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Let G be a connected Lie group and *s>f an arbitrary,
not necessarily connected Lie subgroup of Aut (G). For a
class of groups G described below, the authors examine
the bounded ^-orbits in G (those with compact closure) and
the group of bounded elements 5(6,J/)={a;eG:J/ίc is
bounded}. They first show that G may be split into closed,
^-invariant "layers" terminating at B(G, *$/) whose pro-
perties insure that (i) B{G, s>f) is closed, (ii) every finite,
^"-invariant Borel measure must have supp μ^B(Gt -&O> and
(iii) if x G B(G, -&O, there is such a measure μ with x e supp
ft. Using these results, they prove a number of density
theorems of the following sort.

THEOREM 1.1. Let &ςis^ be arbitrary, not necessarily

connected Lie subgroups of Aut (G) such that sf\& has

finite volume (or is compact). For any xeG, &x is bounded

\™) ^ is bounded.

THEOREM 1.2. Let B^A be arbitrary, not necessarily

connected, closed subgroups of G such that A/B has finite

volume (or is compact). Let α € Aut (G) be arbitrary. Then
the displacement set disp (a, B) = {a(x)x~*ι xe B} is bounded

\ — y disp (a, A) is bounded.

The authors prove these results for G whose Levi factor
is faithfully represented; there are indications that they
remain true for all connected G. The proofs devolve to
questions about faithful linear representations of certain
nonconnected groups. Recent results of G. Hochschild show
that G < a Aut (G) is faithfully represented if (i) the Levi
factor of G is faithfully represented, and (ii) the nilradical
is simply connected. In the authors' work it is crucial to
know that the representation can be chosen so that Gxl
(if not all of Gxσ Aut (G)) is mapped to a closed subgroup
of GL(V); this is proved by modifying Hochschild's proofs,
coupling them with methods developed by M. Goto.

Furthermore, invariant finite Borel measures play a large
role: Lie theory yields information which drastically
restricts the possible locations of such measures. In crucial
places the converse is true: invariant measure arguments
seem necessary to obtain algebraic and geometric informa-
tion about the actions.
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For future reference we state the precise result concerning
bounded elements J5(G, jtf). If a group Jzf acts by homeomorphisms
of a locally compact space, J ^ x X —> X, the bounded orbits are
defined in the obvious way. Adopting a slight modification of the
terminology introduced in [5], we define a "layering" of X terminat-
ing at Y to be any finite sequence of closed, jy-invariant sets X=
Xo 2 X, 2 2 Xm = Y such that:

Each point in the ith layer Xt ~ Xt^ — Lt has a relative neigh-
borhood U £ Lt which is moved to infinity within Lt by a
suitably chosen sequence of transforms {aά} £ J%f {OL5{U) Π K—ψ
eventually for every compact set KQ Lt\ notation: a5(U) —> ̂
in Lt).

Clearly then each point in Li has a relative neighborhood with
infinitely many disjoint j^-transforms, so this strengthens the
notion of layering used in [5]. Existence of a layering immediately
forces all finite, J^-invariant Borel measures to be supported within
the closed terminal set Y. The central result we wish to prove is:

THEOREM 1.3. Let G be a connected Lie group whose Levi factor
is faithfully represented. For any subgroup ,Sϊf £ Aut (G),

( i ) B(G, j&O is closed.
(ii) There is an *S/-invariant layering from G down to B{G,

(iii) Any finite, *s/-invariant Borel measure has
and conversely if xe B(G, Jϊf) there is such a measure with

x 6 supp μ £ B(G,

Due to the arbitrary nature of *$>/ this greatly generalizes previous
results of [5], [6] where Jxf = Int (G), and [7] where J ^ 2 Int (G);
these, in turn, took as their start the work of Tits [18] where J ^ =
Int (G), G semisimple without compact factors. (Strictly speaking,
the result are not quite related by inclusion because in the special
case s/ — Int (G) we were able to avoid any assumptions concern-
ing the Levi factor.)

As we will show in § 4, validity of (1.3) for some class of
groups G immediately leads to validity of the density Theorem 1.1
for these G. As for 1.3, the first step is to prove 1.3 in the case
of linear actions, where G is a vector group. This is done in § 4;
at the same time we shall point out and correct a gap in [7], closely
connected with this discussion. The linear case and our discussion
of faithful representations of G xσAut(G), which are given in §3,
yield 1.3 in full generality. Incidentally, the simplest property one
might examine in the context of 1.1 is the question whether: έ%χ —
{x} => j&x — {x}. Counterexamples are known in which &x = {x}
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but Jzfx is bounded and Ψ{x\, so 1.1 seems to be the best result
generally valid.

Density properties involving bounded displacement 1.2 were first
examined in [18]. Partial results were given in [5] and [7], and
the subject was discussed more systematically in [14]. Certain
results on continuous 1-cocycles associated with a linear representa-
tion were pointed out in [14]. Their present generalizations are
given in § 2, and play a central role in § 5, where we prove 1.2.
(They also enter into related results by one of the authors' students
[17], dealing with automorphisms on minimally almost periodic
groups.) They can also be used to give a very direct proof of 1.1
for linear and affine actions on a vector group, as explained in § 2.

2* Preliminary results on linear and affine actions* In this
section we temporarily change notation and consider a continuous
linear action G x V—> V of a not necessarily connected locally
compact group G on a finite dimensional real vector space V. Letting
H be any closed subgroup of G such that G/H has finite G-invariant
volume, we shall study the relationship between boundedness of the
iί-orbit of a subset S Q V and that of the G-orbit of S. We use
the following notation. If G x X —>X is an action on a locally
compact space X, let

Xc or J3(X, G) = {x G X: Gx is bounded (compact closure)}

X f l x = {x e X: g-x = x , a l l g e G} .

In the special case when G acts on itself by conjugation we use
the more traditional notations B(G) and Z(G). If X = V is a vector
group and G acts linearly, we write p: G —> GL( V) for the associated
linear representation. Then a 1-cocycle with respect to p is a con-
tinuous function φ: G —> V such that

Ψ(gg') = Φ(g) + g-ψ{gr) = Φ(g) + pg(Φ(g')) a l l g, g'eG .

Note: These 1-cocycles correspond to the continuous affine
actions A:G x V'-+ V related to the given p. Given such an action
A, let φ{g) = A9(0) and pg(v) = A9(v) - φ{g). Then Ag(v) = pg(v) + φ(g)
for all g, p is a uniquely determined continuous linear representa-
tion, and φ is a typical 1-cocycle for p.

Let M{X) be the finite Borel measures on X, and MC(X) those
with compact support; CC(X) and C0(X) are the continuous functions
with compact support, or vanishing at infinity. We let G act on
M(X) by taking

, /> = \χLgf(x)dμ(x) where LJ(x) -
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In discussing supports of invariant measures we may always replace
μ by \μ\, and assume that μ ^ 0. If / is a bounded function on a
subset S £ X, || f\\s stands for the sup norm.

By dominated convergence it is easy to see that:

LEMMA 2.1. Let G x X—>X be a continuous action. If gn—>g
in G and μeM(X)9 then gn*μ —> g-μ pointwise on C0(X).

