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METRIC AVERAGING IN EUCLIDEAN
AND HILBERT SPACES

RALPH ALEXANDER

A number of geometric properties of sets in I2 can be
measured in terms of maxima and minima of quadratic
forms subject to side conditions. A method of metric addi-
tion which exploits this fact is investigated. The main
objective is to develop a flexible method for attacking
geometric extremal problems involving sums of distances
or other metric constraints.

1* Introduction and principal embedding theorem* The
general approach for metric addition, or averaging, in Euclidean and
Hubert spaces has proved useful in the study of a number of
geometric extremal problems (See [1], [2].) However, in this earlier
work we did not realize that the various averaging processes and
inequalities could be presented in a completely unified manner.

Obviously, we can make no claim of total originality since
special cases of our results are well-known. In fact in §6 we point
out that an inequality is equivalent to a known result for positive
definite matrices. However we do feel that our method, based on
ideas related to an embedding Theorem of I. J. Schoenberg [9],
possesses scope and flexibility.

The general method exploits the fact that a number of geometric
properties of sets in Z2 can be measured in terms of maxima and
minima of quadratic forms subject to linear side conditions.

The logic of the method's application to extremal problems
parallels that of Minkowski (or vector) addition. One assumes that
an extremal configuration is at hand, and by "adding" suitable copies
of the configuration one hopes to determine the nature of the con-
figuration by use of inequalities and other properties which are
preserved by the addition process. In §7 this is illustrated by an
example.

Let (Y, τ) be a compact topological space which can be homeo-
morphically embedded in the classical Hubert space Z2, and let T be
a family of homeomorphisms from Y into Z2 such that the images
Yt, t in T, are uniformly bounded. Furthermore we assume the
existence of a suitable probability measure μ on subsets of Γ. The
nature of the measure μ is clear in the context of a problem, and
it is generally chosen to be a "uniform" measure on T. Define the
function d on Y x Y by the formula
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( 1 )

LEMMA 1. The function d is a metric on Y, and τ agrees with
the topology induced by d.

Proof. The triangle inequality holds. For p fixed t(p) is a func-
tion in L\T, μ) since \t(p)\ is bounded, and the assertion that d is
a metric follows.

Next observe that a sequence of point {pj in Y tends to p0 if
and only if for each t, limw \t(pn) — t(po)\ — 0. Therefore the bounded
convergence theorem assures that limΛ d(pn, p0) = 0 if and only if
limΛ pn = p0 with respect to the topology r. Therefore the metric
topology of d agrees with τ.

We also wish to point out that the Cauchy-Schwarz inequality
gives the important auxiliary inequality

( 2 )

The inequality (2), which will be strict unless \t(p) — t(q)\ is constant
a.e., is often useful in identifying extremal configurations.

THEOREM 1. The metric space (Y, d) may be isometrically
embedded into I2.

Proof Perhaps the most direct proof follows from the observa-
tion that (Y, d) embeds into L\T} μ), which in turn will embed into
I2. However we wish to base the proof on the following criterion
of I. J. Schoenberg: A separable semimetric space (S, δ) embeds
isometrically into I2 if and only if for each finite set of points
{Po, P» - , Pn\ in S, the quadratic form L i % , Pj)x&j is negative
semidefinite on the plane Σ< χi — 0

To prove the theorem we observe that if {p0, plf —-,pn} lie in
Y, then for each t, the quadratic form Qt = Σ < y \t{p%) — t{p3)\2XiXβ
is negative semidefinite on the plane Σ i ^ = 0. Since μ is a positive
measure, the form Q = I Qtdμ(t) shares this property. Hence (Y, d)

embeds isometrically into I2. The space (Y, d) is called the metric
sum.

For convenience we shall write Y = Σ Yt to indicate a metric
sum. The metric sum is clearly unique up to isometry. A central
feature of the metric sum is its preservation of topological properties.
This is both a strength and a weakness, since the metric sum applies
only to mutually homeomorphic subsets of i2.
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2* Some special embedding theorems* Let us consider the
special situation where Y consists of n + 1 points, T = {tlf t2, , t8},
and Yt lies in Em for each t. Define μ by μ(tt) = α*, where
Σ* «i = 1- Here we may avoid Theorem 1 by means of direct con-
struction. Set

(3) Pί = (αA(Pi), •• ,α.«.(P«)).

