={yeR|oy =0}. Then R=CUT, a union of two additive sub-
groups of the additive group B. So either C =R or T = R. That
is, either R is commutative or ¢ = 0.

A well known fact in ring theory says that, in a 2-torsion free
semiprime ring R, if a« commutes with [a, ] for all « € R then «a lies
in the center of R. In view of this, we would like to point out
that in the hypothesis of Lemma 3.2, the condition that R being prime
is essential. This can be seen from the following example.

ExAMPLE. Let R = A@ F[x], where A is a noncommutative
prime ring and F[x] is the polynomial ring over a field F. Let
0: R — R be defined by d(a, f(x)) = (0, f'(x)) for ac A, f(x)e F[z],
where f'(x) denotes the derivative of f(x). Then R is semiprime,
o is a derivation on R, and oR is contained in the center of R.
However, 0 #= 0 and R is not commutative.

Throughout the balance of this section, we assume R is a ring
having a primary class & of derivations which satisfies the condi-
tion (AC). Let us start with

LEMMA 3.3. Suppose R is prime. If oxe Z(R) is wilpotent,
then ox = 0.

Proof. Let p e R be such that ox — (0x)’p € C. Assume (9x)" =0
but (Gx)* '+ 0 for » > 1. Since [ox — (0x)*p, 0x] = 0, we obtain
(0x)*p = (0x)*pox, and consequently (0x — (0x)*p)" ™ = (dx)“ e C. Since
zero is the only central nilpotent element in a prime ring, we have
(0x)** = 0, a contradiction.
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LemMMA 3.4. Suppose R is prime and a,z, weR, 0,0,€e 2. If
a* =0 and [0z + 0,w, a] = 0, then a[oz + o,w, y] = 0 for all ycR.

Proof. Note that, since 0;,+0,,, € 2, for any y € R, [0z+0,w, y]=
(05 + 00)Y € Z(R). Since aldz + d,w, yla = [0z + 0w, aya] € Z'(R)
is nilpotent, [0z + 0w, aya] =0 by Lemma 3.3. It follows that
[0z + 0w, ay] = a[oz + 0w, y]€ 2 (R) is nilpotent and hence, by
Lemma 3.3 again, al[dz + o,w, ¥y] = 0 as we desired.

LemMMA 3.5. Suppose R is prime and ac€R. If a*=0 then
oa €C for all 0e =.

Proof. From 0 = da* = daa + ada, we have [da, a]? = 0. Since
[0a, a]le 2 (R) [da, a] = 0 by Lemma 3.3.

Since [oa, a] =0, for any yeR, [da,ay] =0 by Lemma 3.4.
Thus, 0 = d[da, ay] = dalda, y] + a[d’a, y]. On the other hand 0 =
d[oa, a] = [0°a, a] implies that a[d’e, y] = 0 by Lemma 3.4. Hence
0 = dafoa, y] and likewise 0 = [da, y]oa. By expansion of [da, ¥],
we obtain [da, ¥]* = 0. Therefore, by Lemma 3.3, [da, y] = 0.

LeMMA 3.6. Suppose R is prime and ac€R. If a* =0 and
[0z, @] = 0, where 0€ &, z€ R, then 0,002 € C for all 3,€ 2.

Proof. By Lemma 3.4, af[oz,y] =0. Thus 0 = o,(al0z, y]) =
0.a[0z, y] + a[0,0z, y] + aloz, 0,y]. On the other hand, since [dz, a] = 0,
0 = 9,[0%, a] = [0,02, a] + [020, a] = [0.02,a] by Lemma 3.5. By
Lemma 3.4, a[0.0z, ¥y] =0, and aloz, 6,y] =0. Thus, d.al[dz, y] =0
forlall yeR, i.e., [0,002, y] = 0 for all ye R. Hence 0,a0z€C.

LeEMMA 38.7. Suppose R is prime and acR. If a* =0, then
0,00,0Y € C for all 0,0, 0,€ Z and yER.

Proof. By Lemma 3.5, [0y, a]l]eC which yields [0,0y, a] =
00y, a] = 0. It follows immediately from Lemma 3.6 that 9,a0,0y € C.

LemMMA 3.8. Suppose R is prime and acR. If a*=0, then
0,00y = 0 for all 0,0,€ & and y € R.

