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INJECTIVE HULLS OF GROUP RINGS

KENNETH A. BROWN AND JOHN LAWRENCE

We are concerned in this paper with the following
question: When is the maximal right quotient ring of the
group algebra kG a right self-injective ring? In general,
the maximal right quotient ring Q(R) of a ring F is a right
R-submodule of the right injective hull E(R) of R, and we
may rephrase our question as: When does Q(kG) =E(kG)?
Of course, a sufficient condition for this to occur is that kG
be right nonsingular, so that, for example, E(kG) = QkG)
when % is a field of characteristic zero. However, Q(kG) is
often injective even when kG is a singular ring; for example,
when G is finite, it is well-known that kG is itself an in-
jective ring.

Many of our results are concerned with the case of commuta-
tive group algebras. If G is an abelian group and k is a field of
positive characteristic p, then Z(kG), the singular ideal of kG, is
the ideal generated by the augmentation ideal of the Sylow p-sub-
group H of G, [2], Corollary 3.5 and [11], Lemmas 3.1.6 and 8.1.8.
We shall prove (Theorem 4.1), that if H contains only finitely many
elements of infinite height, then Q(kG) is injective. Not all com-
mutative group algebras have injective quotient rings, however;
under the above hypothesis on %, we prove (Corollary 3.2) that if a
group T contains a subnormal Priifer p-group, Q(kT) is not self-
injective. Some commutative group algebras are not, of course,
included among those covered by Theorem 4.1 and Corollary 3.2, so
that even in the commutative case we are unable to offer a complete
answer to our question.

Sections 3 and 4 are devoted, respectively, to the proofs of
Corollary 3.2, which is in fact a slightly more general result than
that quoted above, and Theorem 4.1. The rest of the paper is
organized as follows. In §2 we obtain some technical results relating
the injective hull of a group algebra to the injective hulls of certain
subalgebras and quotient algebras; these results are used frequently
in subsequent sections. In §5 we show that, although they fail in
general to be injective, maximal quotient rings of commutative group
algebras possess many of the well-known properties of injective
rings. For example, if @ is such a ring, Z(Q) = J(Q), the Jacobson
radical of @, (Theorem 5.3), Q/J(Q) is a regular self-injective ring,
(Theorems 5.3 and 5.5), and idempotents may be lifted over J(Q),
(Proposition 5.4). In §6 we drop the assumption, common to §§4
and 5, that the group algebras under consideration are commutative,
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and prove a generalization of the fact that group algebras of finite
groups are self-injective: If the right singular ideal of the group
algebra kG is nilpotent, then Q(kG) is right self-injective. Finally,
§7 contains a discussion of some open problems.

We would like to thank D. S. Passman for several suggestions
and comments which have proved extremely helpful in the prepara-
tion of this paper.

2. Subgroups, quotient groups and subalgebras. In this sec-
tion we assemble some preliminary results. We begin by listing
some notation which will remain fixed through out the paper. If
R is a ring, J(R) will denote the Jacobson radical of R, (Z(R) will
denote Jacobson radical of R), Z(R) the right singular ideal of R,
and Q(R) the maximal right quotient ring of R. If it exists, we
shall denote the classical right quotient ring of R by Q.(R). If X
is a subset of R, then #-Ann,(X) and I[-Ann,(X) will denote
repectively the right and left annihilators of X in R, and we write
Anng (X) (or simply Ann (X)) for »-Ann,(X) N l-Ann, (X). For an
ideal I of R, we write

Cx(I) ={eeR:apel, BeR— pBel}.

We shall use the appropriate small German letter to denote the argu-
mentation ideal of a group algebra; thus the augmentation ideal of
kG will be denoted by g. Finally, we shall sometimes denote the
p-primary subgroup G by 0,(G).

We say that a subgroup H of a group G locally subnormal in
G if, for every finite subset {x,, ---, 2,} of G, H is a subnormal
subgroup of (H, x, ---,x,>. Note that if H is an ascendent sub-
group G, H is locally subnormal in G.

PROPOSITION 2.1. Let k be a field and G a group.

(i) If H is a locally subnormal subgroup of G, and QKkG) is
right self-injective, then Q(kH) is right self-injective.

(ii) If F is » subfield of k and QKG) is right self-imjective,
then Q(FG) is right self-imjective.

Proof. (i) Suppose the result is false, and let E(kH) denote
the injective hull of kH,,, By [7], §4.3, Propositions 1 and 3, since
Q(kH) is not self-injective there exists

0 # neL = Hom,, (E(kH), E(kH))

such that n(kH) = 0.
Let {g,:1€ I} be a right transversal to H in G, so that
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® @
kGuy = WEI (kH9,)uu & 1% (E(kH) @ 9:) -

Now T = >%, (BEkH) ® g, is a right kG-module, and in fact contains
the submodule kG,;. Moreover T, is an essential extension of
kG . This is easy to see if H <] G, since then (E(H)R® g;) is a
kH-module which is an essential extension of the kH-module kHX g,,
for each i€l. It follows by a simple inductive argument on the
index of subnormality of H in G, when H is subnormal, and the
proof may be completed in the present case by noting that if T
is not an essential extension of kG, there exists 0 #+ a€kG such
that TN akG =0, so by puting N = (H, suppa) and noting that
H is subnormal in N we may obtain a contradiction by considering
the kH-submodule (E(kH) X kN) of T.

Since Q(kG),.¢ is, by hypothesis, the injective hull of kG, there
is an embedding of T in Q(kG). The kH-homomorphism 7 can be
extended by linearity to a kG-homomorphism 7 from 7T into itself,
and so, since Q(kG),s is injective 7 extends to a kG-homomorphism

7": QkG) — QkG) .

Now since 7 # 0, 7’ 0, but since 7',z =1, we have 7'(kG) = 0.
By [7], §4.8, Propositions 1 and 3, it follows that Q(kG) is not self-
injective, a contradiction. Hence Q(kH) is right self-injective.