Note that p\ lies in JS8W, and |p — pj|* is in fact given by formula
(1). This construction immediately proves the following special
embedding theorem.

THEOREM 2. Let Y be a set of cardinality n + 1, where n may
be infinite, and let T = {tu t2, , ίβ} δ# α jΰmtβ seί 0/ homeomor-
phisms of Y into the Euclidean space Em. Then Σ ^ maV be
embedded into Ek where k = min {sm, n + 1}.

As a further example let Y — {p(s): 0 ^ s < 1} be a closed
rectifiable curve of unit length, parametrized by arclength modulo
one, which lies in Em, and let t lie in [0,1). The mapping p(s) -»
p(s + t) gives a natural homeomorphism. If we identify t1 and t2

with the induced homeomorphisms, and put μ(tj) = α2, ( ) 2

a2 + β2 = 1, then

(4) Σ Γt = (αp(β + ίi), ^p(s + Q) , 0 ^ s < 1 .

Clearly Σ Yt is a closed curve which lies in E2m. Since for each ί,
p(s + ί) is absolutely continuous, we may compute the length of
Σ Yt in the usual manner and observe that it also is of unit length.

We state a theorem which contains the above example as a
special case. We will not include a proof since the essential features
of a proof in the case dμ(t) = dt are given in [1]. This proof can
be easily modified to handle the more general μ.

THEOREM 3. Let Y = {p(s): 0 <: s < 1} be a closed rectifiable
curve in I2 of unit length which is parametrized by arclength modulo
one. If μ is a probability measure on [0, 1), then the metric sum
Σ Yt over the homeomorphisms t given by t(p(s)) = p(s + t) is again
a curve of unit length.

Theorem 3, when combined with G. T. Sallee's chord theorem
[8], is every effective in the investigation of metric inequalities for
plane curves. Sallee's results often allow one to bypass a potential-
ly fatal flaw of Theorem 3, namely that even though Y may lie in
E2, Σ Yt seems trapped in a space of much higher dimension. A
clear description of the general process is given in [1].
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As indicated by Theorem 3, the topological properties of Y can
be an essential feature of a problem. However, in the remainder
of this article we shall be primarily interested in metric ^-tuples
lying in I2. The basic inequalities which we study can easily be
extended to more general Y by means of compactness arguments.

3* The circumsphere* If a pointset in I2 lies on a Hubert
sphere of radius R, and R is the least number for which this is true,
then this sphere is called a circumsphere and R is the circumradius.
If the set is finite, we may take the Euclidean sphere of least
dimension which contains the set (on its surface) as a circumsphere.
For convenience we allow R to be infinite, as in the case of three
collinear points.

LEMMA 2. Let {pQ9 pu - * , p j be points which are the vertices
of a nondegenerate simplex in En and let Q(x09 xl9 , xn) =
Σ ϋ \Pi ~~ Pj\2%i%j- If R is the circumradius of the points then 2R2

equals the maximum of Q subject to the condition Σ έ xt = 1.

Proof. Let the center of the circumsphere be the origin so that
\Pi\ = R for each i. Using the fact that \pt — p5\

2 — 2{R2 — pt p3),
one easily establishes the identity

It is seen immediately that Q ^ 2R2 and this maximum is attained
for the unique choice of x09 , xn for which the afδne sum Σ< X%P%
is the origin. If the method of Lagrange multipliers is used to
maximize Q(x09 •• ,a?») subject to Σ i # ι = . 1» o n e obtains explicit
formulas for the xt.

Also, a simple continuity argument shows that Lemma 2 is valid
even if {p0, , pn) are the vertices of a degenerate simplex since
R is a continuous function of these points. Note that R may or may
not be infinite in the degenerate situation.

A straightforward argument (see [3, §3]) shows that for a

compact set K in I2, 2R2 equals sup^ II \p — q\2dη(p)dη(q) as ΎJ varies

over all signed Borel measures of total mass one concentrated on K.

THEOREM 4. Let Y =:• Σ Ύt be a metric sum in I2. Then

where R and Rt are the respective circumradii of Y and Yt.
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Proof. We will assume that Y is a finite set {p09 — -9 pj. Now

2R2 = max Q = max ( Qtdμ(t) £ [ max Qtdμ(t) = 2 ί R]dμ{t)9 with the

side condition Σ* α̂  = 1 understood to hold throughout. The exten-

sion of this proof for compact Y is straightforward, and therefore

is omitted.