COROLLARY 2.2. If D is a dense set in G and μ e M(X) is D-
invariant, then μ is G-invariant.

Our next lemma requires μ to have compact support.

LEMMA 2.3. Let G be a subgroup of GL(F), G* its algebraic
hull, and μeMc(V). If μ is G-invariant, then it is also G*-in-
variant.

Proof. Let W be the linear subspace spanned by supp μ. Then
μ is a measure on W and since supp μ is G-invariant, so is W. It
follows that W is G#-invariant. To see that μ is G*-in variant, it is
enough to show that it is invariant under G* | W. By continuity
of the map g\-+g\ W in the Zariski topology it follows that G* | WQ
(G I W)*. This means that we need only show that μ is invariant
under {G\Wf\ i.e., we may assume that suppμ spans V. Since
suppμ is compact and G-invariant, G is a bounded subgroup of
GL(F). But G* is Euclidean closed in GL(F), so that G*^G~.
Since the latter group must be compact, and therefore algebraic
[23], we conclude that G# = G~. The result now follows from 2.2.

LEMMA 2.4. Let φ be a 1-cocycle with respect to a finite dimen-
sional continuous representation p:G -^GL(V). Then ψ(G) is a
G-orbit under a continuous affine action on V.

Proof. For g e G let Ag: V -> V be defined by Ag(v) = ρg(v) +
φ(g). Then Ag is an affine map on V, and we have a continuous
affine action since

A9l(A92)(v) = p9l{p92{v) + φ(g2)) + φ{gλ)

Then we note that A9l(φ(g2)) = ρ9l(Φ(g2)) + Φiad = ΦiQiQz), so that φ(G)
is Λr stable; in particular, Ag(φ(e)) = φ(g), so that φ{G) = AG(φ(e)).

A variant of the following lemma was stated without proof in
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[5]; for completeness we give a short proof here, since the result is
used heavily later on.

LEMMA 2.5. If G x F—> V is a continuous affine action and
G'V0 is a bounded G-orbit {compact closure), then there exists a G-
invariant finite Borel measure μ on V such that vQ e supp μ £ (G
vo)~. In particular, suppμ = (G-vo)~.

Proof. As indicated in [5], Lemma 7.2, one can imbed V equi-
variantly as a G-invariant hyperplane H = F φ (1) £ W — F 0 R,
where G has a continuous linear action on W; the imbedding map
δ: V —> H is a diffeomorphism onto H. Clearly both Wc = {w e W:
G w is bounded} and H are closed G-invariant subsets of W and δ
identifies Vc with fff|lfc. It suffices to show the result true for
the linear action G x W~^ W and any base point we We: then for
the particular base point δ(v0) there would be a G-invariant measure
μ such that supp μ — (G-δ(vQ))~. Since δ(vQ)eHΠ Wc, this support
lies in H Γ\ We and μ may be regarded as a measure on H n TFC;
using δ to transfer it back to V, we are done.

Thus we assume that our action is linear. Let K = (G \ Ve)~;
then K is a compact subgroup of GL (Vc) and uT/Stabĵ Vo) is a homo-
geneous space with a finite K-mvariant measure. By compactness,
this space is if-equivariantly homeomorphic to the orbit K-v0; the
invariant measure gives a i£-(hence G-) invariant measure on the
orbit. Clearly K-v0 = {G vQ)~, so the proof is complete.

We now come to our first theorem, which depends on a recent
result of S. P. Wang [19].

THEOREM 2.6. Let G be a locally compact group, p a continuous
finite dimensional real representation of G on V, φ a 1-cocycle
with respect to p, and H a closed subgroup of G such that GjH has
finite volume (or is compact). If φ\ H is bounded, then φ itself is
bounded.

We defer the proof for a moment. Taking p = id (so the
1-cocycle is any continuous linear representation of G), we get the
linear action case of 1.1.

COROLLARY 2.7. Consider any continuous affine action GxV—+
V on a finite dimensional vector space. If H is a closed subgroup
of G such that G/H has finite volume (or is compact) then VCfH =
VCjG: a vector has bounded H-orbit =̂> it has bounded G-orbit.

Proof. Exactly as in the discussion of 2.5 there is an immediate
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reduction to the case of linear actions, to which we apply 2.6.

In studying displacements (§ 5) we will use 2.6 in situations
where p is nontrivial. Moreover, in § 4 we will derive 2.7 from first
principles by different methods—i.e., in the course of proving 1.3;
these methods provide additional information which seems to be
necessary in attacking the general density Theorem 1.1.

We also note that if (G, p, V) is a system whose bounded
1-cocycles are all trivial, then any 1-cocycle known to be bounded
on H must in fact be trivial on both H and G. This can be useful.
For example, if G acts linearly on V and if we know in advance
that VC)G — F f i x , it follows that any vector with bounded fi-orbit
is actually G-fixed. In particular, if G x F—• V is a type E linear
action, or is a complex analytic action, or if G is minimally almost
periodic, this is so.

Proof o/2.6. The result is easy if G/H is compact. For then
G = UH where U is a compact set in G. If g — uh, then φ(g) =
Φ(uh) = φ(u) + u φ(h)eφ(U) + U-φ(H); but φ{H) is bounded, and so
is φ(G). Now suppose G/H has finite volume. The cocycle φ is
associated with an aflBne action Ag(v) = pg(v) + φ(g), which in turn may
be regarded as the restriction to the hyperplane F0(1)CTΓ= FφJS
of the following continuous linear representation T: G —>GL (W),

Tβ(v, t) = (pg(v) + tφ(g), t) all v e V, t e R.

By 2.4 we have φ(H) = AH(φ(e)), resp. φ{G) = Aσ(φ(e)). Clearly these
afBne orbits are bounded <=* the vector w0 = (φ(e), ΐ)eW has bounded
T(iϊ)-orbit, resp. T((?)-orbit.

We want to show T(G)w0 is bounded. By [19], if G^T'^TiH)*)
then G/Gλ is compact, so it suffices to show that T(G^w0 is bounded;
i.e., we may assume that T(H) £ T(G) Q T(H)*. By hypothesis
T(H)w0 is bounded. By 2.5 there is a finite, Γ(iϊ)-invariant Borel
measure such that suppμ = (T(H)wo)~. Since this support is com-
pact, 2.3 insures that μ is T(iϊ)*-invariant, hence Γ(G)-invariant.
Thus (T(G)wo)~ £ suppμ is compact, and φ is bounded on G.

COROLLARY 2.8. Let p:G—>GL(F) be a continuous representa-
tion of a locally compact group G in a finite dimensional vector
space F, and let H be a closed subgroup such that G/H has finite
volume. If μ is a finite, H-invariant Borel measure in Me(V),
then G suppμ is compact.

Proof. By 2.3 μ is invariant under H'=p-\p(H)*), and by [19]
G/Hf is compact: G = UH' where U is compact. Since μ is £Γ-
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invariant so is supp/ί. Hence G suppμ = t/ supp/Λ is compact.