Proof. Since by Lemma 3.5, 0= 0,0(a* = 20,a0a, we get
0(0,040(ay)) = 0,a0*(ay) = 0,a(20ay + ad*y) = ad.ad*y whose square is
zero by Lemma 3.7. Hence ad,ad’y =0. It follows that 0=
0,(a0.a0*y) = (0,0)*0*y + 0,000’y = (0,0)%0*y by Lemma 3.7. Hence
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(0,60*y)* = 0. By noting that 0,640y = 0(0,a0y) € Z(R), we obtain
0,a0y = 0.

LEMMA 3.9. Suppose R is prime, 0,0,€ 2, and e, yeR. If
a* =0 and (0a)?d,y € C then 0ad.y € C.

Proof. Since (9a)Y0,y, z] = [(0a)%.y, 2] = 0, (3a[d,y, z])* = 0. Note
that da[d,y, 2] € 2 (R). Hence da[d.y, 2] =0 for all ze R, i.e., dad,y € C.

LemMMA 3.10. Suppose R is prime and acR. If a* =0 then
0,0(0,a0y + 0ady) € C for all 6,0, 0,€ Z and yeR.

Proof. Let u = 0,0(3,a0y + 0ad,y). Then u + a0,a0,0y = 0,00,0(ay)
which is central by Lemma 3.7. Since 0,00,0y € C, [u, a] = 0. Note
that u = 0(d,@0,ay) + 0,(0,00ay). Thus by Lemma 3.4, for all zeR,
afu, 2] = 0, from which 0 = d,(a[u, 2]) = d.a[u, 2] + al[o.u, z]. The last
term is zero since 0d,u = 0,a(0,040,0y + 0ad,0.y) € C by Lemma 3.7.
Thus, d.a[u, z] = 0. Suppose w # 0. Then d,a # 0 and [u, z] = 0 for
all xte R. Hence u €C as we desired.

LEMMA 3.11. Suppose R is prime and acR. If a®= 0 then
0,00,0y = 0 for all 0,0,€ 2 and yER.

Proof. By Lemma 3.10, (d,@)’0y + 0,0000,y € C. Applying 0, and
using Lemma 3.8, we get (0,0)%0,0y = 0. Thus, (0,00,0y)* = 0. Since
0,a0,0y = 0,(0,00Y) € Z(R), 0,00,0y = 0.

LemMA 3.12. Suppose R is prime and acR. If a*=0 then
000y € C for all 0e & and y<R.

Proof. By Lemma 3.5, [0y, a]eC. So 0 = 9,0y, a] = [0.0¥, a].
By Lemma 3.11, 0 = 0a0d,(ay) = 0a(0ad,y + 0,00y + a0d,y) = da(dad,y +
0,a0y). Consequently 9,(0ad(ya)) = 0a(d,0ya + 0,y0a + 0Y0,a) = 0a0,0Ya.
Since 0ao,0ya € Z(R) and its square is zero by Lemma 3.6, 0ad.0ya = 0
by Lemma 3.3. It follows that 0ad,0y = 0 because 9ad, 0y € C and R
is prime. That is, 0,(dady) = 0 for all 9, &. Hence ocady cC.

Now we are in a position to prove one of our main results.
ProOPOSITION 3.13. Suppose R is a prime ring having a primary
class of derivations & which satisfies the condition (AC). Then R

has no nonzero nilpotent elements and hence R has no zero divisors.

Proof. Let 0 # be R be a nilpotent element and * =0, b** 0
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where n>1. We set a =0 Then a¢*=0. By Lemma 3.12
oad(ay)eC foralloe 2 and ye R. So [(0a)’y + daady, a] = 0. Since
d0aady = adady commutes with a, we have a(da)*ya = —[(0a)*y, ala = 0.
Note that y is arbitrary and R is prime. Thus a(da)’ = 0. Again
by the primeness of R and the fact that da € C, we obtain (9a)* =0
and hence by Lemma 3.3, da =0 for all 0e =. Therefore acC
which yields a = 0, i.e., b*™* = 0, a contradiction. This completes the
proof.

THEOREM 3.14. Let R be a ring having a primary class & of
derivations which satisfies the condition (AC). Then the nilpotent
elements in R form an ideal in R.