(ii) This is proved by the obvious adaptation of the proof of (i).

It is not true that if HC G and Q(kG) is rightself-injective,
then so is Q(kH); see the example given after Corollary 3.2. There
is however one case where the assumption that H is loecally sub-
normal may be removed:

LEMMA 2.2. Let H be a subgroup of finite index in the group
G and let k be a field. Then Q(EH) is right self-injective if and
only if QkG) is right self-injective.

Proof. Suppose first that H is normal in G, and that Q(kH) is
right self-injective. Now Q@) = kG @.x Q(kH), [9], Corollary 13,
so we can adapt the proof of [12], Lemma 4 to show that QkG) is
right self-injective. In general, if we put H° = (\,.¢ H°, so that
H'<{ G, H € H, and G/H" is finite, then Q(kH) right self-injective
implies Q(kH®) right self-injective, by Proposition 2.1 (i), and the
above observation applied to QU*G) = kG @iz Q(kH®) shows that
Q@) is right self-injective.

Conversely, if Q(kG) is right self-injective then so is Q(kH"), by
Proposition 2.1 (i), and the above argument shows that Q(kH) is
right self-injective.
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It would be unreasonable to expect that one could obtain results
relating the injectivity of a quotient ring of a group algebra involv-
ing a group G to the injectivity of quotient rings of group algebras
of images of G, and indeed, armed with the results of §3, the
reader may very easily construct examples to show that there are
no general results relating the structures of such quotient rings.
There is however one case where such a result is available.

THEOREM 2.3. Let k be a field of characteristic p > 0, and let
H be a finite normal p-subgroup of the group G. If QUk(G/H)) is
right self-injective, then so 1s QkG).

Proof. Put C = Cy(H), so G/C is finite and CN H is a finite
central p-subgroup of C. Since C/CN H =CH/H, Qk(C/C N H)) is
right self-injective by Lemma 2.2, while another application of the
same lemma shows that Q(kG) is right self-injective provided Q(kC)
is. Thus we may assume that H is central in G, and moreover we
may then assume that H is cyclic, say H = {(x). Assume that
o(x) = p.

Since k has characteristic », Y) is nilpotent, by [11], Lemma
3.1.6; (If H =1, there is of course nothing to prove.) Let E denote
the right kG-injective hull of kG, and for 0 < 1 < p, put

E, ={ecE e(x— 1) =0},
so that
0O=Ec<E<---CE=FE

is a chain of kG-submodules of K, since x is central in G.

We claim that E, is the right kG/5G-injective hull of kG/tG.
First note that if we write H = S, h, then HkG < E,, and, as
kG/HG-modules,

HEG = EG/G

since 7-Anny, (H) = bG, by [11], Lemma 3.1.2. Moreover HkH is an
eesential ideal of kH, being its unique minimal ideal, so that HkG
is an essential right ideal of kG, by [2], Lemma 2.5, and it follows
that E, N kG = HkG is an essential %kG-submodule of E,, since E is
an essential extension of kG,;. Since HkG is essential in kG, E is
the kG-injective hull of HKG, so that E, contains a copy of the
kG/9G-injective hull of HkG. Thus since E, is an essential extension
of HKG, (as kG/6G-modules), our claim is proved.

By [7], §4.3, Propositions 1 and 3, the result will follow if we
can show that if heHom, (¥, E) and h(kG) = 0, Then h = 0. Let
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h € Hom,; (E, E), then h(kG) = 0. Clearly h(E,) < E,, and h(HkG) = 0.
Since k(G/H) is isomorphic to kG/0G, we deduce from [7], §4.3
Propositions 1 and 3, the right self-injectivity of Q(k(G/H)), and the
observations of the previous paragraph, that A(E) = 0. Now for
1 <17 < p there is a kG-monomorphism from E,,,/E, into E,, given
by multiplication by (x — 1)* Suppose that we have shown for some
1 <14 < p, that h(E,) = 0. We claim that this implies that A(E,.,) = 0.
The map h: E — K, annihilates E;, so we have h: E,,,/E;, — E,. Since
E, is k(G/H) injective, h exténds to a map &': E, — E, (since E,.,/E; <
E, by the above embedding). Let 8= (x — 1)* "¢ K,,,/E;, then
1(B) = 0, hence 1'(Hk(G/H)) = 0, and so (by Lambek [7], §4.3, Prop.
1.3), h'(E) = 0. It follows that A(E,) = 0, as claimed.
Since h(E,) = 0, we deduce that » = 0 and result is proved.

REMARK. It is clear that the argument used in the first para-
graph of the above proof enables one to relax the hypothesis on H
to the extent that it need only be assumed that H is a finite normal
subgroup whose centre is a p-group. We do not know if Theorem
2.3 is true for an arbitrary finite normal subgroup H of G, although
it seems likely that this is the case.

For the reader’s convenience, we end this section with a state-
ment of the principal test for self-injectivity that we shall use in
the succeeding two sections.

PROPOSITION 2.4. A ring R has a right self-injective maximal
right quotient ring if and only if every R-homomorphism f:I— R,
where T i1s a right ideal of R, can be extended to a homomorphism
' d— R where J is an essential right ideal of R with zero left
annihilator.

For a proof of Proposition 2.4, see [14], Proposition XIV. 4.2.

3. Noninjective quotient rings. In this section we describe
all those group algebras known to us whose maximal quotient ring
fails to be self-injective.

THEOREM 3.1. Let k be a field of characteristic p > 0, and let
G = C,-, the Priifer p-group. Then QkG) is not self-injective.

Proof. By Proposition 2.4, the result will follow if we can find
an ideal I of kG with nonzero annihilator, and a homomorphism
f: I kG which has no extension to an ideal with zero annihilator. Let
C = {¢) be the subgroup of G of order p, and put I = cg. For each
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1 =1, let H, be the subgroup of G of order 9, let H=3,. ;I
and choose «; € kG such that
(¢ — Ve, = H, .
Note that this can certainly be done since H/kH, is the unique

minimal ideal of kH,.
Now define

f:I—%kG:B—»ilaiB .

