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INJECTIVE HULLS OF GROUP RINGS

KENNETH A. BROWN AND JOHN LAWRENCE

We are concerned in this paper with the following
question: When is the maximal right quotient ring of the
group algebra kG a right self-injective ring? In general,
the maximal right quotient ring Q(R) of a ring R is a right
iέ-submodule of the right injective hull E{R) of R, and we
may rephrase our question as: When does Q(kG) =E{kG)1
Of course, a sufficient condition for this to occur is that kG
be right nonsingular, so that, for example, E(kG) — Q(kG)
when k is a field of characteristic zero. However, Q(kG) is
often injective even when kG is a singular ring; for example,
when G is finite, it is well-known that kG is itself an in-
jective ring.

Many of our results are concerned with the case of commuta-
tive group algebras. If G is an abelian group and k is a field of
positive characteristic p, then Z(kG), the singular ideal of kG, is
the ideal generated by the augmentation ideal of the Sylow ^-sub-
group H of G, [2], Corollary 3.5 and [11], Lemmas 3.1.6 and 8.1.8.
We shall prove (Theorem 4.1), that if H contains only finitely many
elements of infinite height, then Q(kG) is injective. Not all com-
mutative group algebras have injective quotient rings, however;
under the above hypothesis on k, we prove (Corollary 3.2) that if a
group T contains a subnormal Priifer p-group, Q(kT) is not self-
injective. Some commutative group algebras are not, of course,
included among those covered by Theorem 4.1 and Corollary 3.2, so
that even in the commutative case we are unable to offer a complete
answer to our question.

Sections 3 and 4 are devoted, respectively, to the proofs of
Corollary 3.2, which is in fact a slightly more general result than
that quoted above, and Theorem 4.1. The rest of the paper is
organized as follows. In §2 we obtain some technical results relating
the injective hull of a group algebra to the injective hulls of certain
subalgebras and quotient algebras; these results are used frequently
in subsequent sections. In §5 we show that, although they fail in
general to be injective, maximal quotient rings of commutative group
algebras possess many of the well-known properties of injective
rings. For example, if Q is such a ring, Z(Q) = J(Q), the Jacobson
radical of Q, (Theorem 5.3), Q/J(Q) is a regular self-injective ring,
(Theorems 5.3 and 5.5), and idempotents may be lifted over J(Q),
(Proposition 5.4). In §6 we drop the assumption, common to §§4
and 5, that the group algebras under consideration are commutative,
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and prove a generalization of the fact that group algebras of finite
groups are self-injective: If the right singular ideal of the group
algebra kG is nilpotent, then Q(kG) is right self-injective. Finally,
§7 contains a discussion of some open problems.

We would like to thank D. S. Passman for several suggestions
and comments which have proved extremely helpful in the prepara-
tion of this paper.

2* Subgroups, quotient groups and subalgebras* In this sec-
tion we assemble some preliminary results. We begin by listing
some notation which will remain fixed through out the paper. If
R is a ring, J{R) will denote the Jacobson radical of R, (Z(R) will
denote Jacobson radical of R), Z(R) the right singular ideal of R,
and Q(R) the maximal right quotient ring of R. If it exists, we
shall denote the classical right quotient ring of R by Qcι(R). If X
is a subset of R, then r-Ann^ (X) and Z-Ann̂  (X) will denote
repectively the right and left annihilators of X in R, and we write
AnnΛ (X) (or simply Ann (X)) for r-Ann^ (X) Π l-ArmR (X). For an
ideal I of R, we write

CR(I) = {aeR aβel, βeR ==> β e 1} .

We shall use the appropriate small German letter to denote the argu-
mentation ideal of a group algebra; thus the augmentation ideal of
kG will be denoted by Q. Finally, we shall sometimes denote the
p-primary subgroup G by 0p(G).

We say that a subgroup H of a group G locally subnormal in
G if, for every finite subset {xlf - -, xn} of G, H is a subnormal
subgroup of (H, xlf ••-,&»>• Note that if H is an ascendent sub-
group G, H is locally subnormal in G.

PROPOSITION 2.1. Let k be a field and G a group.
( i ) If H is a locally subnormal subgroup of G, and Q{kG) is

right self-injective, then Q(kH) is right self-injective.
(ii) If F is v sub field of k and Q(kG) is right self-injective,

then Q(FG) is right self-injective.

Proof, (i) Suppose the result is false, and let E{kH) denote
the injective hull of kHϊkH, By [7], §4.3, Propositions 1 and 3, since
QikH) is not self-injective there exists

0 Φ 7] 6 L = HomfcH (E(kH), E(kH))

such that Ύ](kH) = 0.
Let {g^. i 61} be a right transversal to H in G, so that
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kGlkH = Σ QcHg()ikB S Σ (E(kH) ®kH gt) .
iel iel

Now T = Σfei (E(kH) (x) gt) is a right &G-module, and in fact contains
the submodule kGlkG. Moreover TlkG is an essential extension of
kGlkG. This is easy to see if H <\G, since then (E(kH) (x) gt) is a
kH-module which is an essential extension of the ΛiZ-module kH^g^
for each iel. It follows by a simple inductive argument on the
index of subnormality of H in G, when H is subnormal, and the
proof may be completed in the present case by noting that if TlkG

is not an essential extension of kGlkGt there exists OΦaekG such
that T Π akG — 0, so by puting N — (H, supp α> and noting that
H is subnormal in N we may obtain a contradiction by considering
the Λ iϊ-submodule (EQcH) (x) kN) of T.

Since Q(kG)[kG is, by hypothesis, the injective hull of kGlkGy there
is an embedding of T in Q(kG). The άiJ-homomorphism η can be
extended by linearity to a &G-homomorphism fj from T into itself,
and so, since Q(kG)lkG is injective rj extends to a &(?-homomorphism

ψ: QikG) > Q(kG) .

Now since η Φ 0, ^' Φ 0, but since ^ Ί ^ = η, we have "̂'(ftG) = 0.
By [7], §4.3, Propositions 1 and 3, it follows that Q(kG) is not self-
injective, a contradiction. Hence Q(kH) is right self-injective.