THEOREM 5. For each t let Yt be contained in a ball of radius
R. Then Y == Σ Yt is contained in a ball of radius R.

Proof. Assume that Y — {pQj pl9 , pj is a finite set. For
each t choose a point qt9 not in Yfy within distance ε of the center
of the ball containing Yt. Let Y[ — Yt U {q} and form the metric
sum Yf — Σ Y't- Clearly Yr may be viewed as the pointset
{Po, —', Pn, q} where q is a point in I2 whose existence is guaranteed
by Theorem 1. For each i, \q - p,\2 == ί \qt - t(p%)\2dμ(t) ^ (ij + ε)2.

It follows at once that F is contained in a closed ball radius R. We
omit the easy extension of this argument to compact Y.

4* The distance between flats. Let {p09 pl9 , pm) and

{tfo, 9i, , Qn) be pointsets in I2 and let Q be the quadratic form

Σ \Pi ~ Pj\2%iXj + Έ\Pi~ Qj\2XiVj + Σ \Qi - «il22/<0/

LEMMA 3. Let h be the distance between the two flats generated
by {pQ9 pl9 , pj and {q09 ql9 , qn}9 respectively. Then

( 6 ) h2 = min | Q \ subject to Σ ^ = 1 > Σ 2/< = — 1 .Σ
i

Proof. If Σ ί ^ t — 1 a n ( i ΈaVi — ~~ 1> ^ e following equation
becomes an identity.

( 7 ) Σ »<?>< + Σ
i

The identity is easily established via the identity 2p - q = \p\2 + \q\2 —
\p — q\2 after "squaring out" the right hand side. We omit the
details.

The special case of the identity (7) for three noncollinear points
{Po, Pi, Qo) is known as Stewart's theorem. Here — Q gives the squared
length of the cevian from q0 to the point xopQ + xλpx. Also, M.
Klamkin has used versions of the identity (7) in a number of ingenius
ways. His interpretation of (7) involves the notion of a moment of
inertia. The article [6] gives an indication how this works.

Note that |Q | , subject to the side conditions, ranges over all
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possible values of | p — q |2 where p, q are arbitrary points on the
flats generated by {p0, •• ,3>m} and {q0, ••-,#„}, respectively. This
proves the lemma.

THEOREM 6. Let the pointsets {p0, pu , pm} and {q09 qu , qn}
be the respective metric sums of the pointsets {t(p0), t{p^)9 , t(pm)},
{t(q<>), t(qx), , t(qj}, t in T. Then if ht is the distance between the
corresponding flats, we have

( 8 ) h2^ \h\dμ(t) .

Proof. Subject to Σ*#t = 1> ΈaVi = — 1* it follows that

k* = min \Q\ = min (-Q) ^ ί min (-Qt)dμ(t) = ί fefdjei(ί) .

Here

Q* = Σ I«(P*) ~ *(3>y) I2»*»i + Σ I t(p<) - t(Qj) \%y3 + Σ I t(qt) - t(qs) l 2 ^ .

Next we prove a result which is known when suitably reinter-
preted. However, we give a proof based on Theorem 6.

COROLLARY 1. Let Vt be the volume of the simplex whose
vertices are {t(p0), , t(pn)} for t in {tu t2, , t,}, and let V be the
volume of Σ Yf Then if μ(t) — 1/s for each t,

Proof Clearly n\ V= hji^ hx where hi is the altitude of
an i-dimensional simplex. We may use Theorem 6 to assert

(10) π Γ Σ

where hi5 is the altitude corresponding to hi in the simplex whose
vertices are {tά(p)}. To apply Theorem 6 we let {p0, , pt_^ be the
vertices of the base simplex with qo = Pi- The altitude ht is measured
from q0 to the flat determined by {p0, , ί>i_i}.

After applying the usual arithmetic-geometric mean inequality
of each factor on the right side of (10) the inequality (9) follows
almost at once. We will discuss (9) further in §6.

5* The medians of a simplex* If Y = {pQ, plt « , p j is the
vertex set of an arbitrary simplex, then the median distance m
from pn is \pn — l/wΣ?=o Pz\ If Y is a metric sum Σ Yt, then let
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mt be the corresponding median distance for the set Yt =

ί*(Po), ••-,«(?.)}.