COROLLARY 2.9. Let p:G—>GL(V) be a continuous finite
dimensional real representation of a locally compact group G. Let
H be a closed subgroup such that G/H has finite volume. If a subset
S £ V has H-S bounded, then G S is also bounded.

Proof. Since H S has compact closure, we can find a dense
sequence {xn = hn sn} £ (H-S)~. Each orbit closure (H-xn)~ is
associated with a finite, iί-invariant Borel measure μn ^ 0 with
precisely this set as its support, by 2.5; we may normalize so that
\\μn\\ = 1. Now μ = Σ {2~nμn: n = 1, 2, •} is finite, iϊ-invariant,
and has

(H S)- C supp/< £ U suppft. ) = ί U (H'Xn)~) = (H-S)' .

By 2.8, (G-Sy is compact too.

As in the discussion of [2.7, this result extends easily to con-
tinuous affine actions. Our next corollary was also proved in [19].

COROLLARY 2.10. Let G and Gr be locally compact groups, H
and Hr closed subgroups, and let π: G —> Gr be a continuous homo-
morphism such that π(H) Q H\ Suppose G/H has finite G-invariant
volume. Then

( i ) There is a finite π{G)-invariant measure on G'jH'.
(ii) If π(G) is dense in Gr, then G'jH' has finite Gr-invariant

volume.
(iii) Let G~ = π(G)~ and H~ = π(H)~. Then G~/H~ has finite

G-invariant measure.
(iv) // π is surjective, then G'/H~ has finite Gf-invariant

measure.

Proof. All groups (and their subgroups) act on the respective
coset spaces by left translation. Since π is a homomorphism, there
is an action of G through π(G) on G'\W\ namely (g, g'H) -> π{g)g'H.
Since π(H) Q H1 there is a continuous induced map from GjH to
G'jIΓ which is G-equivariant, namely p{gH) = π(g)H'. Using p to
transfer a G-invariant measure μ on G/H to μ' defined by μ'(E) =
μ{p~\E)) for Borel sets E £ G'jH', it is easy to see that μr is
ττ(G)-invariant, so (i) is established. Then (ii) follows from 2.2, and
(ii) ==> (iii) if we take Gf = G", H' = H~. Clearly (iii) => (iv).

If Gx x X —> X is any continuous action on a locally compact
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space, and if G £ G1 is any subgroup, it is obvious that (G*x)~ =
(G~-x)~ for any orbit. In 1.3 this means that we may assume j y
is a closed subgroup of automorphisms, without loss of generality.
In 1.1, orbit closures and their boundedness properties are unaffected
if we replace J ^ , ^ by their [closures j ^ ~ , &~ in the automor-
phism group. Since the finite volume condition passes from
to s/~~\&~ by 2.10, we may assume from the start that
are closed groups of automorphisms in discussing 1.1.

We end this section with some results on boundedness of con-
jugacy classes in linear Lie groups. The method will reappear later
on.

THEOREM 2.11. Let G be a closed linear Lie group {not neces-
sarily connected) and H a closed subgroup such that G/H has finite
volume. If the H-conjugacy class CH(g) = {hgh~1: h eH} of an element
g eG has compact closure in G, then so does the G-conjugacy class
CG(g). In fact, if S is any subset of G, then CH(S) has compact
closure in G <=> CG(S) does.

Proof. By imbedding GL(F) in S L ( F 0 U ) in the obvious way,
we may pass to a situation in which G> H are closed subsets in the
space of all linear operators W — End(V). Now let geG act on
W by similarity transforms: X-^gXg~\ This linear action Gx W^
W when restricted to G Q W yields the action of G on itself by
conjugation. Let geG and assume CH(g) is bounded in G (<=> bounded
in W). By 2.7, CG(g) = {xgx"1: xeG} = {x-gixeG} is bounded in W,
and since G is closed in W, it is a bounded set in G itself. For
the action on a set S £ G, use the same argument as in 2.9.

REMARK. For closed linear Lie groups, we get the following
relations between the bounded elements B{H) = B(H, Int (if)) in H
and the bounded elements B(G) in G, when GjH has finite volume:

( i ) B(H)=HΠB(G).
(ii) If B(G) is trivial: B{G) = Z(fi), then B{H) = Z{H).

We have B(G) = Z(G) in the following particular situations: if G/R
has no compact factors and the radical R is simply connected of
type \E, or if G is a complex analytic group, or if G is minimally
almost periodic [14].

3* Some theorems on faithful representations* The main
purpose of this section is to prove theorems concerning faithful
representations of certain not necessarily connected Lie groups. For
the most part the methods make use of recent results of Hochschild
[10], which depend on extensive earlier work by Hochschild and
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Mostow, and of the work of Goto [3], [4] on faithful representa-
tions with closed range. We are grateful to Prof. Hochschild
for communicating the main arguments of [10] to us, and for other
helpful comments. Some of the details from [10] are included
below for the sake of completeness; in other places, arguments from
[10] are presented in substantially revised form due to our need
to construct faithful representations with closed range in GL(F).
In this section we shall write jy(G) = Aut (G) and -^{G) = Int(G),
for brevity.

The following preliminary results show that the connected Lie
groups G we have in mind (Levi factor faithfully represented, simply
connected nilradical) have faithful representations with certain addi-
tional properties.

LEMMA 3.1. Let G be a connected Lie group, R its radical and
S a Levi factor. If S has a faithful representation then the semi-
direct product R x oS, where S acts by conjugation on R, is a finite
covering of G. Moreover, if R is simply connected, then G=Rx(,S.

Direct calculations show that π(r, s) — r-s is a homomorphism of
G x0S to G; it is surjective since G — R-S, hence is an open map-
ping. Its kernel F is closed, normal in R XOS; clearly F = {(x~\ x):
x eR n S} and Rf]S is discrete in the Lie topology of S, from which
we see that F is discrete (hence central) in R x0 S. Thus π is a
covering homomorphism. Since S is faithfully represented it has
finite center, hence S f] R (and F) are finite If R is simply con-
nected, it has no proper compact subgroups, so Sf]R = (e) and F is
trivial.

LEMMA 3.2. Let G be a subgroup of GL(F), F a normal sub-
group compact in the relative topology (for example, a finite central
subgroup) and let U be a subset of G consisting of unipotent ele-
ments. Then there exists a finite dimensional representation p: G—>
GL (W) such that

( i ) Ker p = F
(ii) p(U) acts on W by unipotent operators.

Proof. Let G* be the algebraic hull of G in GL(F). Then F
is a compact and therefore algebraic subgroup of G* [23]. Since
F is normalized by G, G is Zariski dense in G*, and F is algebraic,
F is normal in Gr. By a theorem of Chevalley [1] there exists a
rational representation p of G* such that Ker p = F. Since p is
rational and U consists of unipotent elements so doeS|θ(!7). Clearly
then the restriction of p to G satisfies (i) and (ii).
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LEMMA 3.3. Let G be any 2nd countable locally compact group,
σ and τ representations of G on Vσ and Vτ respectively. If σ is
faithful and has closed range then σ 0 τ is also faithful and has
closed range.