(ii) This is proved by the obvious adaptation of the proof of (i).

It is not true that if H Q G and Q(kG) is rightself-injective,
then so is Q(kH); see the example given after Corollary 3.2. There
is however one case where the assumption that H is locally sub-
normal may be removed:

LEMMA 2.2. Let H be a subgroup of finite index in the group
G and let k be a field. Then Q(kH) is right self-injective if and
only if Q(kG) is right self-injective.

Proof. Suppose first that H is normal in G, and that Q(kH) is
right self-injective. Now Q(kG) = kG ®kH Q(kH), [9], Corollary 13,
so we can adapt the proof of [12], Lemma 4 to show that Q{kG) is
right self-injective. In general, if we put H° = Γ\geG H9, so that
H° <] G, H° S H, and G/H° is finite, then Q{kH) right self-injective
implies Q(kH°) right self-injective, by Proposition 2.1 (i), and the
above observation applied to Q(kG) = kG ®fcHo Q(kH°) shows that
Q(kG) is right self-injective.

Conversely, if Q(kG) is right self-injective then so is Q(kH°), by
Proposition 2.1 (i), and the above argument shows that Q(kH) is
right self-injective.
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It would be unreasonable to expect that one could obtain results
relating the injectivity of a quotient ring of a group algebra involv-
ing a group G to the injectivity of quotient rings of group algebras
of images of G, and indeed, armed with the results of §3, the
reader may very easily construct examples to show that there are
no general results relating the structures of such quotient rings.
There is however one case where such a result is available.

THEOREM 2.3. Let k be a field of characteristic p > 0, and let
H be a finite normal p-subgroup of the group G. If Q(k(G/H)) is
right self-injective, then so is Q(kG).

Proof. Put C = CG(H), so G/C is finite and C Π H is a finite
central p-subgroup of C. Since C/CnH=CH/H, Q(k(C/C n H)) is
right self-injective by Lemma 2.2, while another application of the
same lemma shows that Q(kG) is right self-injective provided Q(kC)
is. Thus we may assume that H is central in G, and moreover we
may then assume that H is cyclic, say H = (x). Assume that
o{x) = p.

Since k has characteristic p, Jj is nilpotent, by [11], Lemma
3.1.6; (If H — 1, there is of course nothing to prove.) Let E denote
the right λ G-injective hull of kG, and for 0 <; i <; p, put

Et = {ee E: e(x - 1)* - 0} ,

so that

0 = Eo Q E, £ C Ep = E

is a chain of ftG-submodules of E, since x is central in G.
We claim that Ex is the right &G/ί)G-injective hull of JcG/t G.

First note that if we write H^Σ/ie//^, then HkG £ Elf and, as
&G/l)G-modules,

HkG = kG/cG ,

since r-AτmkG (H) = ί?G, by [11], Lemma 3.1.2. Moreover HkH is an
eesential ideal of kH, being its unique minimal ideal, so that HkG
is an essential right ideal of kG, by [2], Lemma 2.5, and it follows
that EίΠkG ~ ίϊkG is an essential /bG-submodule of Elf since E is
an essential extension of kG[kG. Since HkG is essential in kG, E is
the fcG-injective hull of HkG, so that Eι contains a copy of the
A G/IjG-injective hull of HkG. Thus since Eλ is an essential extension
of HkG, (as &G/§G-modules), our claim is proved.

By [?L §4.3, Propositions 1 and 3, the result will follow if we
can show that if fe 6 HomfcG (JS, E) and h(kG) = 0, Then h = 0. Let
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h 6 HomfeG (E, E), then h(kG) = 0. Clearly h(Eλ) Q E19 and h(HkG) = 0.
Since k(G/H) is isomorphic to kG/$G, we deduce from [7], §4.3
Propositions 1 and 3, the right self-injectivity of Q(k(G/H)), and the
observations of the previous paragraph, that h(Eλ) = 0. Now for
1 ^ i < P there is a fcG-monomorphism from Ei+JEi into Elf given
by multiplication by (x — l) ί Suppose that we have shown for some
1 ^ i < P, that h(Et) = 0. We claim that this implies that h(Ei+1) = 0.
The map h: Έ—> E, annihilates Ei9 so we have h: Et+JEt —> Ex. Since
E± is k(G/H) injective, h extends to a map hr: E1 —> E1 (since Ei+JEt £
E1 by the above embedding). Let β = (x - ΐ)p'{i+1) eEi+JEi9 then
h(β) - 0, hence 1ϊ(Hk(G/H)) = 0, and so (by Lambek [7], §4.3, Prop.
1.3), h\Eύ = 0. It follows that h(Et) = 0, as claimed.

Since h(E^) = 0, we deduce that h = 0 and result is proved.

REMARK. It is clear that the argument used in the first para-
graph of the above proof enables one to relax the hypothesis on H
to the extent that it need only be assumed that H is a finite normal
subgroup whose centre is a p-group. We do not know if Theorem
2.3 is true for an arbitrary finite normal subgroup H of G, although
it seems likely that this is the case.

For the reader's convenience, we end this section with a state-
ment of the principal test for self-injectivity that we shall use in
the succeeding two sections.

PROPOSITION 2.4. A ring R has a right self-injective maximal
right quotient ring if and only if every R-homomorphism f: I —> R,
where I is a right ideal of R, can be extended to a homomorphism
f':J-^>R where J is an essential right ideal of R with zero left
annihilator.

For a proof of Proposition 2.4, see [14], Proposition XIV. 4.2.

3. Noninjective quotient rings* In this section we describe
all those group algebras known to us whose maximal quotient ring
fails to be self-injective.

THEOREM 3.1. Let k be a field of characteristic p > 0, and let
G - Cp~9 the Priifer p-group. Then Q(kG) is not self-injective.

Proof. By Proposition 2.4, the result will follow if we can find
an ideal I of kG with nonzero annihilator, and a homomorphism
/: I->kG which has no extension to an ideal with zero annihilator. Let
C = <c> be the subgroup of G of order p9 and put I = eg. For each
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i ^ 1, let Hi be the subgroup of G of order p\ let Ht = Σλei^fr,
and choose at 6 &(? such that

(c - I K = #, .

