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RIGHT SUBDIRECTLY IRREDUCIBLE SEMIGROUPS

S. A. RANKIN, C. M. REIS AND G. THIERRIN

It is well-known that a semigroup is subdirectly ir-
reducible if and only if it has a minimum nontrivial con-
gruence. From this point of view, it is natural to call a
semigroup right (left) subdirectly irreducible if and only if
it has a minimum nontrivial right (left) congruence. It
turns out that such semigroups are exactly the subdirectly
irreducible semigroups for which the minimum nontrivial
congruence is also a minimum nontrivial right (left) con-
gruence. These semigroups form a class of subdirectly
irreducible semigroups for which results similar to those
obtained by Schein for commutative subdirectly irreducible
semigroups are obtained. In fact, since a commutative
semigroup is subdirectly irreducible if and only if it is
right subdirectly irreducible, some of the results of this
paper offer additional knowledge on the structure of sub-
directly irreducible semigroups of the third kind.

The set of all right subdirectly irreducible semigroups will be
partitioned, for the purpose of investigation, into ten classes, each
class being defined in terms of idempotents. Six of these classes
contain exactly one semigroup each. Several of these semigroups
have also been described in a related study by Baird and Thierrin
[1]. A right subdirectly irreducible semigroup S does not belong
to any of these six exceptional classes if and only if the set of
idempotents E(S) of S is contained in {0, 1}. The remaining four
classes of right subdirectly irreducible semigroups correspond then
to the four possible subsets of {0, 1}.

As for notation, we shall let Λ~ denote the set of natural
numbers. If S is a semigroup and a e S, we shall let λα: S —> S
denote left translation of S by a (i.e., x-^ax for all xeS) and
<α> = {a^ie^V}. If HaS, \H\ shall denote the cardinality of H.
Moreover, we shall define a right congruence φH on S by x = y[φH]
if and only if Hx = Hy. If H is a singleton, say H = {α}, then we
denote φH by <f>a. Finally, if φ is any equivalence relation on S, let
φ(a) denote the equivalence class of aeS.

2* Right subdirectly irreducible semigroups* It is clear that
a right subdirectly irreducible semigroup must have a minimum
nontrivial (i.e., not a singleton) right ideal. Since every left trans-
late of a minimal right ideal is a minimal right ideal, the minimum
right ideal of a right subdirectly irreducible semigroup is a two-
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sided ideal, called the core [5] of S, and denoted by K = JSL(S).

The minimum right congruence shall be denoted throughout by
p = p{S). All nontrivial ^-classes are contained in K.

LEMMA 2.1. Let S be right subdirectly irreducible and aeS.
If there exists xeS such that \ap(x)\ > 1, then Xa is injective.

Proof. If λα is not injective then φa Φ ε and so p *£*φa.
A right subdirectly irreducible semigroup is obviously subdirectly

irreducible. With the preceding lemma, we can say more.

THEOREM 2.2. The minimum nontrivial right congruence on a
right subdirectly irreducible semigroup is a two-sided congruence.

Proof. Let S be right subdirectly irreducible. If aeS is such
that λα is not injective, then \ap(x)\ = 1 for all xeS. On the other
hand, if λ0 is injective, then \aK\ > 1 and so aK~ K. Define a
congruence pa by x Ξ= y[pa] if ax = ay[p]. Let x and y be distinct
elements of K such that xpy. Then x = as and y = at for distinct
8 and t from S. But then s = t[pa] and so |θα ̂  e. Thus p ^ pa

and so αs/oi/ implies ax pay.
We proceed now to investigate the set E(S) of idempotents of

a right subdirectly irreducible semigroup S. It will be shown that
except for six exceptional semigroups, the set of right subdirectly
irreducible semigroups can be partitioned for investigation according
to the following four types:

( i )
(ii)
(iii)
(iv) E(S) = 0 .
Of these four cases, the type (ii) are the most accessible. We

have been able to say very little about the remaining types (i), (iii)
and (iv).

THEOREM 2.3. Each idempotent of a right subdirectly irreduci-
ble semigroup is either a left zero or a left identity.

Proof. Suppose e e E(S) is not a left zero. Then eS Φ e and so
KaeS. But then φe restricted to K is the identity and so p does
not refine φe. Thus φe == ε and since for all aeS, ea = a[φe], ea — a
and so e is a left identity for S.

LEMMA 2.4. Let S be right subdirectly irreducible with a left
identity e which is not a right identity. Then p has exactly one
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nontrivial class p(a)f where a&Se and S = SeΌ {a}, p(a) = {a, ae}.