If 3= (c— 1)y, say, where vyegN kH,, some » = 1, then
(¢ — Day=0

for all ¢ = n, so f is a well-defined %kG-homomorphism. We claim
that f has no proper extensions.

Notice first that if ¢g & J <] kG, then ¢G = J. For there exists
m = 1 such

Hh=cqgnNkH, < JNEKH,,

where D is the augmentation ideal of kH,, and since there is a
unique chain of ideals in kH,, we deduce that

cH,=JNkH, .

Now if vy is any kG-homomorphism from c¢G into kGi then since, by
[11], Lemma 3.1.2, ¢G is the annihilator in kG of C = 3,..x, it is
clear that

v((c — 1) =(¢c—1d,

for some 6 € kG, and y is simply multiplication by 6. Thus if f has
a proper extension, there exists 6 € kG such that f(z) = x6 for all
x €l Suppose that such an element 6 exists, with 6 e kH,, say, and
let & be a generator of H,.,. Then

e = Db — 1) = 3 A — 1) = 3L A — 1)
= (e — D — o,
so that

((c 16— § FL) ¢ A, JH,.,,

since this ideal is the annihilator in kH,., of (» — 1), by [11], Lemma
3.1.2. Note that since (¢ — 1)dekH,, (¢ — 1)0 — >;i*1 H, is a non-
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zero element of kH,,,. However, it is clear that
ﬁs+2kHs+2 n kHs+1 = O ’

so we have a contradiction.
Thus f has no proper extensions, and since C annihilates I, the
result follows.

COROLLARY 3.2. Let k be a field of characteristic p > 0, and
let G be a group containing a locally submormal subgroup H, with
H = C,«. Then QEG) is not self-injective.

Proof. This is immediate from Theorem 3.1 and Proposition 2.1

().

Notes. (a) It is possible to strengthen Proposition 2.1, and
with it Corollary 3.2, by demanding only that, in the notation of
[2], page 44, (H, G) € &. However, since we are primarily interested
in the case of group algebras of abelian groups, we shall not pursue
this further.

(b) It isnow a simple matter to construct an example to show
that some hypothesis on the nature of the embedding of H in G in
Proposition 2.1 is necessary. Thus if we fix a prime p, let k& be the
field of p elements and let G = C,C,, where C,~ denotes infinite
cyclic group, so that G contains a subgroup H with H =~ C,», then
kG is nonsingular by [2], Corollary 3.11 (i), so that Q(kG) is right
self-injective by [14], Proposition XII. 2.1, but Theorem 8.1 shows
that Q(kH) is not self-injective.

4. Injectivity of commutative quotient rings. Our aim in this
section is to prove the following result.

THEOREM 4.1. Let k be a field of characteristic p > 0, and let
G be an abelian group with at most finitely many p-elements of
infinite height. Then QkG) is a self-injective ring.

We shall prove the above theorem by means of a sequence of
lemmas. Note first that, by Proposition 2.1 (ii), we may assume
without loss of generality that the coefficient field % is algebraically
closed. Accordingly, throughout §4, p will denote a fixed prime
and & will be algebraically closed field of characteristic p.

LEMMA 4.2. Let B be a subgroup of finite index in the abelian
group G, and suppose there exists a finite subgroup H of G such that
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G = BH. Let I<kG, and suppose that the kG-homomorphism
f: I— kG has no proper extensions. Then IN kB # 0.

Proof. Choose an ideal L of kH maximal with respect to the
property that there exists 0 # B3€kB such that L3 & I. Note that
since H is finite and {0} <] kH has this property, there exists such
an ideal L. If L = EkH then the lemma is already proved, so we
may assume that L == kH. Let LBkB = >\_, a kG, and put

T=<{H,supp B, fla,):1=v =<¢).

T is a finitely generated group. Suppose TN B=X& Y, where X
is finite and Y is torsion-free. Then T = {(H, X)@ Y, where {H, X )
is finite. Now LB is a finite dimensional %k-algebra, and by construe-
tion, fILBKT) < kT. By [1], Theorem B, kT has a quasi-Frobenius
quotient ring obtained by inverting the nonzero elements of kY, so
f is induced on LGET by multiplication by ac™, where a € kT and
0#cekY. Let vy=p¢, so 0 Ly<I. Since, we have assumed that
L + kH, we may choose an ideal M (of kH) minimal over L. Then
M/L is an irreducible #H module, hence M = L + k¢ (1) and N =
ann (M/L) has codim.1 in kH. Thus N+ k =FkH and MNZ L (2).

Now
(3) kG = (kH)B = (N + K)B = NkB + kB .
By (1),
(4) M~kB = LYkB + (tvkB .

We claim that
(5) kBN I = (0).
If not, suppose
0+ prepykBNI.
Then
MYy = Ly + kpyy' = 1
and 0 == pp' € kB, contradicting the maximality of L. Thus

MykG = Mv(NkB + kB)
= MNvkB + MvkB
< LYkB + (LYkB + p1tvkB)
< LYkB + pvkB

and we deduce from (5), that
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(6) MyEG NI = LvkB .

Since the map f is induced on LYkB by multiplication by ac™, we
may extend this map to

[ MvkG — kG
by x — xac e kG, (by defv). Then we have a map
[ I+ MvkEG — kG

which extends f (by (6) this is well-defined). By choice of L, I+
M~vkG is strictly larger than I, a contradiction. This L = kH and
the proof is complete.

REMARK. We used the assumption that % be algebraically closed
in only one place in the above proof—namely, to ensure that a minimal
ideal of kH/L is a l-dimensional vector space over k. Thus we can
drop this assumption if we know, for example, that G is a p-group.
We do not know whether it can be dropped in general.

LEMMA 4.3. (i) Let G be an abelian group whose torsion sub-
group contains no elements of infinite height. If H is a finite sub-
group of G, there exists a finite subgroup T of G, containing H,
such that T is a direct summand of G.