Note that this can certainly be done since HikHi is the unique
minimal ideal of kHt.

Now define

/ : / >kG:β >Σ^

If β = (c — l)τ, say, where γ eg Π &iϊ%, some w ;> 1, then

(c - ΐ)atΎ = 0

for all t ^ w, so / is a well-defined ΛG-homomorphism. We claim
that / has no proper extensions.

Notice first that if eg g= J <\ kG, then cG £ J. For there exists
m ^ 1 such

ĉ  = eg

where ί) is the augmentation ideal of JcHm, and since there is a
unique chain of ideals in JcHm, we deduce that

cHmQ JΠkHm.

Now if v is any fcG-homomorphism from cG into &G, then since, by
[11], Lemma 3.1.2, cG is the annihilator in kG of C = Σareĉ > it is
clear that

K(c - 1)) = (c - l)δ ,

for some d ekG, and v is simply multiplication by δ. Thus if / has
a proper extension, there exists δekG such that f(x) = xδ for all
x 6 /. Suppose that such an element δ exists, with δ e kHs, say, and
let h be a generator of iϊ s+2. Then

1)) = £fit{h - l)

= (c -

so that

since this ideal is the annihilator in kHs+2 of (fc — 1), by [11], Lemma
3.1.2. Note that since (c - ΐ)δekHs, (c - l)δ - Σ ί ϋ -H* is a non-
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zero element of kHs+1. However, it is clear that

Hs+2kHs+2 Π kHs+i = 0 ,

so we have a contradiction.
Thus / has no proper extensions, and since C annihilates I, the

result follows.

COROLLARY 3.2. Let k be a field of characteristic p > 0, and
let G be a group containing a locally subnormal subgroup H, with
H = Gpoo. Then Q(kG) is not self-injective.

Proof. This is immediate from Theorem 3.1 and Proposition 2.1
(i).

NOTES, (a) It is possible to strengthen Proposition 2.1, and
with it Corollary 3.2, by demanding only that, in the notation of
[2], page 44, (H, G)e^. However, since we are primarily interested
in the case of group algebras of abelian groups, we shall not pursue
this further.

(b) It is now a simple matter to construct an example to show
that some hypothesis on the nature of the embedding of H in G in
Proposition 2.1 is necessary. Thus if we fix a prime p, let k be the
field of p elements and let G = C^lC^, where Cp<» denotes infinite
cyclic group, so that G contains a subgroup H with H ^ Cpoo, then
kG is nonsingular by [2], Corollary 3.11 (i), so that Q{kG) is right
self-injective by [14], Proposition XII. 2.1, but Theorem 3.1 shows
that Q(kH) is not self-injective.

4* Injectivity of commutative quotient rings* Our aim in this
section is to prove the following result.

THEOREM 4.1. Let k be a field of characteristic p > 0, and let
G be an abelian group with at most finitely many p-elements of
infinite height. Then Q{kG) is a self-injective ring.

We shall prove the above theorem by means of a sequence of
lemmas. Note first that, by Proposition 2.1 (ii), we may assume
without loss of generality that the coefficient field k is algebraically
closed. Accordingly, throughout §4, p will denote a fixed prime
and k will be algebraically closed field of characteristic p.

LEMMA 4.2. Let B be a subgroup of finite index in the abelian
group G, and suppose there exists a finite subgroup H of G such that
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G = BH. Let I <\kG, and suppose that the kG-homomorphism
f: I—> kG has no proper extensions. Then If] kB Φ 0.

Proof. Choose an ideal L of kH maximal with respect to the
property that there exists 0 Φ βekB such that Lβ £ I. Note that
since H is finite and {0} <| kH has this property, there exists such
an ideal L. If L = kH then the lemma is already proved, so we
may assume that L Φ kH. Let LβkB = ΣUi ctvkG, and put

T is a finitely generated group. Suppose T f) B = X Q) Y, where X
is finite and Y is torsion-free. Then T = <jff, X) 0 Y, where (H, X)
is finite. Now Lβ is a finite dimensional ά-algebra, and by construc-
tion, f(LβkT) £ kT. By [1], Theorem B, kT has a quasi-Frobenius
quotient ring obtained by inverting the nonzero elements of kY, so
/ is induced on LβkT by multiplication by ac~\ where aekT and
OφeekY. Let y = βc, so OφLyζZl. Since, we have assumed that
L Φ kHy we may choose an ideal M (of kH) minimal over L. Then
M/L is an irreducible kH module, hence M = L + kμ (1) and N =
ann (M/L) has codim. 1 in kH. Thus N + k = kH and MN £ L (2).

Now

( 3) kG = (kH)B = (N+ K)B - NkB + &S .

By (1),

(4 ) MjkB = LikB + μykB .

We claim that

( 5 ) μikB n / - (0) .

If not, suppose

0 Φ μyy' e μykB f] I.

Then

and 0 Φ μμ' 6 &.B, contradicting the maximality of L. Thus

MykG = My(NkB +

μrfkB)

S + ^7&5

and we deduce from (5), that
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(6 ) MykG n I = LykB .

Since the map / is induced on LykB by multiplication by ac'1, we
may extend this map to

/' : MykG > kG

by #—> xac^ekG, (by defv). Then we have a map

/" : / + MykG > kG

which extends / (by (6) this is well-defined). By choice of L, / +
MykG is strictly larger than 7, a contradiction. This L = feiϊ and
the proof is complete.

REMARK. We used the assumption that k be algebraically closed
in only one place in the above proof—namely, to ensure that a minimal
ideal of kH/L is a 1-dimensional vector space over k. Thus we can
drop this assumption if we know, for example, that G is a p-group.
We do not know whether it can be dropped in general.

LEMMA 4.3. ( i ) Let G be an abelian group whose torsion sub-
group contains no elements of infinite height. If H is a finite sub-
group of G, there exists a finite subgroup T of G, containing H,
such that T is a direct summand of G.

(ii) Let P be an abelian p-group with only finitely many ele-
ments of infinite height, and let H be the subgroup generated by
those elements. Then P/H contains no elements of infinite height.

