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SOME GENERALIZATIONS OF
CARLITZ’S THEOREM

H. M. SRIVASTAVA

Recently, L. Carlitz extended certain known generating
functions for Laguerre and Jacobi polynomials to the forms:

00 t‘n ©0 t'n
Z cs'a+)\n)__’ and Z dsba+)\n,8+p.n)_? ,
n=0 n! 7=0 n.

respectively, where ¢{*> and d{*'® are general one- and two-
parameter coefficients. In the present paper some generali-
zations of Carlitz’s results of this kind are derived, and a

number of interesting applications of the main theorem are
given.

1. Introduction and the main results. Motivated by his
generating function [2, p. 826, Eq. (8)]

(L.1) S Lerm@yer = L oxp (—aw)

n=0 11— w
where a, )\ are arbitrary complex numbers and » is a function of
t defined by
1.2) v =t(1 + v)**, 2(0) =0,
and by its subsequent generalization due to Srivastava and Singhal
[9, p. 749, Eq. (8)]

(1 3) g P,‘,““"‘"“""’(x)t”
=0+ A+ L =N —pp— A+ €+ @EYT,

where & and 7 satisfy
4 @D =@ Dy = L+ 9L,

Carlitz [3] has recently derived generating functions for certain
general one- and two-parameter coefficients [op. cit., p. 521, Theorem
1 and Eq. (2.10)]. Our proposed generalizations of Carlitz’s main
results in [3] are contained in the following

THEOREM. Let A(z), B(z) and 2z7'C(z) be arbitrary functions
which are analytic in the neighborhood of the origin, and assume
that

(1.5) A(0) = B(0) =C'(0) =1.
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Define the sequence of functions {f(x)}n=e by means of
(1.6) A@IB@)] exp @0(@) = 3 Fr@

where a and x are arbitrary complexr numbers independent of z.
Then, for arbitrary parameters N and y independent of z,

1.7 & ;La+1n) t_n — A(C)[B(C)]a eXp (xC(C)) ,
LD Z e ) = T B OBO] + 3OO
where
(1.8) ¢ = t{BQOF exp WCQ) -

More generally, if the functions A(z), Bi(z) and 27'C;(z) are
analytic about the origim such that

(1.9 A0 =B0)=C0)=1, i=1-.--,r;5=1---,s,
and if

(L10)  A@ I (B2 exp (3 2,04) = S s ola, -, w) 2o,

n!

then, for arbitrary a’s, \'s, x’s and y’s independent of z,

- t"
Z g;a1+lln, y(J[T—'—lr"b)(a".l + MYy, o, T + InyS)
7=0 n!

(1.11) _AQ LB exp (% 2:0,0)
1 CEMBOUBOI + S0}

where

(L.12) ¢ =t BT exp (3 ,6,0) -

REMARK 1. For x = y = 0, our generating function (1.7) would
evidently reduce to Carlitz’s result given 'by his Theorem 1 [3, p.
521].

REMARK 2. The general result (1.11) with » = 2 and z; = y; = 0,
Jj=1,--.,8, is essentially the same as a known result on generating
functions for certain two-parameter coefficients, which is due also to
Carlitz [3, p. 521, Eq. (2.10)].

REMARK 3. Formula (1.7) with » = y = 0 and its generalization



SOME GENERALIZATIONS OF CARLITZ’S THEOREM 473

1.11) with p;, =y; =0,2=1, ---,r; 7 =1, ---, s, evidently correspond
to the generating functions (1.6) and (1.10), respectively.

2. Proof of the theorem. By Taylor’s theorem, (1.6) gives

2.1) Fi(x) = DHARR)[B(2)]* exp (®C(2))} .o »
whence
(2.2) St (@ + ny) = DX{f(@)[s(2)]"}H .0

where, for convenience,
2.8)  flz) = AR)[B()]"exp (zC(z)) ,  ¢(2) = [B(2)]* exp (yC(z)) .

From (2.2) we have
(2.4) S ferm@ + ) = 3 Dyl |,
n=0 n! n=0 N 2=0

where f(z) and ¢(z) are given by (2.3).
We now apply Lagrange’s expansion in the form [6, p. 146,
Problem 207]:

2.5) 2

" n __ J©)
Dz YTl |
l {f@[e()]"} B TS
where the functions f(z) and #(z) are analytic about the origin, and
{ is given by

(2.6) C=1ts0), ¢0)=0,

and the generating function (1.7) follows readily from (2.4) under
the constraints (1.5) and (1.8).

The derivation of the multivariable (and multiparameter) generat-
ing function (1.11) runs parallel to that of (1.7) as described above,
and we skip the details involved.

3. Applications to special polynomials. We begin by recalling
the generating function [8, p. 78, Eq. (3.2)]

o0

3.1) Z(,)G,‘f"(x“’, r, p, k)z" = (1 — kz)~** exp (px[Ll — A — kz)""*]),
where G*(x, v, », k) are the polynomials considered by Srivastava
and Singhal [8] in an attempt to present a unified study of the
various known generalizations of the classical Laguerre and Hermite
polynomials, the parameters «, », k¥ and » being arbitrary (with, of
course, k, r = 0).

Compare (1.6) and (3.1), and we have
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8.2) AR =1, B =Q1Q-—kz)", Ck =7pl—@1—kz)"",
and

W(x) — n! GP@Y, r, p, k) .

It follows from (1.7) that

g Gt (e 4 nyl”, 7, p, k)Et

3.3
@3 _ Q-85 *exp (px[l — A — ™))
1—-kA -0 —rpyA - )’
where
(3.4) C=kt(l — )" exp (py[l — (1 — ™).
Put { = w/(1 + w), so that
(3.5) 1 C—l-l—w and ¢ w .