(ii) Let P be an abelian p-group with only finitely many ele-
ments of infinite height, and let H be the subgroup generated by
those elements. Then P/H contains no elements of infinite height.

Proof. (i) It is clearly sufficient to assume that H is a p-
group and to find a p-group T with the required properties. Now
if H is a p-group, we deduce, by successive applications of [11],
Lemma 14.4.1 (iv), that there exists a finite pure subgroup T of
0,(G) such that T contains H. Clearly T is pure in G, and so by [4],
Corollary 24.6, T is a direct summand of G.

(ii) This is clear.

Proof of Theorem 4.1. We are given an abelian group G, a
prime p such that G has only finitely many p-elements of infinite
height, and a field & of characteristic », and we have to prove that
QkGR) is injective.

As already remarked, we may assume that & is algebraically
closed. We begin by proving the result under the stronger assump-
tion that G has no p-elements of infinite height. In this case it
follows that we may assume without loss that the torsion subgroup
of G contains no elements of infinite height. By Proposition 2.4,
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the result will follow if we can show that if I is an ideal of kG
and f e€Hom, (I, kG) has no proper extensions, then Ann (I) = 0.
Suppose that this is false, and let f: I — kG have no proper exten-
sions, with Ann (1) #= 0.

Let W be a finitely generated subgroup of G such that AnnlInN
kW =+ (0). Let H be the torsion subgroup of W. If H is a p-group,
then as AnnINkH = 0, we have HI =0 (for kH is a local ring
with maximal ideal annihilated by H). Choose B a subgroup of
finite index in G such that HN B = (1) and HB = G. Then

INkBCbkG N kB = (0)

which contradicts Lemma 4.2.

Now suppose H= AP C, where C is a p’-group and 4 is a
p-group.

Let 1 =37 ,e, be the decomposition of 1 in kC. Then kG =
S, ekG and I =7, e]. Now ekG is some twisted group algebra
of G/C, but it is commutative and &k is algebraically closed, hence
ekG = k(G/C) [11, Lemma 1.2.9]. The map f:I— kG splits as f=
S, fi, where fiied— ekG and since f has no extension, each f;
has no extension. Furthermore, since AnnINkW %= 0, we have
e;(Ann I N kW) = 0 for some j. Thus f;: e;] — e;kG does not extend
and (Ann,,gee;I) N ek W = 0. But this is all happening in a ring
isomorphic to k(G/C) and under the isomorphism e¢;kW corresponds
to E(W/C) with H/C a finite p-group. Our previous argument shows
that this cannot occur.

Now allow G to contain finitely many p-elements of infinite
height, and let N be the finite subgroup they generate. By Lemma
4.3 (ii), G/N has no p-elements of infinite height, and so Q(k(G/N))
is self-injective by the first part of the proof. Hence, by Theorem
2.8, Q(kG) is self-injective, and the proof of Theorem 4.1 is complete.

5. The structure of commutative quotient rings. Throughout
this section G will denote an abelian group, k a field of characteristic
p >0, and @ the maximal quotient ring of ¥G. Our main result is
to demonstrate that @ possesses many of the well-known properties
of self-injective rings, as described in [5], pages 48-52, for example.
In particular, we prove that @ is continuous [15].

We begin by recalling that @ is a commutative ring; in fact if
we let 57 denote the ring of kG-homomorphism of the injective
hull of kG then @ is isomorphic to the centre of 257 [7], §4.3,
Exercise 3. Our first objective is to prove Proposition 5.2, a result
which is crucial to the proofs of the results which follow it. For
its proof, we need the following technical lemma.

LEMMA 5.1. Let R be the classical quotient ring of kG, and let
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S={firiel} be a set of idempotents in R. Then Anng(S) is
generated by the idempotents it contains.

Proof. Put X = Ann, (S) = 8(1 — f,)R, and choose x € X. There
exists a finitely generated subgroup 7T of G such that xe€R’, the
classical quotient ring of k7. Note that R’ R, by [11], Lemma
1.1.4. Let P be the Sylow p-subgroup of T, so T'= A& P, say, P
is finite, and

R = Qu(kA) Q. kP,

since the right-hand side is an Artinian partial classical quotient
ring of kT, and so is the whole quotient ring. Choose ¢ = ¢’c R’
such that ex = z, and the Goldie dimension of eR’ is minimal for
¢ € R’ with this property. Now ecQct(kA); let e=¢, + :-- + ¢, be
the decomposition of ¢ as a sum of primitive idempotents of Q. (kA),
so that 0 #¢;xe X, for 1 <5 <¢. The proof will be complete if
we can show that e¢;eX for 1<j<¢t Let ¢Q.kA)=K;, an
extension field of &, so that e;xce;K;P, say e;x = ¢;w; for some
0+ w;eK;P,for 1<j<t Fix je{l, ---,t}, and let f€8S. There
exists a finitely generated subgroup B of G such that A < B,
0,(B) =1, and feQ.,(kB). Now B PZ< G, and

R" = Qu(k(B @ P)) = Qu(kB) . kP,

so ¢;R" = Q. (kB)e;K;P. Since e;x # 0, this implies that if e; =
7,+ -+ + 7, is the decomposition of e¢; as a sum of primitive
idempotents in Q,,(kB), then z,w; = 0 for I =1, ---, m. Since

0=x7tw;eN@— f)R,

(6) ’
Tw;(1 — f) = tw;,

for 11 < m.

Since 7, is primitive in @Q.(kB), either 7, (1 — f)=0 or
(1 — f) =17, and (6) excludes the former possibility. Thus e; =
e, — e — fHR, for j =1, ---, t, and since f was an arbitrary
element of S, the result is proved.

PROPOSITION 5.2. Am essential closure in Q of an ideal I of @
18 a direct summand of Q, and so s unique.