Proof. For geG,

σ(g) 0 "

0 τ{g) _ '

If (σ 0 τ)(gn) -> T in GL (Vσ 0 Vτ) then clearly T is block diagonal,
consisting of blocks A, B; thus σ(gn) —> A and τ(gn) —> B. By the
open mapping theorem applied to a we know A — σ(g) for some
geG, and gn —> g. By continuity, τ(gn) -> τ(g), so B = τ(g) and T =
(σ 0 τ)(g) as required to show σ 0 τ has closed range. It is clearly
faithful.

PROPOSITION 3.4. Let G be a connected Lie group with faithfully
represented Levi factor S, and simply connected nilradical N. Then
there exists a faithful representation p: G —> GL (V) which maps N
to unipotent operators and p(G) is closed in GL(F).

Proof. We first prove the result except for closedness of p{G).
Let G —R-S be the Levi decomposition. Since S is faithfully re-
presented, we know by 3.1 that π: R XΘS->G is a finite covering.
As a covering map we have π(N(R XΘS)) = N(G) = N. Suppose we
had a faithful representation σ of R xΘ S which was unipotent on
N(R XOS). Then since Kerπ = F is a finite central subgroup, 3.2
would give a representation p of R XOS —> GL (F) under which
N(R XOS) acts unipotently and Ker1o = jF. Therefore p induces a
faithful representation of G under which N acts unipotently. We
may therefore assume G = R XOS.

Case 1. S = (e), that is G = i? is solvable. Here [i£, i2]~ £ JV
so R/N is abelian. Thus R/N = E x T, the direct product of a
vector group and a torus. If 7r: i? —> iϊ/iNT' denotes the projection
then π~\E) is a connected simply connected normal analytic sub-
group of R containing N and R/π~\E) ~ T. By Iwasawa's splitting
theorem, R — π~\E) xθT. Since π~\E) is simply connected, there
exists, by Hochschild-Mostow [9], a faithful representation px of
π~~\E) on V± which is unipotent on the nilradical of π~~\E), and in
particular on N. Now [π~\E), R] S [R, R] £ N, so pt acts unipo-
tently on [π~\E), R]. By Theorem 2.2, p. 215, of [9] there exists
a representation σ:R-^OL(W) such that V1

(Σ=W via a π~~\E)~
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equivariant imbedding, and a is unipotent whenever pλ is unipotent.
In particular σ is unipotent on N. Now Rjπ~\E) is compact. By
the Peter-Weyl theorem there exists a continuous faithful representa-
tion of Rjπ~\E). Its lift back τ to R is a representation of R with
Ker τ = π~\E). Then 7 = o 0 τ is easily seen to be faithful. More-
over 7 is unipotent on N since on π~\E), 7 = ff © /, and σ is
unipotent on N.

Case 2. G = R XΘS. By Case 1 there exists a faithful repre-
sentation 7 of i? on W which is unipotent on N. Taking differen-
tials we see that by Theorem 3.2, p. 128 of [9], y[G, R] is unipotent.
By 2.2, p. 215 of [9], 7 extends ϋ?-equivariantly to p on V such
that p is unipotent whenever 7 is unipotent. In particular, p is
unipotent on N.

By hypothesis S has a faithful representation. Let τ be its lift
to R xθS. Then Kerτ = i2. Now p®τ is a representation of Rx0S
which is faithful for if (p 0 r)(#) = 1 then g e R and p(g) = 1, there-
fore 7(0) = 1 and so # = 1. Clearly p 0 τ is unipotent on JV since
on i2 it equals p® I and ^ is unipotent on N.

Now there exists a faithful representation p of G on F which
is unipotent on N; but p(G) may not have closed range. To deal
with this condition we apply the techniques of M. Goto in [3] and
[4]. As in Case 1 discussed above, R = M x0 T where T is a
maximal compact subgroup of R and M — π~\E) where π: R-^R/N
is the canonical projection. Here M is a closed normal simply con-
nected subgroup of R and T[G, G] is a closed normal subgroup of
G. (The fact that [G, G] is closed in G follows from the existence
of a faithful representation p (Theorem 4.5 of [3]), and the normality
of the various groups from the fact that they contain the respective
derived groups.) Also since G is faithfully represented we have by
[4] G = STM and ST f] M = (e). Now the Levi decomposition of
[8, 9] is [9, 9] = [Q, x]Θ3, so that ST[G, Λ]£[G, G]T[G, R] = T[G, G] =
[G,G]T. Locally the latter is [G, R]ST = ST[G, R]. Since we are
dealing with analytic groups we have

ST[G, R] - T[G, G] .

In particular, ST[G, R] is a subgroup although ST need not be. Now
[G, i2] £ M. In fact [G, ϋ?] £ iV since it is represented unipotently
under any representation of G and in particular the adjoint repre-
sentation. Hence

G - STM = T[G, G]M .

Next we observe that MΠ T[G, G] £ [G, R] for if m e l n T[G, G]
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t h e n m = sty where seS, teT and y e[G, R] b u t my"1 e M Π ST =

(e) so m = y e[G, R], Since [G, R] is clearly contained in MΓ\ T[G,
G] we have

[G,R]=MΠT[GfG].

But then

G/T[G, G] = T[G, G]M/T[G, G] ^ M/Mf] T[G, G] = M/[G, R] .

Since M is simply connected and [G, R] is connected M/[G, R] is
simply connected. It is also abelian since T[G, G] 2 [G, G]. Thus
GIT[G, G] is a vector group. Thus, there exists a unipotent repre-
sentation σ of G whose kernel is T[G, G]. Since p is faithful so is
p 0 0". Since <o is unipotent on JV and a unipotent on G, p($σ is
unipotent on N. If we knew p@σ(M) were closed we would be
done; since R = M XΘT we would get ^ 0 CΓ(JB) = /O 0 σ(M)-p 0 σ(Γ)
where /o® <x(T) is compact since T is. Finally, since p®σ is faithful
and i? has closed range under it so must G by Theorem 2 of Goto
[3].

To see p 0 <j(Λf) is closed it is sufficient by [3] or [9] to show
p 0 ( 7 (expRX) is closed for each 1-parameter subgroup of M. If
Xem Π (10 [g, g]) then exp tXeikf Π T[G, G] = [G, β] for all ί; but
any representation of G is unipotent on [G, R], thus (p 0 σ)(exp ίX)
is unipotent for all t. As a unipotent analytic linear group it is
closed. If X 6 m - 1 0 [g, g], then tX$ 1 0 [g, g] for any t Φ 0. This
means that σ | exp RX is locally faithful. But since σ is unipotent
on G and in particular on exp {RX), o \ exp (RX) is faithful and
the 1-parameter group σ(exp RX) is closed. Then so is (σ 0 τ) (exp

by 3.3. This completes the proof of 3.4.

In what follows Aut(g) will denote the automorphisms of the
Lie algebra g and Aut (g)0 its Euclidean identity component. The
next two lemmas, outlined in [10], are given here for the sake of
completeness.

LEMMA 3.5. Let G be a connected Lie group, R the radical, N
the nilradical, and let g, r, tt be the Lie algebras. Then each a e
Aut (g)0 maps τ into n. If d: Aut (G) -» Aut (g) is the differential
map (an injective analytic homomorphism), let όzff ~ eZ'XAut (g)0).
Then . *$/' is a normal subgroup of finite index in Aut (G) which
contains Aut (G)o 2 Int (G) and induces trivial action on R/N.