Proof. ( i ) It is clearly sufficient to assume that H is a p-
group and to find a p-group T with the required properties. Now
if If is a p-group, we deduce, by successive applications of [11],
Lemma 14.4.1 (iv), that there exists a finite pure subgroup T of
0p(G) such that T contains H. Clearly T is pure in G, and so by [4],
Corollary 24.6, T is a direct summand of G.

(ii) This is clear.

Proof of Theorem 4.1. We are given an abelian group G, a
prime p such that G has only finitely many p-elements of infinite
height, and a field k of characteristic p, and we have to prove that
Q{kG) is injective.

As already remarked, we may assume that k is algebraically
closed. We begin by proving the result under the stronger assump-
tion that G has no p-elements of infinite height. In this case it
follows that we may assume without loss that the torsion subgroup
of G contains no elements of infinite height. By Proposition 2.4,
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the result will follow if we can show that if I is an ideal of kG
and f eϊίomkG (I, kG) has no proper extensions, then Ann(J) = 0.
Suppose that this is false, and let f: I-+kG have no proper exten-
sions, with Ann (/) Φ 0.

Let TFbe a finitely generated subgroup of G such that Ann/Π
jcW' Φ (0). Let H be the torsion subgroup of W. If i ϊ i s a p-group,
then as Ann IΠ kH Φ 0, we have HI = 0 (for kH is a local ring
with maximal ideal annihilated by H). Choose B a subgroup of
finite index in G such that ϋΓi B = <1> and HB = G. Then

]kB = (0)

which contradicts Lemma 4.2.
Now suppose i ϊ = A 0 C, where C is a p'-group and A is a

p-group.
Let 1 — ΣΓ=i βi be the decomposition of 1 in kC. Then kG =

Σ*=i 0i&G and I = Σ?=i M" Now e*fcG is some twisted group algebra
of G/C, but it is commutative and k is algebraically closed, hence
eJcG = k(G/C) [11, Lemma 1.2.9]. The map /:/->&G splits a s / =
Σ?=iΛ> where fi'.eJ-^eJcG and since / has no extension, each /<
has no extension. Furthermore, since Ann I Γ\kW Φ 0, we have
e/Ann/Π &TF) ^ 0 for some j . Thus /,-: eόl—»e5 &G does not extend
and (Ann^.fc^J) Γl eάkW Φ 0. But this is all happening in a ring
isomorphic to k(G/C) and under the isomorphism eάkW corresponds
to k(W/C) with H/C a finite p-group. Our previous argument shows
that this cannot occur.

Now allow G to contain finitely many ^-elements of infinite
height, and let N be the finite subgroup they generate. By Lemma
4.3 (ii), G/N has no p-elements of infinite height, and so Q(k(G/N))
is self-injective by the first part of the proof. Hence, by Theorem
2.3, Q(kG) is self-injective, and the proof of Theorem 4.1 is complete.

5* The structure of commutative quotient rings* Throughout
this section G will denote an abelian group, k a field of characteristic
p > 0, and Q the maximal quotient ring of kG. Our main result is
to demonstrate that Q possesses many of the well-known properties
of self-injective rings, as described in [5], pages 48-52, for example.
In particular, we prove that Q is continuous [15].

We begin by recalling that Q is a commutative ring; in fact if
we let 3ίf denote the ring of &G-homomorphism of the injective
hull of kG then Q is isomorphic to the centre of <%% [7], §4.3,
Exercise 3. Our first objective is to prove Proposition 5.2, a result
which is crucial to the proofs of the results which follow it. For
its proof, we need the following technical lemma.

LEMMA 5.1. Let R be the classical quotient ring of kG, and let
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S = {/f: i e 1} be a set of idempotents in R. Then AnnΛ (S) is
generated by the idempotents it contains.

Proof. Put X = Ann^ (S) = /3(1 - ft)R, and choose xeX. There
exists a finitely generated subgroup T of G such that x e R'f the
classical quotient ring of kT. Note that Rr £ R, by [11], Lemma
1.1.4. Let P be the Sylow ^-subgroup of T, so T = A ® P, say, P
is finite, and

Λ' - Qcl{kA) ®kkP ,

since the right-hand side is an Artinian partial classical quotient
ring of kT, and so is the whole quotient ring. Choose e = e2eR'
such that ex — x, and the Goldie dimension of eRf is minimal for
eeRf with this property. Now eeQct(kA); let e = e1 + + et be
the decomposition of e as a sum of primitive idempotents of Qcl(kA),
so that 0 Φ βjX 6 X, for 1 <: i ^ ί. The proof will be complete if
we can show that eό 6 X for 1 <^ j ^ t. Let ejQet(kA) = i^ , an
extension field of fc, so that ê sc 6 e^K^P, say βyx = β̂  ̂ y for some
0 Φ wde KάP, for l^j^t. Fix i e {1, , t}, and let / e S . There
exists a finitely generated subgroup B of G such that A £ JS,
0p(B) - 1, and / e Qcl(kB). Now ΰ φ P ς G , and

Λ" - Qc*(A;(£ 0 P)) = Qc,(fc£) ®fc &P ,

so β̂  /2" = Qcl(kB)ejKjP. Since βya? ̂  0, this implies that if eά =
τx + + τm is the decomposition of e5 as a sum of primitive
idempotents in Qcl{kB), then ZiWs Φ 0 for 1 = 1, , m. Since

0 ^ τ ^ 6 Π (1 - /*
(6)

il - f) =

for 1 ̂  ί S m.
Since Γi is primitive in Qel(IcB), either τt(l — /) = 0 or

rz(l — /) — Γj, and (6) excludes the former possibility. Thus βy =
β/1 — /) e ( l — f)R, for i = 1, •••,£, and since / was an arbitrary
element of S, the result is proved.

PROPOSITION 5.2. A% essential closure in Q of an ideal I of Q
is a direct summand of Q, and so is unique.