Proof. R/N is a subdirect sum of prime rings R,, a €I, where
N denotes the prime radical of R. According to Proposition 2.1,
each R, has a primary class &2 of derivations which also satisfies
the condition (AC). By Proposition 3.13, each R, has no nonzero
nilpotent elements. Let 4, be the epimorphism of R into R, such
that N = ..; Ker 4. Then for any nilpotent element x € R, +,(x)=0,
i.e.,, vcKery, forallacl. So xcN. Therefore N contains the set
of all nilpotent elements in R.

PROPOSITION 3.15. Let R be a subdirectly irreducible prime ring
having a primary class Z of derivations which satisfies the condi-
tion (AC). Then R is a division ring.

Proof. Let S be the minimal ideal of R and C be the center
of R.

Suppose SS C. Let 0#xe¢S. Then S =S and xe =2 for
some ecS. It can be seen easily that e is an identity of R and S =
R = C and hence R is a field.

Thus we may assume now that SZ C. There exist e < and
x€ S such that ox = 0. By condition (AC) there exists pe R such
that 4 = 0x — (dx)*p € C. We claim that R has identity 1 and that
there exists v,€S such that dv, is invertible. Indeed, if % =0
then, by Proposition 8.13, oxp is an identity element in R and ox
is invertible. Suppose % = 0. Then S =S and uv = x for some
veS. o0x = o(uv) = uov = 0x(0v — oxpov) implies that ov — oxpov is
an identity element in R and ov is invertible by Proposition 3.13.

Now we assert that R = S. For otherwise there would exist
a prime ideal P of R such that SC P and P+ R. Since v,€8S
and ov,e€ P for all inner derivations 6 of R, ov,€ P. This would
imply that P contains the identity 1 of R, a contradiction. Thus
R=S.
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In view of Theorem 2.4, to show that R is a division ring it
suffices to show the condition (A) holds for R. In fact, let 0e =&
and ¥y e R and v = 0y — (0y)’q € C where g€ R. Suppose u # 0. Then
since R=S, wR =R and % is invertible. It follows that oy is
invertible. Hence oy satisfies the conditions (A). This completes
the proof. '

In preparation for the proof that R/N is a subdirect sum of
commutative rings and division rings, we first establish the follow-
ing lemmas.

LEMMA 3.16. Suppose R is a prime and suppose there is a non-
zero element in R which has the property & (see Definition 3.1).
Then there exists a monzero central element in R which also has
the property 2.

Proof. Let 0 = ac R have the property . Suppose a ¢ C, the
center of R. Then there is a 0 €< such that da = 0. By the con-
dition (AC), for some pe R, u = da — (0a)*p€C.

Case 1. u = 0. Using Proposition 3.13, one can verify that dap
is an identity 1 of R. Suppose R is not simple. There exists a
maximal ideal M of R. R/M is a subdirectly irreducible prime ring
which, by Proposition 2.1, has a primary class of derivations satisfy-
ing the condition (AC). By Proposition 3.15, R/M is a division ring.
Since a®e M for some positive integer =, ac€ M. Since dac M for
all inner derivations 6 of R, da € M. Hence 1e M, a contradiction.
Therefore R must be simple and 1€ C has the property &~

Case 2. u # 0. Let I be an arbitrary nonzero ideal in R. We
claim that for some n € 27+, (da)" € I. Suppose not. Then, by Zorn’s
lemma, there exists a prime ideal M in R containing I such that
(0a)™ ¢ M for all m € 2 +. Since R/M is a prime ring having a primary
class of derivations which satisfies the condition (AC), by Proposition
3.13 R/M has no nonzero nilpotent elements. But a™e M for some
meZt. So ae€M and consequently da € M, a contradiction. Hence
(0a)*e I for some ne 2+. By noting that [da — (da)*p, da] = 0, we
obtain (da)’poa = (0a)*p which implies that u* = (da — (9a)*p)" € I.
Thus  is a central element in R which has the property .2

LEMMA 3.17. Suppose R is prime and suppose there exists a %0
in R which has the property . Then R is either a commutative
ring or a division ring.
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Proof. Suppose R is not commutative. By Lemma 3.2, there
exist 0eZ and x€R such that ox¢C. By Lemma 38.16, there
exists a €C, a = 0, which has the property &”. Let I be a nonzero
ideal in R and a"e€l, where ne 2 *. Noting that a”ox = d(a"x)
Z(R) we have, by the condition (AC), a"0x — (a"0x)*p € C for some
peR. It follows that a*(0x — a"(0x)*p) € C and hence dx — a"(dx)*p € C.
Since ox ¢ C, [0z, y]#0 for some y € R. But from [ox—a™(0x)*p, ¥]=0,
we obtain 0 # oxy — yoxr = a™(0x)*py — ya"(0x)*p € I. This is true for
all nonzero ideals I in BR. Hence R is subdirectly irreducible. By
Proposition 3.15, R is a division ring.