Proof. Aut(g) is algebraic and Aut(g)0 is of finite index by
[22]. The derivations Der(g) constitute the Lie algebra of Aut(g)0.
By a well known theorem (see Jacobson, Lie Algebras, §3.6) D(τ)Q
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n for an Z)eDer(g); therefore, all automorphisms a = eD map r
into π, as do all the a e Aut (g)0. Now jy" is clearly closed, normal,
of finite index in Aut (G), so j * " 2 Aut (G)o 2 Int (G); clearly
induces trivial action on R/N.

DEFINITION. For a connected Lie group G let S~ — {τ e
τ leaves the Levi factor S pointwise fixed}, and let S/~r =
If « e ,j/(G) we have aagσrx = aa{g), so - >̂ ~(G) is normal in J
and in j ^ " ; hence J?~f^(G) is a subgroup of ,i>/" and J/"^"(G) is
a subgroup of

LEMMA 3.6. ,y'r-J^{G) is a closed, normal subgroup of finite
index in <W(G) which contains

Proof. Let r e ^ and aej^(G). Then ar\S) is a maximal
semisimple analytic subgroup and therefore is a Levi factor. By
Malcev's theorem, there is a g e G with aga~\S) — S, hence also
αα XS) = S. Now

agOΉaa'1^) — aga~1τ{sf) = aga"\sr)

for s G S, so (XgθΓ^<9~ aa~^ £ .^" and oΓ^JTΌί Q a~x^ag. Con-
versely, τα^α"1^) = aga~\s) => aa~ιτaga'\s) = s, so that a~ιJ^'ag =
OΓ\5?~ΌL. (Both inclusions were needed since ^7~ need not be con-
nected.) Now if a G j*f(G), there is a # G G such that α^7~t_^(G)α"1 —

we get α y ' ^ ( G ) α " 1 £ , / " J^(G) n ̂ ' since j ^ ' 2 ^ ( G ) , and con-
versely ^~^{G) Π jy '&J/^'^^G), for if ταff G J ^ ' , then τ e j / ' ^ ΐ
•Ĵ " and Γ G J Γ ' , Thus J ^ ' ^ ( G ) is normal in <s$f(G).

To see that ^ ' ^ ( G ) has finite index in S*f(G) it suffices to
show that ,9^J?{G) has finite index, since \Jf\^'\ < ©o. For each
α G A(G) choose a ^ e G as above (nonunique, depending on a) so
α^α:|SG j ^ ( S ) . Let (~) be the map sending j%f(S)-*
Then a i-> (ασα | S)~ is a map from J^(G) to the finite group
J?(S). When do α and β have the same image? Same image =>
aga I S = aSQo(ahβ) \ S for some s0 e S => ga{s)g~1 = Sohβ^h"^1 for all
seS=> oi(s) = g^Sohβ^ig^Soh)'1 — axβ(s) all S G S , for some x eG ==>
(since ^ ( G ) is normal in s*f(G)) a(s) — βay(s) all s e S, for some 7/ e
G => a^β^a G J^" or /S"1 :̂ e ^(G)^ — ̂ ~<J^(G). Hence /3, a in
different ^"^J^(G) cosets => β, a have different images, so that

Finally, we show J^\J^(G) 2 J^(G)0. Let α e j / ( G ) 0 ; then α =
an where each ak lies on a 1-parameter group. Since
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is a group we may assume a itself lies on a 1-parameter
group a(t) in J^(G\ Q jzf'. Choose geG so t h a t aga\ Sejzf(S).

Since w = [ J ^ ( S ) : ^(S)] < oo, («,« | S) = («,«)• | S e ^ ( S ) . Due
to normality of ^ ( G ) , we may write (α,α)Λ = α*αv = αff,,α* for
suitable g\ g" eG. Thus there is an x e G such that axa

n \S = as\S
for some seS (x and s depend on a). Now consider the 1-para-
meter group a(t). Choose g(t) and s(t) so that agU)a(t)n \ S = α s ( t )

where #(£), β(ί) are suitably chosen points in G, S; then
^7i)(Xg{t)a(f)n \ S = id\S, o r ah{t)a(nt) \ S = i d \ S f o r s u i t a b l e h(t) e G.
This means that ah[t)a(nt) e J7~ and since everything is in j#" ,
α A ( ί ) φ ί ) G ^ " ' , so that α(nί) e ̂ ~f^{G) for all ί e i ί . Choose t so
that wί = 1; then we get α

We now come to the main result of § 3, namely 3.7. This result
is an amplification and strengthening of the theorem of G. Hochschild
in [10]. It also represents an extension of the results of Goto in
that p(G x (/)) is closed.

THEOREM 3.7. Let G be a real (or complex) connected Lie group
whose Levi factor is faithfully represented. (In the complex case
this is automatic) and whose nilradical N is simply connected.
Then the semidirect product G x θ J%f(G) has a faithful finite dimen-
sional real (or complex) analytic representation p with the property
that p(G x&(I) is closed.

Note. In particular, by the open mapping theorem, p is a
topological isomorphism of G x θ^f(G) with its image, and p(G x (/))
is closed in p(G xθJϊf(G)) and hence in the general linear group.
It is in this form that we will apply 3.7.

Proof. By 3.4 choose a faithful finite dimensional representation
p of G which is unipotent on N such that p(G) is closed. Let RP

denote the space of representative functions associated with p. Rp

is a finite dimensional space of analytic functions on G which is
stable under left and right translation. In particular, RpoJ?(G) —
Rp, and

Now Rpo^"t has finite dimensional span. To see this we apply Lemma
2.1, p. 213 of [9]. We need to verify that ^(τ^)^"1) is unipotent
for all τ e άf~' and x e R(G), and that ρ(τ(x)x~1) = 1 for all τ e άr' and
xeS. The latter point is obvious by definition of ά^. Since J ^ ' S
jy" and j / ' acts trivially on R/N, τ(x)x~1 e N for all τ e S" and
x e R; however since p is unipotent on N the result follows. Let
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and let l.s.{Rpo&}=W. Then & is an open normal
subgroup of j^(Gr) of finite index and W is a finite dimensional
space of analytic functions on G stable under έ%. It is also stable
under right translations since

RJJ°β){v) = f(β(yχ)) = (RβMβy).

and Rp is stable under right translations.
Form the semidirect product G xθ^? and let it act on W so

t h a t [(x, β)w](y) = w(β-χyx)) == Rx(wβ)(y) f o r x,yeG a n d βe^;
here wβ(x) — wiβ^x). These are linear operators on W, and it is
easily seen that we get a continuous linear action of the semidirect
product on W. This representation, which we call σ, is faithful on
G x (I): if (x, I)w = w for all w e W, then in particular for the
matrix coefficients of p we get pi3 {yx) — pi3 (y) for all y eG, hence
p(yx) — p(y) for all y, and taking y = e we get jθ(α ) = / which
implies x = e since p is faithful.