Proof. The ideal (IΠ kG)Q is essential in /, so it is clearly
sufficient to prove the result under the additional assumption that
I=(I(McG)Q. Given any finite set Tλ = {xlf •••, xMi)} in G, form the
classical quotient ring Rλ of k(Tλ), so Rλ is a quasi-Frobenius ring,
by [1], Theorem B. Note that Rλ is a subring of Q, by Corollary
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13 of [9]. Choose an idempotent fλeRx such that If]fλQ = 0, and
the Goldie dimension of fλR is maximal among idempotents of Rλ

with this property. Note that fλ is uniquely determined by these
specifications. Index the set of all finite subsets of G by Λ, and
put J = Σ*X*Λ/XQ.

Now put X = ann (J) = fh (1 - f)Q; we claim that W = X® J
is a dense ideal of Q. Put R = < ^ : λ 6 Λ ) , a subring of Q con-
taining kG. Our claim will follow if we show that W = (X Π R) Θ
(J n i2) is a dense ideal of R, since Q is an essential extension of R
as jβ-modules. Since fxeR for all λ e Λ , it is clear that
Ann* (WJ = 0. However, by Lemma 5.1, XnR = Ann* (ΣxfxR) is
generated by the idempotents it contains, so by a second application
of Lemma 5.1, ArmR(W') — 0, thus proving our claim.

It follows from [7], page 98, that the projection map X ©
J'—> J is afforded by multiplication by an element eeQ. Since
(e — e 2 ) ( I φ J ) = 0, and 1 0 J is dense, e is an idempotent of Q.
Note that J Q eQ, while X Π eQ = 0. Since / Q X, I f] eQ = 0, we
claim that I is essential in (1 — e)Q. Suppose that this is false, and
choose 0ΦaekGn(l — e)Q such that aQΠJ = 0. Put A = <suppα>,
and let U = Qβί(ftA), so that, since U is a quasi-Frobenius ring, [1].
Theorem B, there exists a nonzero idempotent feU such that all
is an essential [7-submodule of fU. Since UςzQ, [9], / e Q . We
prove that aQ is essential in /Q. Note first that fU = (/C/|Ί &A)C7,
and α&A must necessarily be essential in fU Π kA. It follows as in
the proof of [2], Lemmas 2.2 and 2.5, that akG is essential in
(/£/ Π kA)kG9 and so, since QlkG is an essential extension of kG\kG, it
is easy to check that aQ is essential in (fU f] kA)Q = /ζ>. Since
J n aQ = 0, we must have IΠ /Q = 0. It follows that, if A = T,,,
(j«eΛ), then / = fμf; that is, / e J , and so feeQ. However, since
α 6 (1 — e)Q and αQ is essential in fQ, f e (1 — e)Q. Hence / 6
(1 — e)Q Π eQ, so / = 0, a contradiction. Therefore / is essential in
(1 — e)Q, as climed, and the proof is complete.

Recall that a ring R is left continuous if it satisfies the two
conditions:

1. For any left ideal / there is an idempotent e such that Re
is an essential extension of I.

2. If Re, e — e2, is isomorphic to a left ideal /, then / is
generated by an idempotent.

THEOREM 5.3. Q is continuous.

Proof. We have proved in Proposition 5.2, that Q satisfies
condition 1 (above). Since Q is commutative and rationally complete,
condition 2 is automatic, indeed, under the hypothesis of condition
2, / - eR.
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PROPOSITION 5.4. Z{Q) = J(Q), Q/Z(Q) is a regular ring and
idempotents may be lifted over Z(Q).

Proof This follows from the fact that Q is continuous [15].

REMARK. The proof of the main result of [3], which related
the singular ideals of certain group algebras to the singular ideals
of the group algebras of subgroups of finite index, is heavily-
dependent on the fact that, in the maximal right quotient rings of
the group algebras under consideration, the right singular ideal
conincides with the Jacobson radical. It was this proof which
provided the initial motivation to study the injective hulls of group
algebras, as we wished to examine the possibility of extending the
results of [3]. Since we now know that not all quotient rings of
group algebras are self-injective, it might seem at first sight that
there is no possibility of using the methods of [3] in a more general
setting; however Theorem 5.3 shows that such an extension has not
yet been completely ruled out.

THEOREM 5.5. Let H be the Sylow p-sub group of G. Then
Q/Z(Q) is isomorphic to the maximal quotient ring of k(G/H). In
particular, Q/Z(Q) is a self-injective ring.

Proof. We split the argument into two steps.
( i ) QJZ(Q) is self-injective.
The proof of (i) closely follows the proof of the corresponding

result for selt-injective rings; see for example [5], Theorem 2.21.
We first show that if e and / are idempotents in Q such that T —
eQΠfQφ 0, then eQ n fQ Φ 0, where Q = Q/Z(Q). Choose an ideal
K of Q such that T Π K = 0, T + if is essential in Q, and K is
maximal among ideals with these properties. Clearly K is essentially
closed in Q, so that K is direct summand of Q by Proposition 5.2.
Let N be a maximal essential extension of T in eQ; then N is
essentially closed in Q, so, again using Proposition 5.2, N is a direct
summand of Q, and so of eQ. Thus N = τQ, say, with τ = r2,
τe = τ, and Nf]K=0. Repeating this argument, we also obtain
an element h = h2eQ such that hQ is a maximal essential extension
of T in fQ, and hK = 0. Then (τ - h) is annihilated by T + K, an
essential ideal of Q, and so (r — h)eZ(Q). However, τΦΰ, and
τ e ί Q n f Q , since τ = h.

Now let / be an ideal of Q, and choose a set {βj of orthogonal
idempotents in Q, maximal with respect to containment in /. By
Theorem 5.3, X = Σ* &iQ is essential in J, and it follows from the
fact that Q is nonsingular, (Theorem 5.3), that Q-homomorphisms
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from I to Q are determined by their action on X. By Proposition
5.4 we can lift {ej to a set {βj of idempotents of Q. Let / be a
Q-homomorphism from / to Q, and put f(et) = xteQ. By the argu-
ments of the first paragraph, W = Σ< ̂ Q is the direct sum of the
ideals etQ. There exists an idempotent e of Q such that W is
essential in eQ, by Proposition 5.2. We claim that U — (1 — e)Q + W
is a dense ideal of Q. For Z = Annρ(£7) c eQ, so it Z ^ 0, Z Π
17 ^ 0, since TF is essential in eQ. Since W is generated by the
idempotents it contains, this is clearly impossible. It follows that
the map

v >Q ί(l-e)7 >0 vγeQ

( βi > βiXi Vΐ

is afforded by multiplication by an element q of Q. Thus gê  = ^ ,
for all i, and so /:/—>Q extends to a Q-endomorphism of Q. By
Baer's criterion, [7], page 88, (i) follows.

