ERRATA

Correction to

A CYCLIC INEQUALITY AND A RELATED EIGENVALUE PROBLEM

J. L. Searcy and B. A. Troesch

Volume 81 (1979), 217-226
Professor P. Nowosad, Rio de Janeiro, has informed us that the inequality $S(\underline{x}) \geqslant N / 2$ holds for $N=12$ [1]. Furthermore, our belief that the inequality also holds for odd $N \leqq 23$ has been stated, and strongly supported by numerical evidence, in [2].

1. E. K. Godunova and V. I. Levin, A cyclic sum with 12 terms, Mathematical Notes of the Academy of Sciences of the USSR, 19 (1976), 510-517. (translation), Consultants Bureau, New York.
2. P. J. Bushell and A. H. Craven, On Shapiro's cyclic inequality, Proc. Royal Soc. Edinburgh, 75A, 26 (1975/76), 333-338.

Corrections to

CHARACTERIZATION OF A CLASS OF TORSION FREE GRUOPS IN TERMS OF ENDOMORPHISMS

E. F. Cornelius, Jr.

Volume 79 (1978), 341-355
Received February 5, 1974 and in revised form June 7, 1978.

Corrections to

NONOPENNESS OF THE SET OF THOM-BOARDMAN MAPS

Leslie C. Wilson

Volume 84 (1979), 225-232
In [3] we showed that the set of Thom-Boardman maps is open if the Morin ($S_{1 ; k}$) singularities alone occur generically, and is not
open if S_{2} singularities occur generically. However, we neglected to consider the $S_{1, i}$ singularities, $i \geqq 2$ (recall that the subscripts denote corank, not kernel rank, and that $S_{1 ; k}$ means $S_{1,1, \ldots, 1}$ with $\left.k 1 ' s\right)$. In fact, the set of Thom-Boardman maps is not open if the $S_{1,2}$ singularities occur generically, which occurs whenever $n>p \geqq 4$. Thus Theorem 1.1 of [3] should be stated: The Thom-Boardman maps form an open subset of $C(N, P)$ iff either $2 p>3 n-4$ or $p<4$.

We will now indicate how the above claims are proved. Using Proposition 3 of [2], it is easy to calculate that the codimension of $S_{1,2}$ (which Mather denotes $\sum^{n-p+1,2}$; we assume $n>p$) is $n-p+4$. Thus $S_{1,2}$ singularities occur generically iff $n>p \geqq 4$.

The 3 -jet at 0 of

$$
\begin{aligned}
f\left(x_{1}, \cdots, x_{n}\right)= & \left(x_{1}, \cdots, x_{p-1}, x_{p}^{2}+\cdots+x_{n-2}^{2}+x_{n-1}^{2} x_{n}\right. \\
& \left.+x_{1} x_{n-1}+x_{2} x_{n}+x_{3} x_{n}^{2}\right)
\end{aligned}
$$

lies in $S_{1,2,0} \cap{ }_{t} S_{1,2}$. That it lies in $S_{1,2,0}$ follows from Mather's algorithm for computing the Thom-Boardman type (see the last definition on p. 236 of [2]). That $j^{2} f$ is transverse to $S_{1,2}$ follows from the last paragraph in [2].

For each $k, z=j^{k} f(0)$ lies in the closure of $S_{1 ; k}$. To see this, note that the contact class of $x^{2} y+Q, Q$ a nondegenerate quadratic form in other variables, lies in the closure of the contact class of $x^{2} y-y^{k}+Q$ (consider the curve $x^{2} y-t y^{k}+Q$). By Table 3 of [1], the latter contact class lies in the closure of the contact class of $x^{2}+y^{k+1}+Q$, which lies in $S_{1 ; k}$.

By the Transversal Extension Theorem of [3], there is a ThomBoardman map g with $j^{k} g(0)=z$. By Lemma 3.5 of [3], there are maps g_{m} which converge to g in the Whitney C^{∞} topology such that each g_{m} has $S_{1 ; k}$ singularities. The codimension of $S_{1 ; k}$ is $n-p+k$. Thus, choosing $k>p, g_{m}$ cannot be a Thom-Boardman map.

References

1. J. Callahan, Singularities and plane maps II: sketching catastrophes, Amer. Math. Monthly, 84 (1977), 765-803.
2. J. Mather, On Thom-Boardman Singularities, Dynamical Systems, Academic Press, New York, 1973.
3. L. Wilson, Non-openness of the set of Thom-Boardman maps, Pacific J. Math.