We now show that the image σ(G) of G x (/) under this repre-
sentation is closed in GL(W). Suppose σ{XntI)-> TeGL(W); then
for the matrix coefficients ρί3 we have σ(xn9 I)pi3 —> r(^€i) for all i, j .
But σ(x, I)pίά = Rxpij, an element of RP9 for all xeG; thus, T ^ ) e
J?̂  and T leaves Rp stable. Now consider the action G x Rp-+ Rp

by right translation. This representation of G is faithful since p is.
If G had closed range under it, the open mapping theorem would
insure that there exists an x e G such that T\RP = RX\RP and xx—>x
in G. But then by continuity, σ(xn, I) —> σ(ίc, /) so Γ = σ(x, I) and
we would be done.

To see that the image of G in GL (Rp) is closed, suppose T e
GI (Rp) and RXn —> T for some sequence of xn e G. Then RXn(pί:}) —>
T(pz3 ) point wise for each ij. Also, R~^ = RXn_1—> T~ι in GI (i2p) so
R*l(Pij) ~^ T~\ρίό) point wise for each ij. Evaluation at g — e yields
PaiXn) -> tiά and p^xi1) -> s^ where ί̂  = Γ^/e) and s^ = T-'p^e).
Since this holds for all i, j we get p(xn) —> ί and ^(a;*1) —> s where
ί = (tij) and s = (sί3 ) are square matrices. In particular, p(xn)p(Xn1) =
p(xnx?) = e-+ts so that t is invertible and p(xn)-*t in GI(T^).
Since ^ has closed range and is faithful the open mapping theorem
furnishes us with an xeG so that xn—>x. Hence RXn—>Rx so T=RX.

LEMMA 3.8. Let p:H—>G~L(V) be a continuous faithful repre-
sentation , let G 2 H with finite index, and define r = Ind(i ί tG, p).
If L Q H is any subgroup on which p is faithful with closed range
piL) Si GL (V), then τ is faithful with closed range on L.

Proof. If G = Uί-i-Jff̂  is a coset decomposition then τ(T) =
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U?=i τ(H)τ(xt); if τ(H) is closed, then so is z(G). The representation
space of τ is

W = {/: G > V: f(hx) = ph\f(x)], nil xeG,heH) .

Let W0 = {fe W: supp / £ H} and Wx = {fe W: supp / n H = 0}. These
are clearly stable under right translation by H. If / e TF, then
f=Φ fH+f-φGH where ^ is the characteristic function; the summands
obviously satisfy the covariance condition defining W, so W = Wo©
Wlf a direct sum of iϊ-modules. Now Wo is isomorphic to V under
the map v\-+fv where fv is the unique element of Wo such that fv(e) =
v. If heH and veV, then τhfυ(e) = /„(/&) = ph(v) = fPhlv)(e) so that

τhfv = fPh(V) and t h e m a p v ^ / , is ίZ-equivariant. Since p is faithful

on L and p(L) closed, t h e same is t r u e of τ\L on WQ9 and hence

for τ\L on all of W by 3.3.

Completion of the proof of 3.7. Now G xΘ& has finite index
in G xθ*Sx?(G) since & has finite index in j^(G). Form the induced
representation J = Ind (G x < ^ f G x 0^f{G)f σ), a finite dimensional
continuous representation of G xθj^(G). By the proof of 3.8,
J\Gxβ& contains a copy of σ; since σ is faithful on G x (/), J is
also. The faithful linear representation d: J^f(G) —• Aut (g) S GL (g),
given by the differential, when lifted to G XΘJ^(G) gives a linear
representation dr with kerc£~ — G x (I). Then eZ~® J is a faithful
representation of G xθSsf{G). Next we show ( ^ © J ) ( G x (I)) is
closed; since J\G x (I) is faithful, it suffices, by 3.3, to show that
J(G x (I)) is closed. But by 3.8 this follows since σ has closed
range and is faithful on G x (/). This proves 3.7.

The following results on faithful representations are not con-
sequences of the results of Hochschild discussed above. We include
them since they have proved to be useful in certain situations such
as the study of bounded displacement, as in § 5.

THEOREM 3.9. Let G be a faithfully represented connected Lie
group with simply connected radical. Let M be any connected Lie
group containing G as a normal Lie subgroup, with M/G abelian.
Then M has a faithful linear representation.

In particular, if a 6 J^f(G) lies on a 1-parameter subgroup then
G xaZ is faithfully represented, where Z acts through powers of
a. If the closed subgroup in j*f(G) generated by some power an

of a is compact, then G xaZ is again faithfully represented, for
then {ank:keZ}^ is a torus of finite index in {ank}~. Applying 3.9
and then taking induced representations yields this result.
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THEOREM 3.10. Let G be a (not necessarily connected) Lie group
with a faithful linear representation p: G —>GL(F), and let ae
j*r(fi). If there is a TeGL(V) [such that p(a(g)) = Tp(g)T~ι for
all geG, then G xaZ has a faithful representation.

In particular, if some power of a is inner, say ap = agy then
p(ag{x)) — p(g)p(x)p(g)'1 and one again takes an induced representa-
tion.

Proof of 3.9. Let M = R(M) S be the Levi decomposition of
and π:M—>M/G the canonical map. Then π(S) is a semisimple
analytic subgroup of an abelian group and hence is trivial so SSG.
It follows that S is a maximal semi-simple analytic subgroup of G
and so is a Levi factor of G. Since R(G) is characteristic in G and
G is normal in M, R(G) is normal in M. This means that R{G) is
a normal subgroup of R(M). Let m, g, and % denote the lie algebras
of M, G, and S respectively; then we have m=x(m)(&$ and g = x(g)0
§. It follows jthat m/g ~ x(m)/x(g). Thus R(M)/R(G) is abelian, so
i?(G) 2 [i2(M), i?(ikf)]~. As a simply connected solvable analytic
group, R(G) has no nontrivial compact subgroups. The same is
true of [R(M), R(M)]~. It follows from [15] Theorem 1 that since
S has a faithful finite dimensional representation (as a subgroup of
G) and [R(M), R(M)]~ has no nontrivial compact subgroups, the
analytic group M also has a faithful representation.

Proof of 3.10 (adapted from [8]). By induction it follows that
p(an(g)) = Tnρ{g)T~n for all neZ and geG. Define φ: G xαZ->GI(F)
by <P(g, n) = ρ(g)Tn for #e(? and weZ. Then φ(g, ri)φ(g'fn') =
p(g)Tnp(g')Tn' = p(g)p(an(g'))TnTn' = p(gan(g'))Tn+n' = φ({g, n)(g\ n')),
φ is a group homomorphism, and if we give G xaZ the product
topology with Z discrete, then φ is continuous. Now define σ:
GxaZ-+GI(W), where W= 7 0 V, by

o
σ(g, n) = 0 e2πiλn

φ(9,

where geG, %eZ, and λ is an irrational number.
Z(GI (F)), α is a continuous representation of G xaZ on W. If
</(#, w) = I then 9>(flr, w) = / = c2πίλnφ(g, n). Thus e2;ri;u = 1. If w =s± 0
then λ would be rational, a contradiction. But then φ(g, 0) = p(g) = I.
Since |O is faithful, g = e also.