(ii) Let R = kG + Z(Q)jZ(Q). We shall show that (Q/Z(Q)){R

is an essential extension of RlB.
Note that

Z(Q)/Z(Q) ^ r i n g fcG/fcG Π

- JcG/ZψG) =

by [2], Corollary 3.5, so that (i) and (ii) together imply Theorem
5.5. This is because R is nonsingular, [2], Corollary 3.5, so essential
ideals of R are dense, and therefore (ii) implies that Q/Z(Q) is
certainly a partial quotient ring of R, by [5], Chapter 2C, so that

QCR) = Q(Q/Z(Q)) - Q/Z(Q) ,

by (i) and [7], §4.3, Propositions 2 and 3.
We proceed to prove (ii). Let aeQ\Z(Q), let D = {dekG:

adekG}, a dense ideal of kG, [14], Lemma IX. 1.5, and define

L = {β e kG: lAQ H, A finite, such that aβλ e kG} ,

where A = Σαe^α. Note that if A1 and A2 are finite ^-subgroups
of G, then, putting B — (Au A2>, B is a &G-multiple of both Ax and
Jί2, since BkB is the unique minimal ideal of kB. It is thus easy
to see that L is an ideal of kG. Now L 2 IjG; we claim that L/ίjG
is an essential ideal of kGfyG.

Let 7 6fcG\£)G. Since 0 ί )«suppτ» is a summand of <suppτ>, it
is clear that there exists φ e &<supp 7> such that 0p«supp φ)) = 1 and
Ύ — φei G. Moreover there exists ??e&<supp^> such that φη = eξ,
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where e is a primitive idempotent of &<supp0> and ξeCkGe(0). Since
our aim is to prove that ykG Π L i §(?, we can assume that 7 = eξ.
Since D is dense, there exists d e D such that dy Φ 0; we choose d
so that d = de. Let d = Σ?=i d ^ , where d< € fcff and {&} forms part
of a transversal to H in G. Note that if we put F = <supp d,
suppτ>, then we can choose the elements gteF so that JBΓΠ <&:
1 <: ί <; w> = 1 and supp 7 £ {&: 1 <£ i ^ w}. We assume that the
set {gt} has been chosen in this way. There exists a finite subgroup
A of H such that d, 6 kA f or all i = 1, , n. Since AkA is essential
in JcA, there exists μekA such that

0 ^ μd = Σ Aλ,^ ,
i = l

where 0 =£ λ< e fc, 1 ^ i ^ m, and 1 ^ m ^ ^. Put ω = Σί=i <̂Λ
Now

= ξμd Φ 0 ,

since 0 Φ μdekGe and f 6 CkGβ(ϋ). It follows that Ίω Φ 0. However
6 D, so that

6 kG ,

and so jωeL by definition of L. Let F = O^Cί7) © ί7', choosing ί7'
so that 7 e &<supp 7> S kF', and α ) e % : l ^ i ^ w ) , a subalgebra
of kF\ so that jωg^G since M1 ' Π ΐ)G = 0. Therefore L/ί)G is an
essential ideal of kGfaG.

If xeL, there exists a finite p-subgroup Y of G such that
axΫe(kGΠ ΫQ). Since &G Π ΫQ is the annihilator in kG of ϊ>, it
follows from [11], Lemma 3.1.2 that kGf] ΫQ = ΓA G. Thus α # Γ ^ Γδ,
say, where δekG, and so (αα? — δ) 6 Annρ(Y"). Now ΫkY is an
essential ideal of kY, being its unique minimal ideal, so ΫkG is an
essential ideal of kG, as in [2], Lemmas 2.2 or 2.5. Thus ΫQ is
essential in Q, and so α# — 3 e Z(Q). Hence ax e kG + ^(Q); so aLQ
kG + ^(Q), and the proof of (ii) will be completed by showing that
aL g Z(Q).

To prove that aL ς£ Z(Q), we first show that we may assume
that a is an idempotent. For if we put V = {aeQ:3L <\kG, L/ί)G
essential in kG/$G, such that aL £ Z(Q)}9 then clearly V <\Q, and
if V S ^(Q) t ^ e n by Theorem 5.3 and Proposition 5.4, V contains a
nonzero idempotent of Q. Thus we assume henceforth that a is a
nonzero idempotent in V, and aim for a contradiction.

Let S = Qd(kG); by [1], Theorem B, every finite set of elements
of S is contained in a quasi-Frobenius subring, and straightforward
local arguments show that Z(S) = §S and that

(7) S/Z(S) = Qcl(kGftG) = Qd(KG/H)) .
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By [2], k{GjH) is nonsingular, so another elementary local argument
shows that S/Z(S) is a regular ring. Now since S is a subring of
Q, Z(S) £ S n Z(Q), and in fact we have equality here, since if
S Π Z(Q) 3 Z(S), S Π Z(Q)/Z(S) would contain a nonzero idempotent
of S/Z(S), and since Z(S) = fyS is nil, this would imply that S Π Z(Q)
contained a nonzero idempotent, a contradiction. Hence

( 8) S/Z(S) = SftS = S/S n £(Q) = S + Z(Q)/Z(Q) ,

and

( 9 ) fcG/$G = fcG/^S n fcG ~ kG

Thus since L = {£ 6 kG: at e Z(Q)} has the property that L/ίjG is
essential in kG/fyG, (9) implies that LS/fyS is an essential ideal of
SβS, so that, by (8), LS + Z(Q)/Z(Q) is an essential of S + Z(Q)/Z(Q).
As we have already observed, S/Z(S) is regular and idempotents may
be lifted over Z(S), so LS/Z(S) contains an ideal J/Z(S) which is
essential in LS/Z(S), and so in S/Z(S), and such that J = §S + J7,
where J ' is generated by idempotents of S.