The following theorem is a generalization of Theorem 2.4.

THEOREM 3.18. Let R be a ring having a primary class & of
derivations which satisfies the property (AC). Let N be the prime
radical of R. Then R|/N is a subdirect sum of commutative rings
and division rings.

Proof. R/N is a subdirect sum of prime rings R,, a € A. Each
R, has a primary class of derivations which satisfies the condition
(AC) by Proposition 2.1. By Theorem 3.14, R/N has no nonzero
nilpotent elements and hence, by Lemma 3.1, we may assume that
each R, has a nonzero element which has the property <. Thus,
by Lemma 3.17, each R, is either a commutative ring or a division
ring.

We should note that if we replace the condition (AC) by the
following condition for a ring R:

(ACY For each 0¢ 2 and xzeR, there is a pe R, such that
ox — p(ox)* e C,
all the above results remain true.

It would be interesting to consider the following condition
which is clearly weaker than the condition (AC) for a ring R having
a primary class of derivations.

(AC)* There exists a nonnilpotent central element ce R, such

that, for each de & and 2€ R, cox — (0x)*p € C for some peR.
The condition (AC)* is equivalent to the condition (AC) if R is
prime. In fact, assuming R is prime and satisfies the condition
(AC)*, for any yeR, c(d(cy)) — (d(cy))pcC for some pecR implies
c*(0y — (0y)*p) € C which yields oy — (0y)*p € C.

One would wonder whether Theorem 3.18 will be true if one
replaces the condition (AC) by the condition (AC)*. The following
counter example is suggested by the referee.

EXAMPLE. Let F be any field, S any ring and R = FE S. Let
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2 be the primary class of all inner derivations and ¢ = (1, 0). Then
the condition (AC)* holds for all 0z e 2(R) with » = (0, 0).

4, Primary classes satisfying (BC). Throughout this section
we assume R is a ring having a primary class <2 of derivations
which satisfies the condition (BC) defined in §1.

LEMMA 4.1. Suppose R is a division ring and F is the prime
field of R. If dae€ Z(R) is transcendental over F' then oa € C, the
center of R.

Proof. Suppose to the contrary that ca¢C. Let u = da —
(0a)’p(da) € C, where p(t) e Z°[t]. Since w is transcendental over F
and F'[u] is an Euclidean domain there are infinitely many prime
elements in F[u], say a, a, @, ---. By the condition (BC) and the
fact that a,0a = d(a,a) e Z7(R), there exists p,(t) e Flu][t] of least
degree such that «,0a — (a;0a)*p,(a;0a) e C. Here we would note that
p:(t) #= 0 for otherwise «,0a € C would imply da€C. Now, we claim
that deg p, < deg f where f(t) = t — t*p(t) — u € F[u][t]. Indeed, let
n = deg f and m,; = deg p,. Suppose to the contrary m; > n for
some 4. Let f;(t) = af(a;:'t) € Flul[t] and let B and v be the leading
coefficients of f;(¢) and 9p,(¢) respectively. Let g(t) = »,(t) —
vB7't™"f,(t). Note that since BeF, g(t)e Flullt]l. Also g@) #0
because f,(a;0a) = 0 and g(a;0a) = p,(a;0a) = 0. Since deg g < m; and
a0 — (a00)9(a00) = a00 — (a0a)p,(a0a) € C, we arrive a con-
tradiction of the choice of p;. Hence m; < n for all ©+ as we desired.
Thus, we obtain a sequence of polynomials g,(t) € Flullt], g.¢) =
St B!, Bi, # 0, which satisfies the following properties:

(i) ailpi; and aif B, in Flul;

(ii) g.(0a)e€ C;

(i) m, = n + 2.