Proof. Since e is not a right identity, there exists aeS such
that ae Φ a. Define a right congruence φ on S by x = y iff x, y e
{a, ae} or x = y. Since this right congruence is not ε, it must be p.
But then for the left identity e, there is at most one such element
a and so for all x e S\{a}, xe = x. Thus S = Se U {α}, α g Se.

COROLLARY 2.5. If S is right subdirectly irreducible and has
exactly one left identity (not a right identity), then S has a left
zero.

Proof. If e is the left identity of S, then S = Se U {α}, α g Se
and |θ(α) = {α, ae}. If α2 = α, then a is α left zero and ae = α, a
contradiction. Thus a2eSe. If aeaS, say a = ax, then x Φ a.
Thus αsce = αx = α whence αe = α, again a contradiction and so
a g aS. Since jθ(α) = {a, ae} c JRΓ, p(a) must be contained in every
nontrivial right ideal and so \aS\ — 1. Thus aS = {αe} and S = eS
whence aeS =

THEOREM 2.6. A rί^feί subdirectly irreducible semigroup has
at most two left identities. A semigroup S is right subdirectly
irreducible with two left identities iff S is the right zero semigroup
of order 2 with or without an adjoined zero.

Proof. It is easily seen that the right zero semigroup of order
2 with or without an adjoined zero is right subdirectly irreducible
with K = S. US has no zero, then p = ω, the universal congruence.
Otherwise p is the principal congruence [5] of the zero.

Now let S be right subdirectly irreducible with a left identity
e. Then S = Se U {α}, a £ Se. If / is a left identity for S, then
either f= a or / e Se whence e = fe = /. Thus if e Φ f we have
/ = α and S = Se U {/}. Similarly, S = Sf \J {e}, e g S/. Thus S=
(Sβ Γl Sf) U {e, /} and I = SeΓϊSf is an ideal. If |7 | > 1 then the
Rees congruence for I is not refined by p since |θ(e) = ̂ o(/) = {e, /}.
Thus | / | ^ 1 and so I = 0 or else S has a zero and / = {0}.

THEOREM 2.7. A semigroup S is right subdirectly irreducible
with a unique left identity e {which is not a right identity) iff
S = {α, e, 0} with α2 = ae = 0.

Proof. Clearly S = {α, e, 0} is right subdirectly irreducible with
K = {a, 0} and p the Rees congruence of K. On the other hand, if
S is right subdirectly irreducible with a unique left identity e which
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is not a right identity, then S = Se U {a}, a $ Se; and / = ae = a2 is
a left zero, so K — {a, /}. For each # e S , either #α = a or else
xa — f and occordingly, either a?/ = #αe = ae — f or else sc/ = scαe =
/e = /. Thus / = 0. Define S1 = {xeS \xa = a} and S2 = {a; 6 S\xa = 0}.
Thus Si and S2 form a partition of S and £2 is an ideal. Since
a e S2, {Sl9 S2\{a}, {a}} defines a right congruence on S which is not
refined by p, whence \S,\ £ 1, |S2\{α}| ^ 1 and so S, = {e}, S2 = {α, 0}.

LEMMA 2.8. A right subdίrectly irreducible semigroup has at
most two left zeroes. If there is exactly one left zero, it is a zero,
while if there are two left zeroes, e and f, then K = {e, /}.

Proof. Let e be a left zero of a right subdirectly irreducible
semigroup S. Then for all aeS, ae is a left zero. If S has only
one left zero, ae — e for all aeS whence e is a zero. If S has more
than one left zero, then since each subset of the set of all left
zeroes is a right ideal, S has exactly two left zeroes and they form
the minimum right ideal.

THEOREM 2.9. A semigroup S is right subdirectly irreducible
with two left zeroes iff K — [eu e2} is the left zero semigroup of
order 2 and S is one of the following semigroups:

( i ) S = K
(ii) S = K1

(iii) S = K1U{a},a2 = l,
ae1 — e2, ae2 — ex.

Proof. If S = K or K\ then S is obviously right subdirectly
irreducible with the Rees congruence of K as the minimum right
congruence. If S = Kλ\J {a}, then {a, 1} is a group and K an ideal
and again the Rees congruence of K is a minimum right con-
gruence.