We claim that J ' is an essential ideal of S. Let QΦβekG.
We split the proof that βS Π J ' =£ 0 into two cases. First, suppose
that β£^G; then there exist elements ψe$S and μ 6 S\S)S such that
/3μ $ §S but βμ + ψe J\ since J/ϊjS is essential in SffjS. Let α/r = αc"1,
where a, cekG and ae$G. It follows that there exists a finite p-
subgroup M of G such that Mα = 0, and so

M(βμ + ψ) = MβμeJ' Π ŷ S .

But M/3^ ̂  0 since 0 =£ βμφmS = Ann^(M), by [11], Lemma 3.1.2.
Suppose on the other hand that βefyG. Let Γo = <supp /3>, put
Σ7=0P(T0), so there exists TF£ Γo such that Γo = Z7φ TF, and
write /3 = Σ?=i/5^^ where /3^en, 1 ^ j ^ w, and {sr̂  1 ^ j ^ w} are
distinct elements of W. There exists an element xekU such that
0 Φ xβ — ?7(Σi t*iQi)> where μό 6 k and at least one μs Φ 0, 1 <ί j ^ w.
Put Oφv = ^μjQjekW. Since Qcl(kW) is a regular subring of S,
there exists ^ 6 S such that 0 Φ \>δ = e' is an idempotent in S, and
0 Φ Ue'6/3S. Now there exists peS and α> efyS such that e'|0g §S
and ep + ώeJ'. Since Ann5 ([/") £ ^S, as in the previous case,
Ue'p Φ 0, so that

0 Φ UeXe'p + ώ) = C/e'|θ + ZΪe'ώeJ' n /3S ,

as required. Since S = Qcι(kG), Jf is an essential ideal of S, as
claimed.

Since Q is the maximal quotient ring of S it follows that J'Q
is an essential ideal of Q. Now Q is commutative, so the product
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of two idempotents of Q is an idempotent, and so, recalling that a
is an idempotent and that Jf is generated by idempotents, aJ' e Z(Q)
if and only if aJ' = 0. However if aJr = 0, then since J'Q is
essential we deduce that a e Z(Q), a contradiction. Hence aJr ξ£ Z(Q),
so ah §£ Z(Q), and the proof of (ii) is complete.

For the last result of § 5 we impose a restriction on the abelian
groups under consideration.

PROPOSITION 5.6. The Goldie dimension of Q is finite if and
only if A, the direct sum of the Sylow q-subgroups of G for q Φ p,
is finite. If A is finite, then

where n is the number of distinct irreducible kA-modules, Qi is a
uniform local ring, and J(Qt) = Z(Qt) is nil, for 1 :g i <L n. If we
write Qi/J(Qi) — Ki9 then

Kt = K®kkt ,

where, if H is the Sylow p-subgroup of G, K is the quotient field
of k(G/HφA), and

is the decomposition of kA as a direct sum of fields.

Proof. If A is infinite, then kA is regular, since every finite
set of elements of kA is contained in a semisimple Artinian subring,
but kA is not Artinian, [11], Theorem 10.1.1, so kA has infinite
Goldie dimension. Since kG is a free &A-module, kG must then have
infinite Goldie dimension, and so therefore must Q. Suppose con-
versely that kA has Goldie dimension n < ©o, and note first that
kH is uniform, since if 0 Φ a, βe kH, then putting B = <supp a,
supp β), kB has a unique minimal ideal. Since k(H@ A) is isomorphic
as a ring to Σ?=i ®kiH, where kt is an extension field of k, it follows
that k(H(&A) has Goldie dimension n, so kG has dimension n by
[1], Lemma 2.5. Therefore Q has Goldie dimension n.

Suppose now that A is finite, so by [4], Corollary 24.6, G =
A 0 C, where the torsion subgroup of C is a p-group, and

kG = kA ®kkC = Σ m k t C ,

where

h A ~ h (X$ . . . CD h



340 KENNETH A. BROWN AND JOHN LAWRENCE

is the decomposition of kA as a direct sum of fields, so fc* is an
extension field of k. Thus

by [7], §4.3, Proposition 9, and Q% — Q(kiC) is a uniform A^C-module,
and so a priori a uniform ring. It follows from Theorem 5.3 and
Proposition 5.4 that Qt is local, and that Z(Qt) = /(Q<).

We next show that J(Qi) is nil. Let q e J(Q<), and represent q
as an element of Homfci<7 (D, ktC), where D is a dense ideal of Λ̂ C,
as in [7], §4.3. As noted in the proof of Theorem 5.3, I — keτq Π
D Φ 0, where ker q denotes the kernel of q as an element of
Honifc.tf (JS, E), where E is the injective hull of kβ. (Notice that
since kJJ is commutative, Qt is the centre of Ή.omk.c(E, E), [7], §4.3,
Exercise 3.) Since 0 Φ qQt Π ktC £ Annfcί(7 (/), the proof of Theorem
4 shows that there exists of finite subgroup T of C such that
IQ tkfi. We claim that we may assume that IQ ktT Φ 0. For as
in the proof of Theorem 4, 0 Φ Ϋy e /, for some regular element
7 of kβ and a finite p-subgroup Y of C. Since 7 is a unit of Qi9 it
follows that Ye I, so replacing T by <Γ, Γ> gives the desired
conclusion.

Let L = Amu.,. (/), and note that since IΠ kT Φ 0, Z,C tλ̂ C, by
[11], Lemma 3.1.2. We claim that for all n ^ 1 qnD Q t^C. Since
qD £ L, this is certainly true when n = 1. Suppose it is known to
be true for n = m — 1, some m > 1, and let /3 e gmί), say β = gδ,
where δ e ^ - ^ C . Let X = <supp <5, supp /S, F>, so X is a finitely
generated abelian group and by [1], Theorem B there exists an
element ac'1 of Qcϊ(kX) such that qd = dac'1 and qΫ = Fαc"1 = 0,
since Γ S I. It follows that a e Annk.c (Ϋ) = ^ C g tfc^, so that

/3 = gδ = δαc"1 S imQi Π fciC = rkfi ,

as claimed. (The last equality holds since tmktC is an annihilator
ideal of ^C.) Since T is a finite ^-subgroup of C, it follows from
Lemma 3.1.6 of [11] that tkJJ is nilpotent, say t%C = 0, so that
qrD = 0. Since D is a dense ideal of kfi and Q* is an essential
extension of kiClk.c, it follows that AnnQί (D) = 0, so that qr = 0.
Thus J(Q4) is nil. *

Finally, since Q̂  = Qikfi), the last part of the proposition
follows from Theorem 5.5 and the fact that Q(ktC) = ki®kQ(kC),
[9], Theorem 11.