In fact, ¢,(t) = a;t — (@;t)’v(xt), 1 =1,2, ---, is a such sequence.
Without loss of generality, we may choose each g,(t) to be poly-
nomial over F'[u] with least degree satisfying the conditions (i), (ii)
and (iii). Since n, < n + 2 for all 4, there is a subsequence of {g,(t)}
which again may be called g¢,(¢), g.(t), --- having the same least
degree m say. Suppose m > 1. Let k() = B1.9:t) — Bing:(t) =

7ot vt!, where 7y = BimBii — BimBi- Then clearly hy(¢) € Flu][t]
and degh, <m and af|v,; for j=1,2 ---,m—1. If ai|v,=
BimBit — BimBu, then since a}|B;, and ait B, we must have a;|Bin.
But 3,, has only a finite number of prime divisors in F'[u], we must
have an infinite subsequence {a,}i-, of {a}i, for which af kv,
k=1,2, --.. This indivisibility also guarantees that deg #,, = 1 for
all k.. Now, since 1 < deg k,, < m and the sequence {k,} also satisfies
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the conditions (i), (ii) and (iii), this contradicts the minimality of m.
Thus, m = 1 and hence da € C. This completes the proof.

LEMMA 4.2. Suppose R is a division ring and F is the prime
field of R. If daec D(R) is algebraic over F and if the characteristic
of R is zero then oacC.

Proof. We may assume F is the field of rational numbers.
Since da is algebraic over F, there exists 0 # f(t) € 27[t] such that
f(da) = 0. Let v be the leading coefficient of f(t) and n = deg f(t).
Then vda € Z(R) has a monic minimal polynomial over 2. For each
prime p€ 2, let g,(t)e 27[t] be a polynomial of least degree such
that pvda — (pvda)g,(pvda)e C. We will show first that degg, <
degf. Let m =degg, and h(t) = v"p"f(p~*v't). Then clearly
h(t) € Z°[t] is monic and h(pyda) = 0. Suppose to the contrary that
m = n. Then pyda — (pyda) (g,(pyoa) — a(pyda)~ "h(pvoa)) € C, where
a is the leading coefficient of g,, and g,(t) — at""h(t) e Z[¢] is of
degree less than m. This contradicts the minimality of m. Hence
m=n.

Now let f,(t) = irr (véa, F'), i.e., fi(t) € F[t] is irreducible over F'
and f,(vda) =0. For each prime pe 2™+, let f,(t) = irr (pvoa, F).
Note that degf, = degf,. Let h,(¢) = (pt)g,(pt) — pt + a,, Where
a, = (pyda) — (pyda)’g,(pyoa)c C. Then h,(vda) =0. Thus for each
prime p€ Z* we obtain h,(f) € C[t] such that all coefficients except
the constant term are in 2, and 1 < degh, < deg f, + 2. Thus we
must have an infinite set of primes {p|i € 2°*} such that deg’, =k
for all 1€ 2+ and some fixed ke 2*. We obtain a sequence of
polynomials {&,(t)}i=, over C having the following properties:

(i) deg h; =k;

(ii) hy(voa) = 0;

(iii) If h(t) = Dk, at!, then a;€ 27 and pila,; for all j =1,
and pifa, in 20

Without loss of generality, we may choose these p,’s such that
the deg h; = k is least.

Suppose &k > 1. We set ¢,(t) = a,h,(t) — a,h,(t). Thendegq, <k
and if ¢,(t) = 2kl Bt then B,eC and for j =1, B,¢ 2, pilBi-
It is also clear that g¢,(vda) = 0. Now if p}|8,, then since pi|a,
(we've assumed k > 1) and pita,, we must have p,|@,,. Since there
are only a finite number of divisors of a,, we can choose an infinite
subset of {pJ}i, which again may be called {p,}, such that p2}3,..
Note that deg ¢, = 1. But then since ¢,(vda) = 0 and 1 < degq, < %,
we can pick an infinite subset of these ¢,’s all of the same degree.
This contradicts the minimality of k. Hence k = 1, and vda satisfies
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a linear polynomial at + 8 where ac F and B€C. Thus dacC as
we desired.

THEOREM 4.3. Let R be a division ring having a primary class
Z of derivations which satisfies the condition (BC). Then R is a
field.