Proof. The ideal (I NkG)Q is essential in I, so it is clearly
sufficient to prove the result under the additional assumption that
I={INkG)Q. Given any finite set T, ={x, ---, z,»} in G, form the
classical quotient ring R; of k(T.), so R, is a quasi-Frobenius ring,
by [1], Theorem B. Note that R, is a subring of @, by Corollary
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13 of [9]. Choose an idempotent f;€ R, such that IN f,@ = 0, and
the Goldie dimension of f;R is maximal among idempotents of R,
with this property. Note that f, is uniquely determined by these
specifications. Index the set of all finite subsets of G by A, and
put J = Zle/\fo-

Now put X =ann(J) =N, (1 — f)Q; we claim that W= XD J
is a dense ideal of Q. Put R = (R;:Ae A), a subring of @ con-
taining #G. Our claim will follow if we show that W' = (X N R) D
(JN R) is a dense ideal of R, since @ is an essential extension of R
as R-modules. Since f;eR for all ne A, it is clear that
Ann, (W’ = 0. However, by Lemma 5.1, XN R = Ann;, 3, fiR) is
generated by the idempotents it contains, so by a second application
of Lemma 5.1, Ann, (W’) = 0, thus proving our claim.

It follows from [7], page 98, that the projection map X O
J—J is afforded by multiplication by an element ec@Q. Since
(e—eHNXDBJ)=0, and XPJ is dense, ¢ is an idempotent of Q.
Note that J < eQ, while XNeQ =0. Since IC X, INeQ =0, we
claim that I is essential in (1 — ¢)@. Suppose that this is false, and
choose 0= a c€kGN(1—e)Q such that a@QNI=0. Put A= {(suppa),
and let U = Q,(kA), so that, since U is a quasi-Frobenius ring, [1].
Theorem B, there exists a nonzero idempotent f e U such that aU
is an essential U-submodule of fU. Since UZ Q, [9], feQ. We
prove that aQ is essential in fQ. Note first that fU = (fUN kAU,
and akA must necessarily be essential in fU N kA. It follows as in
the proof of [2], Lemmas 2.2 and 2.5, that akG is essential in
(fU N kA)kG, and so, since Q; is an essential extension of kG, it
is easy to check that a@ is essential in (fUNkA)Q = fQ. Since
INa@ =0, we must have IN fQ = 0. It follows that, if A = T,
(e N), then f = f.f; that is, feJ, and so feeQ. However, since
ae(l—e)@ and aQ is essential in f@Q, fe(l —e)Q. Hence fe
1—e)RQNeR, so f =0, a contradiction. Therefore I is essential in
(1 — e)Q, as climed, and the proof is complete.

Recall that a ring R is left continuous if it satisfies the two
conditions:

1. For any left ideal I there is an idempotent ¢ such that Re
is an essential extension of I.

2. If Re, e =¢% is isomorphic to a left ideal I, then I is
generated by an idempotent.

THEOREM 5.3. @ s continuous.

Proof. We have proved in Proposition 5.2, that @ satisfies
condition 1 (above). Since Q is commutative and rationally complete,
condition 2 is automatic, indeed, under the hypothesis of condition
2, I = ¢eR.
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PROPOSITION 5.4. Z(Q) = JQ), Q/Z(Q) is a regular ring and
idempotents may be lifted over Z(Q).

Proof. This follows from the fact that @ is continuous [15].

REMARK. The proof of the main result of [3], which related
the singular ideals of certain group algebras to the singular ideals
of the group algebras of subgroups of finite index, is heavily
dependent on the fact that, in the maximal right quotient rings of
the group algebras under consideration, the right singular ideal
conincides with the Jacobson radical. It was this proof which
provided the initial motivation to study the injective hulls of group
algebras, as we wished to examine the possibility of extending the
results of [3]. Since we now know that not all quotient rings of
group algebras are self-injective, it might seem at first sight that
there is no possibility of using the methods of [3] in a more general
setting; however Theorem 5.3 shows that such an extension has not
yvet been completely ruled out.

THEOREM 5.5. Let H be the Sylow p-subgroup of G. Then
Q/IZ(Q) 1s isomorphic to the maximal quotient ring of k(G/H). In
particular, Q/Z(Q) is a self-injective ring.

Proof. We split the argument into two steps.

(i) @Q/Z(Q) is self-injective.

The proof of (i) closely follows the proof of the corresponding
result for selt-injective rings; see for example [5], Theorem 2.21.
We first show that if ¢ and f are idempotents in @ such that T =
eQ N fQ # 0, then eQ N fQ = 0, where Q = Q/Z(Q). Choose an ideal
K of @ such that TN K =0, T + K is essential in @, and K is
maximal among ideals with these properties. Clearly K is essentially
closed in @, so that K is direct summand of @ by Proposition 5.2.
Let N be a maximal essential extension of T in eQ; then N is
essentially closed in @, so, again using Proposition 5.2, N is a direct
summand of @, and so of e¢Q. Thus N = 7Q, say, with 7z = 7%
te =7, and NN K =10. Repeating this argument, we also obtain
an element h = h*c @ such that hQ is a maximal essential extension
of T in fQ, and hK = 0. Then (z — k) is annihilated by T + K, an
essential ideal of @, and so (z — h)e Z(Q). However, T # 0, and
T eeQ N fQ, since T = k.

Now let I be an ideal of @, and choose a set {¢,} of orthogonal
idempotents in @, maximal with respect to containment in I. By
Theorem 5.3, X = 3, 2,Q is essential in I, and it follows from the
fact that @ is nonsingular, (Theorem 5.3), that @Q-homomorphisms
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from I to Q are determined by their action on X. By Proposition
5.4 we can lift {¢;} to a set {¢;} of idempotents of Q. Let f be a
Q-homomorphism from I to @, and put f(¢,) = #; €Q. By the argu-
ments of the first paragraph, W = >}, ¢,Q is the direct sum of the
ideals e¢,§. There exists an idempotent e¢ of @ such that W is
essential in eQ, by Proposition 5.2. Weeclaimthat U= (1 — )@ + W
is a dense ideal of Q. For Z = Ann,(U) C eQ, so it Z +0, Z N
W = 0, since W is essential in eQ. Since W is generated by the

idempotents it contains, this is clearly impossible. It follows that
the map

Q: l—ey—0 Vre@
i e;,— ex; Vi

U—

is afforded by multiplication by an elemellt q of Q. Thus qe; = Ty,
for all 4, and so f: I — Q extends to a Q-endomorphism of Q. By
Baer’s eriterion, [7], page 88, (i) follows.