4* Bounded orbits* In this section we prove 1.1 and 1.3. Here
G is a connected Lie group and & £ J ^ subgroups of Aut ((?).
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THEOREM 4.1. Let V be a vector group and *$>/ an arbitrary
subgroup of Aut(F) = GL(V). Then Vc = B(V, sf) satisfies the
conditions (i)-(iii) in 1.3. In the latter part of (iii) we can actually
insure that supp μ — (j%fχ)~.

Note. At the same time we are, in effect, correcting a gap in
Theorem 11 of [7] which is due to a subtle point in applying the result
from [16] cited below. That result applies only to closd subgroups
of GL(V). As Raghunathan has pointed out to us by way of an
example, if J^f is not closed then boundedness of all the cyclic sub-
groups Az = {An: neZ}, Ae Jϊf, does not insure that <$/~ has this
property, and so the original group szf need not be relatively
compact in GL(F).

Proof. We use the following result on closed linear groups,
given as Lemma 7.1 in [16].

LEMMA. // G is a closed subgroup of GL (V) and if all cyclic
subgroups gz={gn:neZ} are bounded (<=> compact closure in GL(F))
for each g GG, then G is compact.

Since Jzfx and όzf~% have the same closure, it is clear that
B(V, J*f) — B(V, J^~~); moreover, a finite Borel measure on V is

-in variant <=> it is ^"-invariant. Thus we may replace j y by
in proving (i) and (iii). By the following lemma, a layering

for Szf~ is automatically a layering for «j^, so we also make this
replacement in dealing with (ii).

LEMMA 4.2. Let G be a locally compact group and G x X-^X
a locally compact G-space. For any dense subgroup H £ G the
bounded elements are the same, B(X, H) = B(X, G). A layering
from X down to Y with respect to G is also a layering with respect
to H.

Proof. Apply the following argument to each layer. If xeX^
X€_! = Li has a relative neighborhood V with gk V —> °o in Lt for
suitable {gk} £ G, let V be a neighborhood of x and U a neighbor-
hood of the unit in G such that Z7 V £ V. Choose hkeH such
that uk = gzΊιk e U. For any compact K £ Li9 hkV Π K = φ even-
tually, for if kn[i) = hnU)v'nW=gMi)unU)v'nW w i t h n(i)-+oo9 then gnH)VΓ\

K Φ φ, a contradiction.

Thus we may assume ό>/ is closed in GL(F). Since V is a
vector space, it is evident that Vc = B(V, J*f) is a vector subspace
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and hence closed, which proves (i). Once (ii) has been proved, we
know that any ,j>/'-invariant, finite Borel measure on V has supp μ £
Ve. The rest of (iii) has been done in 2.5. As for (ii), let us pass
to the complexification Vc and the closed subgroup jχfc £ GL(FC)
corresponding to jy\ It is clear that V = V + ίO is ^-invariant,
that B(V, <$/) = (V + ίO) Π B(VC, S/c), and that a layering in Vc

induces a layering in V by intersection with V + iθ. Therefore we
may assume V is a vector space over C.

Each T 6 j y has a Jordan decomposition Γ = Ts-Tu (commuting
operators, not necessarily back in «ĵ ) such that Tu is unipotent and
Ts diagonalizable. For T e j%f let Vτ = C-span {v e V: Tuv = v, Tsv =
μv for some \μ\ = 1}; this vector space consists precisely of the
points v with bounded orbit under the cyclic subgroup Tχ generated
by T. [If W is the set of v with bounded Tz-orbit, this is a Tz-
invariant subspace, so Tz induces a bounded group of linear operators
on W. For a suitable inner product on W, Tz\ ^consists of unitary
operators, so that T \ W is diagonalizable, Tuw = w on W, and
Vτ. The converse inclusion is obvious.] Let V* = f) {Vτ: Te
the subspace of vectors bounded under the iterated action of each
operator T£,$>/. Obviously this j^-invariant subspace contains Vc.

We assert that there is an j^-invariant layering from V down
to V*. We first show that for each Γ e j / there is a Tz-invariant
layering from V down to Vτ. Then we invoke some straightforward
general facts about layerings proved in [5]; a slight rewording of
the discussion there shows they are valid for the strengthened
notion of layering used in this paper. By [5], Lemma 8.6, we can
replace the Tz-invariant layering down to Vτ with an j^-invariant
layering down to some j>^-invariant subspace Uτ such that Vτ 2
Uτ 2 V*. (Note: The connectedness hypothesis mentioned in that
lemma is superfluous, so it may legitimately be applied here.) Then
by [5], Lemma 2.2, there will be an ^-invariant layering from V
down to V*. Notice that finitely many Vτ intersect to give F*.

To produce the Tz-invariant layering from V down to VTf it is
not hard to adapt the self-contained discussion of Proposition 8.1 of
[5] to actions of Z x V—> V instead of R x V~> V. Actually, the
arguments in [5] can be simplified, so for the sake of completeness
we give these details. [If Γ e j / and V is a Γ-invariant subspace
then VT = V' Γ) Vτ; furthermore, the Jordan decomposition of T\ Vf

is (Tβ I V')(TU I V). By induction on dimension of V it suffices to
show that if V Φ Vτ, there is a T-invariant subspace V Φ V 2 Vτ

such that V ~ V satisfies the layer condition. A unipotent operator
such as Tu lies on a 1-parameter subgroup and has the form Tu =
eN for some nilpotent N, hence || T;\\ £ p(n) = ΣLo \nk\ \\N\\k/k\
then, \\v\\/p(ri)^\\T?v\\^p(ri)\\v\\ for all veV,neZ. Let V =
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φί = 1 Vt be the decomposition of V into the distinct eigenspaces of
Ts, say with T8v5 = μάvj for Vj£ Vs. Let V = φ{F/. \μά\ = 1}. If
v = vt + + vr& V then vy ^ 0 for some index j such that |^j | ^
1. Take 5 = | | ^ | | , and K > 3 > 0, and form the neighborhood W=
{w eV:\\Wi\\ ^ K all i, \\Wj\\ ^ δ/2}, where ||ι;|| is any convenient
norm such that ||i>||2 = Hi jl2 + + \\vr\\\ Then for all neZ,we
W,

II τ*w||2 - ιι Γ:(ΣKwOII2 ^ Ift r II Γ ^ I I 2 ^ l A r w p W .

Letting n—» °°, we can insure that inf {|| T*ti7||: w 6 W) -> + ©o, as
required.