Proof. Suppose the characteristic of B is zero. The theorem
follows immediately from Lemmas 3.2, 4.1, and 4.2. Thus we may
assume that the characteristic of R is p # 0. Suppose to the con-
trary that R is not commutative. Then according to Lemma 3.2,
for each 0e <27 where 0 % 0, there is an xe€ R such that ox¢C.
Here ox must be algebraic over the prime field F' of R by Lemma
4.1. Since F'is finite, (3x)?* = dx for some ke 2°+. By Lemma 3.1.1
in [4] there exists a y € R such that yoxy™ = (0x)° = dx for some
1€ Z. Now 0 # [0z, y]e Z(R) and [ox, y]ox = dxyox — y(0x)* =
(0x)'[ox, y]. In addition, [ox, y] is algebraic over F' by Lemma 4.1.
Let S = {3,; au;(0x)[ox, y) |ai; € F}. Then Sis a finite division ring
and hence, by the Wedderburn Theorem, S is a field. Particularly,
[0z, y]ox = (0x)[ox, ¥], a contradiction. Hence R is commutative.

As we pointed out earlier, a commutator is simply the image
of an element under an inner derivation, and the additive group of
all inner derivations on a ring D forms a primary class of deriva-
tions. Thus we obtain immediately from Theorem 4.3 the following.

COROLLARY 4.4 (Martindale). Suppose D is a division ring
such that for each commutator we D, u* — weC, the center of D for
some ne 2, n>1. Then D is a field.

THEOREM 4.5. Let R be an arbitrary ring having a primary
class & of derivations which satisfies the condition (BC). Then
oa€C for all 06 Z and a€R.

Proof. By Theorems 3.17 and 4.3, R/N is a commutative ring
where N denotes the prime radical of R. Thus, for all x, y€R,
[z, y]e N. Noting that N is the intersection of all prime ideals in
R, we see that oxe N, i.e., 0x is nilpotent for all 0 =2 and 2 e R.

Suppose to the contrary that there are an a € R and d€ & such
that da ¢ C. Since oda is nilpotent, (da)” = 0 for some ne 2+, n > 1.
By the condition (BC), there is p(t) € 2°[t] such that ox — (0x)*p(ox) € C.
Also, there is an integer j > 1 such that (ox), (8x)7+, ---, (Gx)" e C
but (ox)'*¢ C. From (ox— (0x)*p(0x))** € C, we obtain (9x)'*+g(0x) € C
where g(f) e £°[t] is a polynomial in which each term is of degree
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greater than j — 1. Since g(ox) € C, (0x)* € C which contradicts the
choice of j.

The following corollary was conjectured by Herstein and was
first proved by Martindale [9].

COROLLARY 4.6. Suppose A is a ring such that, for each com-
mutator we A, u* — ucC, the center of A, for some ne 2, n> 1.
Then every commutator lies in C.

THEOREM 4.7. Suppose R 1s a prime ring having o primaery
class & of derivations which satisfies the condition (BC). Then R
is commutative.

Proof. This is an immediate consequence of Theorem 4.5 and
Lemma 3.2.

5. Primary classes satisfying (CC). Throughout this section
we assume R is a ring having a primary class of derivations which
satisfies the condition (CC) defined in §1. We should note that
(CC) = (AC) and, under the condition (CC), (9x)*eC if and only if
oxeC, and [y, (02)*] = 0 if and only if [y, ox] = 0.

LEMMA 5.1. Suppose R is a division ring. Then R is a field.

Proof. Assume the characteristic of R is two. Suppose to the
contrary that R is not commutative. By Lemma 3.2, there exist
0e 2 and xe€R such that oxre¢C. By the condition (CC), ox +
(0x)*» € C for some peC. It follows that oy + (0y)* e C where y = pz,
and 0y ¢ C. Let 0, be an arbitrary element in &. We shall show
0,0y =0. 0=20,(0y + (0y)*) = 0,0y + 0,0¥0Y + 0y0,0y yields 0,0y(1 + oy) =
0Y0,0Y, i.e., (8,0y) '0y(0,0y) =1+ dy. It follows that (0,0y) %0y (0,0¥)* =
0.09)7* A + 0y)(0.0y) =1 + 1 + 0y = oy. So [8y, (0,0¥)*] = 0 and hence
[0y, 0,0y] = 0. Consequently, 0,0y = 9,0¥0y + 0y0,0y = 0. Since this
holds for all 0, &, dyeC, a contradiction. Hence R is commuta-
tive.