(ii) Let R=kG + Z(Q)/Z(Q). We shall show that (Q/Z(Q))z
is an essential extension of R,j.
Note that

R = kG + Z(Q)/Z(Q) =,ms kG/kG N Z(Q)
= kG/Z(kG) = kG/HG
= k(G/H),

by [2], Corollary 8.5, so that (i) and (ii) together imply Theorem
5.5. This is because R is nonsingular, [2], Corollary 3.5, so essential
ideals of R are dense, and therefore (ii) implies that Q/Z(Q) is
certainly a partial quotient ring of R, by [5], Chapter 2C, so that

QR) = Q@/IZQ) =Q/Z@) ,

by (i) and [7], §4.3, Propositions 2 and 3.
We proceed to prove (ii)). Let ac@Q\Z(Q), let D ={deckG:
ad € kG}, a dense ideal of kG, [14], Lemma IX. 1.5, and define

L ={8ekG:3A C H, A finite, such that aSA ckG},

where A = S,.,a. Note that if A4, and A, are finite p-subgfoups
of G, then, putting B = {(4,, 4,), B is a kG-multiple of both A, and
A,, since BkB is the unique minimal ideal of kB. It is thus easy
to see that L is an ideal of kG. Now L 2 §G; we claim that L/bG
is an essential ideal of kG/HG.

Let v ekG\HG. Since 0,((supp 7)) is a summand of {supp7), it
is clear that there exists ¢ e k{supp 7) such that 0,((supp ¢)) = 1 and
v — ¢ € bG. Moreover there exists 7 ek{supp ¢y such that ¢7 = eg,
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where ¢ is a primitive idempotent of k{supp ¢) and & € C;.(0). Since
our aim is to prove that v4G N L 2 )G, we can assume that v = e&.
Since D is dense, there exists d € D such that dvy == 0; we choose d
so that d = de. Let d = >, d,g,, where d,ekH and {g,} forms part
of a transversal to H in G. Note that if we put F = (suppd,
supp 7y, then we can choose the elements g, F so that HnN {g,:
1<i¢=<n)=1 and suppy S {9.:1 <7 <n}). We assume that the
set {9,} has been chosen in this way. There exists a finite subgroup
A of H such that d,ckA foralli =1, ---, n. Since AkA is essential
in kA, there exists pekA such that

0 )ud = ‘Zb\'igi ’

[

M

(3

where 0 M€k, 1Z<i<m, and 1<m=<n. Put =" \Ng,.
Now

vpd = esfpd = gpd + 0,

sAince 0 5= pd ekGe and £ € Ciq,(0). It follows that vw = 0. However
Aw e D, so that

avwA e kG ,

and so Yw € L by definition of L. Let F = 0,(F)@ F’, choosing F’
so that vek{suppv) S kF', and wekl{g;:1 <1 < n), a subalgebra
of kF', so that v ¢ )G since kF' N HG = 0. Therefore L/HG is an
essential ideal of kG/HG.

If xeL, there exists a finite p-subgroup Y of G such that
azY e (kG N YQ). Since kG N YQ is the annihilator in kG of v, it
follows from [11], Lemma 8.1.2 that kG N YQ = YkG. Thus az? = 75,
say, where d0ckG, and so (ax — 0)€ Ann, (V). Now YkY is an
essential ideal of kY, being its unique minimal ideal, so Y%G is an
essential ideal of kG, as in [2], Lemmas 2.2 or 2.5. Thus 7Q is
essential in @, and so ax — 6 € Z(Q). Hence axckG + Z(Q); so aLS
kG + Z(Q), and the proof of (ii) will be completed by showing that
aL & Z(Q).

To prove that aL ¢ Z(Q), we first show that we may assume
that « is an idempotent. For if we put V = {a € @Q: 1L < kG, L/HG
essential in kG/9G, such that aL = Z(Q)}, then clearly V < Q, and
if V2 Z(Q) then by Theorem 5.3 and Proposition 5.4, V contains a
nonzero idempotent of @. Thus we assume henceforth that a is a
nonzero idempotent in V, and aim for a contradiction.

Let S=Q.(kG); by [1], Theorem B, every finite set of elements
of S is contained in a quasi-Frobenius subring, and straightforward
local arguments show that Z(S) = hS and that

(7) S/Z(8) = QukG[HG) = Qu(k(G/H)) .
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By [2], k(G/H) is nonsingular, so another elementary local argument
shows that S/Z(S) is a regular ring. Now since S is a subring of
Q, Z(S) = SN Z(Q), and in fact we have equality here, since if
SNZK) 2 Z(S), SN Z(R)/Z(S) would contain a nonzero idempotent
of S/Z(S), and since Z(S) = §S is nil, this would imply that SN Z(Q)
contained a nonzero idempotent, a contradiction. Hence

(8) S/Z(S) = S/HS = S/SNZ@Q) =S + Z(Q)/ZQ) ,
and
(9) kG/HG = kG/HS N kG = kG + HS/HS < Q.(kG + HS/HS) = S/HS .

Thus since L = {{ €kG: at e Z(Q)} has the property that L/HG is
essential in kG/HG, (9) implies that LS/HS is an essential ideal of
S/5S, so that, by (8), LS + Z(Q)/Z(Q) is an essential of S + Z(Q)/Z(Q).
As we have already observed, S/Z(S) is regular and idempotents may
be lifted over Z(S), so LS/Z(S) contains an ideal J/Z(S) which is
essential in LS/Z(S), and so in S/Z(S), and such that J = §S + J’,
where J' is generated by idempotents of S.