Conversely, if S is right subdirectly irreducible with two left
zeroes e1 and e2, then K = {elf e2} and we consider the right ideals
{x\xK = ej and {x\xK = e2}. Since they are disjoint and both meet
K, they must each be singletons. Thus for a e S\K, Xa determines
a permutation of K. Let Sι = {xeS\K\xe1 = ej and S2 = {xe
S\K\xe1 = e2}. Then {Sx, S2, {βj, {β2}} is a partition of S which de-
fines a right congruence. This congruence is not refined by p and
so \Sλ\ ̂  1, |S 2 | ̂  1. If Sx ̂  0 , then Sx = {e} and e2 = e ? K , β2},
whence by Theorem 2.3 β is a left identity for S. Since SjSiCSj
and Ke — K, e is also a right identity for S and so e = 1. Thus if
S2 = 0 then S = K1 while if S2 = {α} then α2 = 1 since S2S2 c Sx.

3* Right subdirectly irreducible monoids* From now on, we
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consider only right subdirectly irreducible semigroups S for which
E(S)a{Q, 1}. If S is a semigroup for which E(S)c{0, 1}, then S
is right subdirectly irreducible iff S1 is right subdirectly irreduci-
ble. Thus we need only consider right subdirectly irreducible
monoids.

THEOREM 3.1. Let M be a right subdirectly irreducible monoid.
Then M is a group or else there exists a subgroup G = G(M) of M
whose identity is 1 and I = M\G is an ideal of M.

Proof. Suppose ax = 1 for a, xeM. Then xaxa = xa and so
xaeE(M). If xa = 0 then a = axa = 0 which is not possible. Thus
xa — 1. That is to say, every left divisor of 1 is a right divisor of
1 and the result follows from Lemma 2.9 of [4].

LEMMA 3.2. Let S be a right subdirectly irreducible semigroup.
Then for x, y e S, xy = y iff x = 1 or y = 0.

Proof. Let y eS, y Φ 0, whence KcyS. If there exists xeS
such that xy == ?/, then for k e K we have k — yt for some ί e S.
But then xk — k and so a? is a left identity on K. The right con-
gruence defined by a = b if <x>αΠ<x>6 Φ 0 is then the identity on
K, hence the identity on S. But #α == a for all α e S and so #α = a
for all α e S . Thus x is a left identity for S and so x = 1.

COROLLARY 3.3. Lβί S δβ W(//̂  subdirectly irreducible. If S is
not a group then for all aeK, Ka Φ K.

Proof. If Ka — K then ta = a for some teK. Since α =£ 0,
t = 1. But if 16 S and S is not a group, then S = G U / with 1 e G,
if c I and G f | / = 0 . Thus 1 g ϋΓ, a contradiction and so Zα =£ if.

COROLLARY 3.4. If M is a right subdirectly irreducible monoid
then for all nonzero a eM, \Ga\ = \G\.

Proof. If ga = ha for g, heG, then gΓ1^ — 1 whence g — h.

Note that a group is right subdirectly irreducible iff it has a
minimum nontrivial subgroup.

THEOREM 3.5. Let M be a right subdirectly irreducible monoid.
Then G is right subdirectly irreducible or G = {!}.

Proof. Suppose |G| > 1 and let {Ga\aeΛ} be the set of all
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nontrivial subgroups of G. Let H = f){Ga\aeΛ}. Denote the right
congruence φGa by φa. Then p <L Φ« for all aeΛ. Let aeM be such
that I p(a) | > 1, say & 6 p(a), b Φ a. Since p(a) c φa(a) = (xαα, then for
each αeΛ there exists gaeGay gaΦl, such that b— gaa. Thus
0*α = fl^α for all a, βeΛ and so g^Qβd = α. If α = 0 then p(a)d
Gαα = 0 implies that b = 0 = α, a contradiction. Thus α ̂  0 and so
0« = 0,3 i.e., gaeGβ for all /3eΛ whence \H\ > 1.

We shall use if to denote the minimum subgroup of a right
subdirectly irreducible group G.

From McAlister and O'Carroll [3] it is known that a right sub-
directly irreducible group is a p-group for some prime p and
\H\ = p.

THEOREM 3.6. Let G be a right subdirectly irreducible group.
Then H is contained in the center of G.

Proof. Let b e G, a e H. Then since H is normal in G, bab"1 = a3'
for some integer j , and so for each m 6 ̂ 7 bmab~m — ajm. If
I <δ> I = pΛ, then we have a = bpnab~pn = a* for t = ip U, whence
ί = l(mod p). But t = i(mod 3)) and so i = l(mod p). Thus δα?)"1 = α.

So we have seen that if M is a right subdirectly irreducible
monoid, then M is the disjoint union of a group G and an ideal I
(or 1 = 0), where if |G| > 1, then G is a p-group with minimum
subgroup H, \H\ = p.

THEOREM 3.7. Lei M be a right subdirectly irreducible monoid
with \G\ > 1. TTiew G is a p-group and each nontrivial p-class
contains p elements. In fact, if \p(a)\ > 1 then p(a) = iZα.