REMARK. If, instead of assuming that QP>(G) is finite, we assume
that 0p(G) is finite, then it can be shown that the Jacobson radical
of Q is nilpotent. The proof is similar to that of [3], Theorem 2.2.
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We do not know if Z(Q) is nil in general. This is certainly not the
case if we drop the hypothesis that G is an abelian group, since it
is then no longer true even that Z(kG) is nil; see, for example, [2],
Example 4.4.

6* Injectivity of noncommutative quotient rings* We can
offer no conjecture as to how Theorem 4.1 might generalize to group
algebras of non-abelian groups. In this section we outline what
little is known in the non-abelian setting. We begin by recalling
that a sufficient condition for Q(kG) to be right self-injective is that
the group algebra kG be right nonsingular, and that the results of
[2], [3], and [13] provide many examples of such group algebras.
Note that by [2], Lemma 3.1, N(kG), the sum of the nilpotent ideals
of kG, is always contained in Z(kG), the sum of the nilpotent ideals
of kG, is always contained in Z(kG). The main result of this section
that if N(kG) and ZQcG) are "not too big", Q(kG) is right self-
injective.

THEOREM 6.1. If kG is a group algebra such that Z{kG) is
nilpotent, then Q(kG) is right self-injective.

Proof. Let p be the characteristic of k. By [2], Lemma 3.1,
N(kG) is nilpotent, so that in the notation of [11], Chapter 8, §1
JP(G) is finite, by [11], Theorem 8.1.12. Put C = CQ(AP(G)), so that
G<\ G and G/C is finite. . Since Z(kC) £ Z(kG), by [2], Lemma 2.5,
Z(kC) must also be nilpotent. Now T = Δ\G) £ C Π ΔP(G), and so
T is a finite normal p-subgroup of C. Thus by [11], Theorem 8.1.0
and Lemma 3.1.6,

tC = N(kC) = Z(kC) .

It follows from Theorem 3.16 of [2] that k(C/T) is right non-
singular, so that by [5], Corollary 2.31, Q(k(C/T)) is right self-
injective. We now deduce from Theorem 2.3 that Q{kC) is right
self-injective, and so by Lemma 2.2 Q(kG) is right self-injective.

NOTES. ( i ) Necessary and sufficient conditions for the hy-
pothesis of Theorem 6.1 to hold, expressed in terms of the non-
singularity of certain group algebras, are given in Theorem 3.2 of
[3]. If one restricts attention to a class of group algebras for which
Conjecture A of [2], page 48, is known to be true, that is a class
of group algebras for which Z(kG) is known to equal J(kL(G))kG,
where L(G) is the unique maximal locally finite normal subgroup of
G, then [one can obtain conditions expressed in terms of the struc-
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ture of kL(G), using [11], Corollary 8.1.14. We leave the details to
the interested reader.

(ii) An obvious question arises when one considers possible
generalizations of Theorems 4.1 and 6.1: if k is a field and G and H
are groups such that Q{kG) and Q(kH) are right self-injective, is
Q(k{G x H)) right self-injective? We have been unable to answer
this question, but it may be worth mentioning the following special
case. Let k have characteristic p > 0, and suppose G is an abelian
group with only finitely many p-elements of infinite height, and H
is such that kH has an Artinian classical right quotient ring. Then
Q(k(G x H)) is right self-injective. The proof involves a straight-
forward, though tedious, reduction to the case where Qcl(kH) is a
division ring, and then an adaptation of the arguments of §4.
Notice that the case G = 1 is covered by Theorem 6.1, by [14],
Lemma II. 2.5.

7* Open problems* The most obvious problem arising from
the foregoing results is that of removing the gap between the
results of §§3 and 4. Specifically, we have been unable to answer:

( i ) Which group algebras of abelian groups have injective
quotient rings?

Perhaps the simplest group algebra for which our methods do
not provide answer is the following:

Let A = <av- i — 1, 2, •,; x[ = 1, xf1 — xlf [xif xd] = 1>, where p
is a prime, and let k be a field of characteristic p. It is easy to
see that A has (p — 1) nonidentity elements of infinite height, so
Q(kA) is self-injective by Theorem 4.1. Now let G be the direct
product of infinitely many copies of A. We ask as a special case
of (i):

(ii) Is Q(kG) self-injective?
About the results of §§3.4, and 5, one may ask the blanket

question:
(iii) How do the results of §§3-5 generalize to noncommutative

group algebras?
By analogy with the results of [2] and [3], one might hope for

a positive answer to the following question. Let L(G) denote the
unique maximal locally finite normal subgroup of G, (see [2]).

(iv) If Q(kL(G)) is right self-injective, is Q(kG) right self-
injective?

To illustrate one difficulty associated with (iv), consider the
following special case. Let k be the field of p elements, and let
G = Cpl C^, the Wreath product of a cyclic group of order p by an
infinite cycle. Thus \fi has an elementary abelian normal subgroup
A, and G/A ~ CL. By [9], Corollary 12,
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Q(kG) 3 Q(kA) QkG^kG ,
kA

and so, by Theorem 4.1 applied to kA, Q(kG) may be viewed as the
maximal right quotient ring of a twisted polynomial rings over a
self-injective ring. However, such quotient rings are not in general
self-injective; for an example, see [8].

Finally, as explained in Section 5, we are particularly interested
in the following question arising from Theorem 5.3, in view of its
bearing on the results of [3].

(v) If Q is the maximal right quotient ring of a group
algebra, is J(Q) = Z(Q)Ί
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