We claim that J’ is an essential ideal of S. Let 0= BekG
We split the proof that 3S N J’ # 0 into two cases. First, suppose
that g8 ¢ HG; then there exist elements 4 €S and g e S\HS such that
BrehS but By + € J’, since J/HS is essential in S/HS. Let 4 = ac™,
where a, ce kG and ach)G. It follows that there exists a finite p-
subgroup M of G such that Ma = 0, and so

M(Bp + ) = MBreJ' NBS.

But Mpp +# 0 since 0 = B¢ mS = Anng (M), by [11], Lemma 3.1.2.
Suppose on the other hand that geb)G@. Let T, = (supp B>, put
U=0,(Ty), so there exists W< T, such that T,= U@ W, and
write 8 = .7, 8;9;, where G;eu, 1 <5 < w, and {g;: 1 < j < w} are
distinet elements of W. There exists an element ze€%kU such that
0= a8 = US; 1t;9,), where p;ek and at least one p¢£; 0,1 < j < w.
Put 0£» = >, #t;,0;€kW. Since ch(kW) is a regular subring of S,
there exists €S such that 0 = v5 = ¢’ is an idempotent in S, and
0= Ue € BS. Now there exists peS and @ e€hS such that ¢’p¢ DS
and epo + @eJ’. Since Anng (U) £ 5S, as in the previous case,
Ue'o # 0, so that

0~ Ueeo + @) = Uep + Udded NS,

as required. Since S = @, (kG), J' is an essential ideal of S, as

claimed.
Since @ is the maximal quotient ring of S it follows that J'@

is an essential ideal of Q. Now @ is commutative, so the product
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of two idempotents of @ is an idempotent, and so, recalling that «
is an idempotent and that J’ is generated by idempotents, aJ’ € Z(Q)
if and only if aJ’ =0. However if aJ’' =0, then since J'Q is
essential we deduce that a € Z(Q), a contradiction. Hence aJ’' & Z(Q),
so aL £ Z(Q), and the proof of (ii) is complete.

For the last result of §5 we impose a restriction on the abelian
groups under consideration.

PROPOSITION 5.6. The Goldie dimension of Q is finite if and
only if A, the direct sum of the Sylow q-subgroups of G for q # p,
1s finite. If A is finite, then

Q=0 - - D«n,

where n 1s the number of distinct irreducible kA-modules, Q, is a
uniform local ring, and J(Q;) = Z(Q,) is nil, for 1 =1 =< n. If we
write Q,/J(Q;) = K,, then

K, =KQ.k:,

where, if H is the Sylow p-subgroup of G, K is the quotient field
of K(G/H@® A), and

EA=k D - Dk,

is the decomposition of kA as a direct sum of fields.

Proof. If A is infinite, then kA is regular, since every finite
set of elements of kA is contained in a semisimple Artinian subring,
but kA is not Artinian, [11], Theorem 10.1.1, so kA has infinite
Goldie dimension. Since kG is a free kA-module, kG must then have
infinite Goldie dimension, and so therefore must . Suppose con-
versely that kA has Goldie dimension » < o, and note first that
kH is uniform, since if 0 # «, Be€kH, then putting B = {(suppa,
supp B, kB has a unique minimal ideal. Since k(H @ A) is isomorphic
as a ring to >, ®k,H, where k; is an extension field of %, it follows
that k(H @ A) has Goldie dimension %, so kG has dimension n by
[1], Lemma 2.5. Therefore @ has Goldie dimension .

Suppose now that A is finite, so by [4], Corollary 24.6, G =
A @ C, where the torsion subgroup of C is a p-group, and

BG = kA ®, kC = >, %k,C,
i=1

where

kA=K D --- Dk,
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is the decomposition of kA as a direct sum of fields, so k&, is an
extension field of k. Thus

QUG) = 3, QL) ,

by [7], §4.3, Proposition 9, and @, = Q(%,C) is a uniform k,C-module,
and so a priori a uniform ring. It follows from Theorem 5.3 and
Proposition 5.4 that Q, is local, and that Z(Q,) = J(Q,).

We next show that J(Q,) is nil. Let g€ J(Q,), and represent ¢
as an element of Hom, (D, k,C), where D is a dense ideal of k,C,
as in [7], §4.3. As noted in the proof of Theorem 5.3, I = kerq N
D %0, where kerq denotes the kernel of ¢ as an element of
Hom, (E, E), where E is the injective hull of %,C. (Notice that
since k,C is commutative, @, is the centre of Hom,, (E, E), [7], §4.3,
Exercise 3.) Since 0 # ¢Q, N k,C < Ann, ¢ (I), the proof of Theorem
4 shows that there exists of finite subgroup T of C such that
I Z th,C. We claim that we may assume that I Z k,T - 0. For as
in the proof of Theorem 4, 0 %= YyeI, for some regular element
v of k,C and a finite p-subgroup Y of C. Since v is a unit of Q,, it
follows that Y elI, so replacing T by (T, Y) gives the desired
conclusion.

Let L = Ann,, (I), and note that since IN kT +# 0, L < tk,C, by
[11], Lemma 3.1.2. We claim that for all n = 1 ¢"D < t"k,C. Since
gD C L, this is certainly true when # = 1. Suppose it is known to
be true for » = m — 1, some m > 1, and let Beq™D, say B = qo,
where 6€.""%,C. Let X = (suppd, supp B, Y), so X is a finitely
generated abelian group and by [1], Theorem B there exists an
element ac™ of Q,(kX) such that ¢6 = dac* and ¢¥ = Yac™ = 0,
since ¥ < I. It follows that a € Ann,,q(Y) = vk,C < th,C, so that

B =gd = dac™ C "Q, N k,C = t"k,C,

as claimed. (The last equality holds since t"k,C is an annihilator
ideal of k,C.) Since T is a finite p-subgroup of C, it follows from
Lemma 38.1.6 of [11] that tk,C is nilpotent, say t"k,C = 0, so that
¢’D=0. Since D is a dense ideal of k,C and @, is an essential
extension of %0, it follows that Ann,, (D) =0, so that ¢" = 0.
Thus J(Q,) is nil.