Now we assume the characteristic of R is not two. In view of
Lemma 3.2, we need only to show Z(R) < C.

Let 0e =.

Case 1. 0R N C = {0}. Suppose to the contrary that ox¢ C for
some 2 € R. By the condition (CC), ox — (0x)*p € C for some 0 = peC.
Thus, 0y — (0y)*€ C where ¥y = px and oy¢ C. We claim that oR &
Coy. Indeed, suppose dR & Coy. Then for all u, ve R, we have
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0 = [0(uw), 0y] = ou[v, oy] + [u, 0y]ov. Replacing u by ou, we get 0=
ou[v, 0y]. Since oy ¢ C, *u = 0 for all we R, i.e., 0> =0. Thus for
xeR, 0= 0*a?) = o%xx + 2(0x)* + xo*x = 2(0x)* and hence or =0, a
contradiction. Hence oRZCoy. Now let 9z¢ Coy. By the condition
(CC), 0z — (02))q € C for some 0~qgeC. So ow — (ow)*cC, where
w=qz, and ow¢ Coy. Again by the condition (CC), o(y — w) —
(0(y — w))*q, € C and o(y + w) — (0(y + w))*q, e C where q,, ¢, € C. From
these and the fact that oy — (0y)’e C, ow — (dw)*€ C, one can easily
see that (¢, + 9. — 2¢.¢,)0y + (¢.¢, — 29,¢,)0w e C. Since ow ¢ Coy,
¢ — 9 —2¢¢,=0 and ¢, +¢.— 29,¢g,=0. Thus, ¢,=¢,=0 and
hence o(y — w)e CNoR. Consequently o(y — w) =0, ie., ow =09y e
Coy, a contradiction. Therefore d(R) < C.

Case 2. 0RNC +# {0}. Suppose to the contrary that oR & C.
Then as in Case 1, there exists ye R such that oy¢ C and oy —
(0y)?eC. So (0y — 1/2* = (0y)* — oy + 1/4eC. Let 0 #oucoRNC
and ¢ = 1/2u(ou)™. Then ot = 1/2 and (3(y — t))*€ C. Hence by the
condition (CC), o(y — t)eC, i.e., 0y — 1/2eC. So oy € C, again a con-
tradiction. Hence oR & C. This completes the proof.

Using a similar proof of Theorem 4.5 we have

THEOREM 5.2. Let R be a ring having a primary class & of
derivations which satisfies the condition (CC). Then oxeC for all
0€<Z and TER.

6. Some remarks and open problems. In [1], we exhibited
examples of primary class of derivations which are much smaller
than the class _# of all inner derivations. There we raised the
problem on the existence of primary class of derivations & such that
9 .7 Now, we will present such an example.

ExamMPLE. Let R be the subring of the ring of 2 X 2 matrices

over 2 which consists of all matrices of the form (%x 2%), where

2,y € Z. The prime ideals of R are of the form <8 29:6) or (gp < 2’%(,)),

where p is an odd prime number in 2. The center of R is {(8 8)}
Let &7 be the set of all derivations 0 on R defined by

o o)=L Bl o)

where a, be 2. It is easy to verify that & forms a primary class
of derivations on R and that, for b = 0, ¢ is not an inner derivation
on R.
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There are still a lot of open problems concerning the commuta-
tivity of rings and primary class of derivations. We conclude with
some of these problems.

Suppose R is a ring having a primary class & of derivations.

(1) Suppose, for each 0 € &7 and x € R, there exist m € 2™+ and
p€ R such that (ox)™ — (9x)"+'p € C, the center of R. What can we
say about R? More precisely, do the nilpotent elements of B form
an ideal in R?

(2) Suppose R is a division ring, and suppose, for each oz e
Z(R), there exists n e 2+ such that (0x)" € C, the center of R. Is
the dimension of R considered as a vector space over C atmost 47
The answer is affirmative if & is the primary class of all inner
derivations on R (see [5]).

(8) Can the results in the present paper also be extended to
d.g. near rings? Some special cases have been done by Ligh [8].

(4) What kind of ring R such that all its primary classes of
derivations are contained in the class _# of all inner derivations?
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Added in proof. In this paper “Nilpotent derivation” (Technion
Preprint Series No. MT 453), Amos Kovacs has obtained independently
an example of rings having a drimary class of derivations which is
not contained in the class of all inner derivations.
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