THEOREM 7. 2%£ median distance of a metric sum satisfies

(11) m2

Proof. Set g0 = pΛ, j/ 0 = — 1, and a?< = 1/w for i = 1, , n — 1
in the identity (7), and note that ra2 = — Q while ml = — Qt. Since
ζ) = \ Qtdμ(t), the theorem is true. A practically identical proof
shows that (11) holds for the "generalized medians" investigated in
the article [2],

6* Positive definite matrices* For convenience let di3- = |Pi —Py |,
0 ^ i, j^>n. The substitution x0 = — (Σ?=i χύ shows that the
quadratic form Σ <%&& is negative semidefinite on plane Σ£=o #* = 0
if and only if the form Σ*i=i Wi + d2

0j — d2n)XiXό is positive semi-
definite. Likewise, if #ΓA# is a positive semidefinite form, there are
points pQ, pl9 , pΛ such that α t i = 2(p0 - p j (p0 - pd) = d2

ci + d2

Qj -
d2

ijf 1 ^ i, j ^ n. This follows from the matrix equation A = BTB
which characterizes positive semidefinite matrices. These observa-
tions lie at the heart of the Menger-Schoenberg embedding theory,
and a careful investigation of these ideas from the point of view of
classical matrix theory is given in the book [4].

Since the square of the volume of the simplex with vertices
{PQ, PI, " ι P«) is propositional to det (atί), a moments thought shows
that Corollary 1 is equivalent to the assertion that if Alf , A8 are
positive definite n x n matrices, then

(12) det (— Σ Λ ) ^ (det Π

This inequality is well-known (see [7]). Professor Narasimhan points
out that the result for s = 2 follows at once upon simultaneously
diagonalizing Aλ and A2. The full inequality (12) can then be deduced
by a suitable induction process.

7* An example* In conclusion we will consider an illustrative
problem which yields easily to the metric sum approach: Suppose
four points {<70, Qlf Q2, Qs) lie on a unit sphere in E*. Show that the
sum of the four altitudes of the simplex they determine is maximal
precisely when the simplex is regular.

Solution. Let T be the 24 distinct homeomorphisms of a
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discrete set {p0, plt p2t ps} to the {#J. Set μ(t) = 1/24 for each t in
T, and form the metric sum. Thus for any k Φ I, \pk~ Pι\2 ~
1/24 Σ I t(pk) - t{pι) I2 = 1/12 Σ*.i I q* - Ϊ* I2

The inequality (6) says that the points {pj lie on a sphere in Ez

of radius R <̂  1. If /̂  is the altitude from g4 and hi is the altitude
from pif the inequality (8) reduces to h? ^ l/4[/t0

2 + h\ + Λi + Af]
which implies Λ{ ^ l/4[fe0 + Ax + A2 + h]-

Thus we have shown that given any simplex whose vertices lie
on a unit sphere, there is a regular simplex whose vertices lie on a
sphere of radius not exceeding one, and whose altitude sum is as
large as that of the original simplex. Therefore the regular simplex
is extremal.

A somewhat more careful investigation is needed to show that
the regular simplex is the unique extremal configuration. If the
inequality (6) is not strict, then the values xi which minimize the
quadratic form (5) must be invariant under all permutation and
hence must all equal 1/4. This says that the center of the sphere
is the centroid of the points. Similar reasoning shows that x0 = xx —
x2 = 1/3, yQ = — 1 must always minimize the form — Q in (7). This
means that the altitude are also medians. The three medians inter-
sect at the center of the sphere since the center is the centroid.

Suppose the points {pj form an extremal configuration. The
altitude from p0 passes through the center of the circumsphere and
strikes the plane containing {plf p2, p3} at the centroid of these three
points. This centroid will also be the center of the small circle on
which the three points lie. If three points lie on a circle, their
centroid is the center if and only if they are the vertices of an
equilateral triangle. Since this argument works at any vertex, the
{Pi} must be the vertices of a regular simplex.

The fact that all four altitudes are equal in an extremal con-
figuration, taken alone, would only imply that the extremal simplex
is isoceles. See [5, Chap. 9] for an account of isoceles tetrahedra.
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