Finally, since @, = Q(k,C), the last part of the proposition
follows from Theorem 5.5 and the fact that Q%.,C) =k ®, Q%kC),
[9], Theorem 11.

REMARK. If, instead of assuming that 0,.(G) is finite, we assume
that 0,(@) is finite, then it can be shown that the Jacobson radical
of @ is nilpotent. The proof is similar to that of [3], Theorem 2.2.
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We do not know if Z(Q) is nil in general. This is certainly not the
case if we drop the hypothesis that G is an abelian group, since it
is then no longer true even that Z(kG) is nil; see, for example, [2],
Example 4.4.

6. Injectivity of noncommutative quotient rings. We can
offer no conjecture as to how Theorem 4.1 might generalize to group
algebras of non-abelian groups. In this section we outline what
little is known in the non-abelian setting. We begin by recalling
that a sufficient condition for Q(kG) to be right self-injective is that
the group algebra kG be right nonsingular, and that the results of
[2], [3], and [13] provide many examples of such group algebras.
Note that by [2], Lemma 3.1, N(kG), the sum of the nilpotent ideals
of kG, is always contained in Z(kG), the sum of the nilpotent ideals
of kG, is always contained in Z(kG). The main result of this section
that if N(kG) and Z(kG) are “not too big”, QkG) is right self-
injective.

THEOREM 6.1. If kG 1is a group algebra such that Z(kG) is
nilpotent, then QkG) is right self-injective.

Proof. Let p be the characteristic of k. By [2], Lemma 3.1,
N(G) is nilpotent, so that in the notation of [11], Chapter 8, §1
47(@) is finite, by [11], Theorem 8.1.12. Put C = Cux(4?(G)), so that
C <G and G/C is finite. . Since Z(kC) < Z(kG), by [2], Lemma 2.5,
Z(kC) must also be nilpotent. Now T = 47(C) < CnN 4*(G), and so
T is a finite normal p-subgroup of C. Thus by [11], Theorem 8.1.0
and Lemma 3.1.6,

tC = N(kC) = Z(kC) .

It follows from Theorem 3.16 of [2] that A(C/T) is right non-
singular, so that by [5], Corollary 2.31, Q(k(C/T)) is right self-
injective. We now deduce from Theorem 2.3 that Q(kC) is right
self-injective, and so by Lemma 2.2 Q(kG) is right self-injective.

NotreEs. (i) Necessary and sufficient conditions for the hy-
pothesis of Theorem 6.1 to hold, expressed in terms of the non-
singularity of certain group algebras, are given in Theorem 3.2 of
[3]. If one restricts attention to a class of group algebras for which
Conjecture A of [2], page 48, is known to be true, that is a class
of group algebras for which Z(kG) is known to equal J(AL(G))EG,
where L(G) is the unique maximal locally finite normal subgroup of
G, then lone can obtain conditions expressed in terms of the strue-
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ture of kL(G), using [11], Corollary 8.1.14. We leave the details to
the interested reader.

(ii) An obvious question arises when one considers possible
generalizations of Theorems 4.1 and 6.1: if % is a field and G and H
are groups such that Q(kG) and Q(kH) are right self-injective, is
Q(k(G X H)) right self-injective? We have been unable to answer
this question, but it may be worth mentioning the following special
case. Let k have characteristic p > 0, and suppose G is an abelian
group with only finitely many p-elements of infinite height, and H
is such that ZH has an Artinian classical right quotient ring. Then
Q(k(G x H)) is right self-injective. The proof involves a straight-
forward, though tedious, reduction to the case where Q (kH) is a
division ring, and then an adaptation of the arguments of §4.
Notice that the case G =1 is covered by Theorem 6.1, by [14],
Lemma II. 2.5.

7. Open problems. The most obvious problem arising from
the foregoing results is that of removing the gap between the
results of §§3 and 4. Specifically, we have been unable to answer:

(i) Which group algebras of abelian groups have injective
quotient rings?

Perhaps the simplest group algebra for which our methods do
not provide answer is the following:

Let A=<x:i=1,2 -2l =1 27" =2, [x, 2] = 1), where p
is a prime, and let & be a field of characteristic ». It is easy to
see that A has (p — 1) nonidentity elements of infinite height, so
Q(kA) is self-injective by Theorem 4.1. Now let G be the direct
product of infinitely many copies of A. We ask as a special case
of (i):

(ii) Is Q(kG) self-injective?

About the results of §§3.4, and 5, one may ask the blanket
question:

(iii) How do the results of §§3-5 generalize to noncommutative
group algebras?

By analogy with the results of [2] and [3], one might hope for
a positive answer to the following question. Let L(G) denote the
unique maximal locally finite normal subgroup of G, (see [2]).

(iv) If QKL(G)) is right self-injective, is Q(kG) right self-
injective?

To illustrate one difficulty associated with (iv), consider the
following special case. Let k be the field of » elements, and let
G =C,1C,, the Wreath product of a cyclic group of order p by an
infinite cycle. Thus ;@ has an elementary abelian normal subgroup
A, and G/A = C,,. By [9], Corollary 12,



INJECTIVE HULLS OF GROUP RINGS 343
Q) 2 QkA) @ kG 2 kG

and so, by Theorem 4.1 applied to k4, Q(kG) may be viewed as the
maximal right quotient ring of a twisted polynomial rings over a
self-injective ring. However, such quotient rings are not in general
self-injective; for an example, see [8].

Finally, as explained in Section 5, we are particularly interested
in the following question arising from Theorem 5.3, in view of its
bearing on the results of [3].

(v) If @ is the maximal right quotient ring of a group
algebra, is J(Q) = Z(Q)?
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