Proof. Since p <: 0H we have /θ(α) c £Γα. Thus for 6 e /o(α), bΦ a,
we have & = /î α for some 1 ^ i ^ p — 1 and so aphιa implies
h*aph2ta. By induction we obtain {α, h'a, h2ίa, , fe(p~1}<α} ap(a).
Since /^fciα ^ α for 1 ^ fc ^ p — 1, p{a) = iία.

COROLLARY 3.8. Lei M be a right subdirectly irreducible monoid
with \G\ > 1. If M has a zero then ||θ(0)| = 1, ΐ.β., 0 is woί

Proo/. If |/o(0)| > 1, then <o(0) = i ϊ O - 0, a contradiction.
Thus if IGI > 1, 0 cannot be disjunctive.

COROLLARY 3.9. Let M be a right subdirectly irreducible monoid
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with \G\ > 1. Then K is the union of nontrivial p-classes (union
zero if M has a zero).

Proof. If for some a e K, x e M we have | p(a)\ > 1 but |p(ax) | = 1
then for each h e H, apha and so ax = hax. Since H Φ 1, this implies
that ax — 0 or else no such x e M exists. Thus the union of the
nonsingleton p-classes (union zero if M has a zero) is a right ideal.

THEOREM 3.10. Let M be a right subdirectly irreducible monoid
with zero. If al = 0 for some nonzero ae K, then K — aG U 0.
Furthermore, if \G\ > 1, then K\0 is the union of nontrivial
p-classes.

Proof. (aG U O)Λf - (aG U 0)(G U/) = αGU aGI - aG U 0. Thus
X — αG U 0. Since G acts transitively on the right of aG, each
p-class in K\0 is nontrivial.

LEMMA 3.11. Let M be a right subdirectly irreducible monoid.
Then for all a e M/K, al Φ 0.

Proof. If aeG then α/ = /. Suppose now that for some aeI\K,
al — 0. Then {x e I\K\xI = 0} U0 is a nontrivial right ideal which
does not contain K, a contradiction.

4* Periodic right subdirectly irreducible semigroups •

THEOREM 4.1. Let S be right subdirectly irreducible. If aeS

is aperiodic, then Xa is not injective.

Proof. Since a is aperiodic, the right congruence x = y if
(a)x ίΊ <α>τ/ ^ 0 is nontrivial and so xpy implies (a)x Π (a)y Φ 0 .
Suppose then that xpy but x Φ y. Now 0 6 <α># iff 0 6 (a}y whence
there is a smallest n e ,^~ such that anx = 0. Thus £ = α""1^ ^ 0
and at — 0 = αO whence λα is not injective. Suppose now that θ£
(a)x U <(α>2/. We have akx = ajy for some j , ketyK. If αpίc = aqy
for some p, q £ ,yK, with p ^ k, then α?2/ = ap~kakx = ap~kajy =
ap~krjy. lί q > p — k + j , say q = m -\- p — k + j , then am(ap~k+jy) =
ap~k'rjy whence αm = 1, a contradiction. We obtain a similar con-
tradiction if q < p — k + j . Thus p — q — k — j . Let n0 = k — j .
Then if αr# — α8 /̂, r — s = wo Now for any £ 6 , # , <α*>̂  D (a^yφ 0
and so for some r, s e .y "̂, αrίx = asty whence (r — s)ί = n0. Thus
each έ 6 %Ar divides n0 and so n0 — 0. We then have αfe# = α&?/ for
some ke,yK and we may assume that k is the least such natural
number. Thus ak~xx Φ ak~γy and so Xa is not injective.
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COROLLARY 4.2. Let S be right subdirectly irreducible. If
aeS is aperiodic then \ap(x)\ = 1 for all xeS.

Proof. By Lemma 2.1, if \ap(x)\ > 1 then λα is injective, whence
a is periodic.

COROLLARY 4.2. Let S be right subdirectly irreducible. Then
Xa is injective iff S has an identity and aeG.

Proof. If S has an identity then λα is injective for all aeG.
On the other hand, if λα is injective then a is periodic, say an = am

for some n, me^, n Φ m. But then an~ι — am~x. By induction we
obtain a — ak for some k > 1 and so ak"xa = a. Since a Φ 0, this
implies that αfe~x = 1 whence S has an identity and aeG.

LEMMA 4.3. Let M be a right subdirectly irreducible monoid.
If K2 = K, then aK — K for all nonzero a el.

Proof. If M has no zero the result is obvious. Suppose then
that 0 6 M. If aKφ K for some a e I, then aK = 0. Thus the
right ideal {x e S \ xK = 0} is nontrivial and so contains K, whence
K2 = 0.