Thus (3.3) can be put in its equivalent form:

3G ([ + nyl, 7, p, E

(3.6)
_ (1 4+ w)* exp (px[l — A + w)”*)
1—kwh — rpoy@ + w)*]
where
3.7 w = kt(l + w)+* exp (py[l — 1 + w)"*]) .

Some special cases of (3.3) and (3.6) are worthy of mention.
Indeed, the polynomials G (z, », », k) can be specialized to a number
of familiar classes of polynomials by appealing to the relationships
given, for example, by Srivastava and Singhal [8, p. 76]. First of
all we make use of a relationship with Laguerre polynomials, viz
[8, p. 76, Eq. (1.9)]

3.8) Ge(x, 1,1, 1) = L@ () .

Thus, our formulas (8.8) and (3.6) with » = p = k = 1 reduce to the

corresponding generating functions for the Laguerre polynomials.

These generalizations of (1.1) were considered by Carlitz [3, p. 525].
Next we recall that [8, p. 76, Eq. (1.8)]

3.9) %mm&Ln=iﬁﬁmm.

By setting a=1, = —1, r =2, and p = k = 1, (3.3) thus reduces
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to

’

2 ——— (Ve + ny )" _ exp @ + 201 + {7
(3.10) Ea H,(Vz + ny) - = 1 Zta O

where
(8.11) C=td+Oexp @l +20)Q+0™.

Similarly, (3.6) yields

812 S H.0z T tLe T ny ) exp @@w — w)
ower S ) 7 1— zyw(l — w) ’

where
(3.13) w =t exp (y@Qw — w?) .

The generating functions (3.10) and (8.12) for Hermite polynomials
are believed to be new. Notice, however, that if in (8.1) (with
a=0,r=2,p=1, and k = —1) we replace x by «? use the rela-
tionship [8, p. 76, Eq. (1.8)]

(314) G;LO)(xy 2’ 19 —1) = %TL)ZH”(%) ’

instead of (3.9), and then apply our theorem directly, we shall obtain
a known generating function for Hermite polynomials [3, p. 524,
Eq. (4.4)].

Yet another set of special cases of our generating functions (8.3)
and (3.6) would follow if we put »p = r =1 and apply the easily
verifiable relationship

(3.15) Gy, 1,1, k) = k"Ya(x; k),

where Y2%(x; k) are one class of the diorthogonal polynomials introduced
by Konhauser [4] for « > —1 and £k =1,2,3, ---.
From (8.3) we thus find that

i Yati™a + ny; k)"
319 . _ Q=¥ exp ([l — (L — )]
1-k A -0 -yl - O™’
where
3.17) (=t - ¥expyl—1A-0",

while (3.6) gives us
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g Yotz + ny; k)t"
(3.18) ) (L ) exp (L — (1 + w)™])
1 — k7 wn — y@ + w)*] ’
where
(3.19) w = t(1 + w)**exp (Y1 — A + w)"*]) .

For y = 0, the generating functions (3.16) and (3.18) reduce
essentially to a result due to Calvez et Génin [1, p. A4l, Eq. (2)].
Furthermore, since

(3.20) Yi(x;1) = L(x) ,

in their special cases when k£ =1, (3.16) and (3.18) naturally yield
the aforementioned Carlitz’s results involving Laguerre polynomials.

Finally, we give a simple application of our multiparameter gene-
rating function (1.11). Indeed, for the Lauricella polynomials (cf.
[5, p. 113)])

FlS)[_n’ Bly ey B AVt ey, 73]

8-21) = (Wt (B (B, TP VR
my, e mg=0 (29 Fra—— m,! m,!

where (a), = I'(@ + n)/I'(e), it is readily observed that

(3.22) py (Z‘—),” Fi[—m, By, +++, By A7y -+, Vo]2"

s . —Bj
=(1—z)-ajr=[1(1+1”z) T e < 1.

Compare (3.22) and (1.10) with » = s + 1, and we get

(329 AW=1, BE=0-2", Bu@=(1+2)",
1—-2z2
z; =0, j=1 ---s,
and
g;a,ﬁl,"-,ﬁy(o’ ) 0) — (a),,F,%[—n, Bu ) Ba O Ty, - ) 73] .

It follows at once from (1.11) that

< (a4 AN, s §
,;')( _:,“ )FD[_nyﬁl‘FF‘ﬂ@y"', 6s+#sn;a+xn;7l,...,78]t

(3.24) ) a—o I=I (1+ IL_'CC)—”

C1-ca- cr{x — S - O+ 7,.@-1}

?
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where

(3.25) C=tl -0~ H

1

il \
(1 D q) .
Replacing a by a + 1 and ¢ by /1 + ), (3.24) may be rewritten
in its equivalent form:
= [a+(\+1)n
S (O ) Fat-m g, 4 i

n=0

a+ An + 1; RETIRARS vs]tn
(3.26) (1 + C)a+1 ﬁ (1 + ,ch)—ﬁj
i=1

1o c[x —(1+0) z vt (L + wcrl]

’

where { is now given by

(3.27) L=t + O+ H A+ v Q) .
For ¢, = --- = p, = 0, the multiparameter generating function

(8.26) is derivable also as a special case of a known result [7, p.
1080, Eq. (6)] involving the generalized Lauricella functions of several
variables.

A number of additional applications of our theorem can be given
by using some of the examples considered earlier by Carlitz [3].
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