COROLLARY 4.4. Let Mbe a right subdirectly irreducible monoid.
If K2 — K then I\0 has no periodic elements.

Proof. If a e I is periodic then 0 e <α> and so aK = 0.

COROLLARY 4.5. Let M be a commutative right subdirectly ir-
reducible monoid with K2 = K. Then M is a subgroup of the
p00-group.

Proof. Since K2 = K we have aK=K for all aeK. Thus Ka = K
for all aeK and so K is a group. Thus M — K or K — {0}. Since
I K\ > 1, we have M = K and so M is an abelian subdirectly ir-
reducible group. The result follows from Theorem 5.1 of [5].

The case of a right subdirectly irreducible semigroup S for
which K2 = K, K not a group, is very interesting. Since K2 — K
we know that aK — K for all aeK. However, by Corollary 4.5 and
Theorem 4.1, λα is not injective and so by Lemma 2.1, \ap(x)\ == 1 for
all xeS. Thus each nontrivial p-class is collapsed by λβ. If S is a
monoid with \G\ > 1, then K\0 is the union of nontrivial ^-classes,
each of size p. Thus there is a great deal of collapsing by λα, yet
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aK= K.

LEMMA 4.6. Let M be a periodic right subdirectly irreducible
monoid which is not a group. Then K is the annihilator of I and
K= aG\JO for any a e K\0.

Proof. For each a e I\0, {x\ax = 0} is a nontrivial right ideal
and so contains K. Thus aK = 0 for all a el, i.e., IK = 0. Now
let a 6 K\Q whence alczK. If al φ 0 then al = K whence at = a for
some t e I. But then atn = a for all n e ̂ K and so a = 0, a con-
tradiction. Thus al — 0 for all aeK, whence KI = 0.

By Lemma 3.10, K = aG U 0 for each aGif\0. Let A = {x 6
Λf I xl= Ix = 0}. Then Z c i c J . If 6 e A\0 then bG U 0 is a non-
trivial right ideal. But then αG U 0 c 6G U 0 and so a — bg for some
0 e G, whence 6 = ag-1 e K. Thus A = K.

If M is a right subdirectly irreducible monoid for which G is
finite and \G\ > 1, then G is a cyclic group of prime power, or G
is a generalized quaternion group. Moreover, if M is periodic then
since G acts semiregularly on K\0, (ifMφ G), we have |JBΓ| = 1 + |G|.

THEOREM 4.7. If M is a finite right subdirectly irreducible
monoid which is not a group, then \M\ = 1 mod(|G|).

Proof. G acts semiregularly on ikf\O by Lemma 3.2.

LEMMA 4.8. If M is a finite right subdirectly irreducible
monoid which is not a group, then In = K for some n e ,yV. For
all x e In-\Kf xl = K.

Proof. Let n be such that In Φ 0 but Γ+1 = 0. Then Kdln.
For x e In we have xl = Ix = 0 and so xeK. Thus K = In. If
x G In-\Ky then cc/ ̂  0 by Lemma 3.11 and so Kaxla In = K. Thus
xl= K.

Thus if M is a finite right subdirectly irreducible monoid which
is not a group, then there exists n e ̂ ^ and that

I^P^ •-. 5 J - ^ / = K .

LEMMA 4.9. If M is a finite right subdirectly irreducible
monoid which is not a group, then 11*1 = l(mod|G|) for all i

Proof G acts semiregularly on 7^0.
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COROLLARY 4.10. For each i, | Γ \ Γ 4 Ί Ξ 0(mod|G|).

Given any m, ne ,Λ~, n > 1 there exists a right subdirectly ir-
reducible monoid M which is not a group, and for which \M\ =
1 + npm.

EXAMPLE 4.11. Let me^V and let G be a group of order pm

with minimum subgroup Hφl. Let n e Λ" and define GQ = G1— =
Gn - G. Define M to be the disjoint union S = Go U G1U U Gn U 0.
Multiplication in M is defined as follows:

if {g\ e G<, (Λ)y e Gy then (^(Λ), = {<«*><+> i ί J > J .
Then M i s a right subdirectly irreducible monoid with G = Go,

j = GαUGaU UG.UO, if = GwU0,/% = JBΓ, and \M\ = 1 + (n + ΐ)pn.
Note that |Γ\Γ+Ί = \G\ for 1 ^ i ^ n. It is clear that the example
can be modified in such a manner that \F\Ii+1\ = nt\G\ for
1 ^ i ^ n — 19 n{ arbitrary.
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