Thus we may assume \μt\ — 1, all i: Ts generates a bounded
(unitarizable) group of operators on V. If Tu = I, then V = Vτ

and there is nothing to prove. If Tu = eN Φ /, then etN commutes
with Ts for all teZ, hence for all teR since etN is a polynomial.
Thus T8 commutes with the infinitesimal generator N, and the
kernels (0) £ Ker N £ £ Ker JV^"1 £ Ker iSΓw = F (m ^ 2 since
N Φ 0) are invariant under Γβ, T. Let V -= Ker iNΓ '̂1, F " = Ker
Nm~2. In demonstrating the layering property for a point voeV~
V we may assume V" = (0); if not, we can pass to the induced
operators i\Γ, T~, and Tu = e^" on F / F " and lift our conclusions
back to F. If F " - (0), then v0 e V~ V => N(vQ) e V - F " , so
iV̂ o ^ 0, while for any ^6 F we have T£(v) = ekNv = v + kN(v). Pick
any open neighborhood W of Nv0 that is bounded away from zero
and let n(ΐ) < n(2) < be chosen so that n(k)W—> °° in F. Then
take any compact neighborhood U S F ~ F ' of v0 such that N(U)Q
W. We get

QU+ n(k)N(U) = n(k)\—^—ϋ + N(U)]
L ^ ( A J ) J

(F - v)

for all large A?. Obviously then T:{h)(U)-± oo in V - F'.]
Thus we get an j^-invariant layering from F down to F*.

Now, each cyclic subgroup in j ^ | V* is bounded in GL (V*) since
Te j^f => ΓI F* = Γs I F^; if Jϊf \ V* were a closed subgroup of
GLCFJ, we could invoke the lemma from [16] mentioned above to
conclude that J^ \ V* is compact, from which it would follow that
V* = Ve. However (and this is the gap in [7]), there seems to be
no reason , j ^ ] F* should be closed, and we know that boundedness
of the cyclic subgroups is not a property which can be passed from
j y I F* to its closure in GL(F*). We circumvent these difficulties
as follows. Write V1= F*, J ^ = ̂ f \ Vt with closure J^~ Q (χL(V^).
Since a group and its closure determine the same subspace of bounded
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vectors, we have

Vc = B{V, j * 0 - B(VU j*[) = B(VU ,M~) C F* .

As above, there is a layering from V to V1 — V* under the action
of j&. In passing from >S%ζ (all Te J ^ are semisimple with eigen-
values of absolute value 1) to ,J^ ~ we may pick up operators having
unipotent part, or eigenvalues \μ\=£l; thus (FJ* = Π {(FJri Γe
Jϊζ~} may be smaller that Vx. If so, we begin a finite induction.
Define F2 = (FJ*, .£*£ = >X | F2 = J ^ | F2 with closure j ^ 2 ~ Q GL(F2).
Again, there is a layering from V1 down to F2 under the action of

, but this is in fact a layering with respect to the action of
(alias J^J) in view of 4.2. Thus we get a layering from V

(through FJ to F2 under the action of jaΛ If, once again, (F2)* =
Π{(F2)Γ: Γ 6 J ^ - } ^ F 2 we continue, defining V3 = (V2)*, S$ζ= J ^ | F 3 =
A | F 3 with closure j^J~ in GL(F3), and so on. This process must stop,
say at the λ th step since we lose dimension. We now arrive at a
layering from V (through Vl9 , Vk^) down to Vk and we have
Vk = (FJ* = ΓΊ {(Vk)τ: Te.Sfk-}. Thus each Te.M~ is semisimple
with eigenvalues of modulus one. Since J^£~ is a closed linear
group we now apply [16], Lemma 7.1, to conclude that j ^ ~ is
compact. Thus (F*)* = B(Ffc, ..i^ί") = Fβ. This completes the proof
of (ii), and hence of 3.1.

It is easy to extend this to continuous affine actions on V by
imbedding V as a hyperplane in a larger space W, and realizing
the action as the restriction of a linear action on the larger space,
see the discussion of 2.7. We now make a crucial generalization of
this simple idea.

Proof of 1.3. In G let K be the largest compact connected sub-
group in the nilradical N. This is actually a characteristic subgroup
of G and G/K has simply connected nilradical N/K. [By examining
the adjoint action of K on π, we see that any compact connected
subgroup is central in N, hence K is just the largest compact con-
nected subgroup normal in N. The latter description is canonical,
so K is characteristic in G - invariant under Aut (G). N/K is clearly
simply connected, having no proper compact subgroups. Next let
N' be the inverse image under π: G->G/K of N(G/K); N' is normal
and eventually we have [n', [•••[n',n']" ] £ ί . Suppose Xen'.
Then the connected group of conjugations aexvtΣ\K lies in the
identity component (Aut K)o, which by a result of Iwasawa [11],
Theorem 1, is equal to Int(J£"). Since K is abelian, we get [X, ϊ] =
0 and [n', ϊ] = 0, so V is a nilpotent ideal in g. Hence tι' = u and
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N(G/K) = N/K]. Let j#" be the induced subgroup of Ant (G/K)
and suppose 1.3 proven for G/K and j ^ " . Since K is compact it is
clear that; (i) Szfx is bounded <=* J^'π(x) is bounded in G/K, so that
B(G, ^f) = π~\B{G/K, Jx?1)) is closed, and (ii) an jy'-invariant layer-
ing in G/K pulls back to an j^-invariant layering in G. Now (i) +
(ii) ==> finite j^-invariant Borel measures must be supported within
B(G, jzf). Conversely, if xeB(G, jzf) then πxeB(G/K, Jϊfr) and
there is an jy"-invariant measure μ' such that πx e supp μf £ B(G/K,

This lifts back to an ^-invariant measure on G if we take

/> = (μ', \/(xk)dk) all / e Ce(G) .

Obviously x e supp μ = π~Xs\xpip μr) £ B(G,
Thus we may assume that G has simply connected nilradical.

(The faithful representability of Levi factors is unaffected by this
transition.) By 3.7 there is a faithful linear representation θ: Gxσ

Aut (G) -> GL (F) such that G' = Θ(G x /) is a closed subgroup of
GL(F). By imbedding GL(F) as S L ( F 0 JR) in the usual way, we
can assume that range (θ) £ SL (F), so that G' is a closed set in the
space W = End (F) of all linear operators, and θ: G —> G' is a topo-
logical isomorphism. Let Jϊff = β(e x J ^ ) . Now the action of J ^
on G is realized as the action of Stf' by similarity transformations
on the closed J^'-invariant set G' £ End (F): if A = 0(β, α) and X=
θ(g, /), we have

θ{a(g)) = ^((e, α) (flr, 7) (e, α)"1) = AXA"1 all geG, ae

The action *$/' x W—> W via (A, X) -+ AX A"1 is a linear action on
W. Since G' is closed, j^'-invariant (and closedness of G' is absolutely
essential here!), we have

B(G', J^f1) = B(W9 j#") Π G',

and any layering from W down to B{ W> jtf") by closed j^'-invariant
sets obviously induces such a layering from G' down to B(G\
Since Θ:G—>G' is equivariant with respect to j ^ , j ^ / ; , 5(G,
identifies with B(G', J&"). Thus (i) and (ii) follow for G, from our
previous result 4.1 on linear actions; as usual, (i) + (ii) ==> any finite
jy-invariant Borel measure has support in B(G, Jzf). As for the
converse, let g e B(G, Jzf), X = θ(g) e G'. For the linear action of
j&" we can actually find an jy'-invariant measure μ on W such
that suppμ = ( J ^ ' X)", see 4.1. But (j^'-X)" £ G', so μ is really
a nonzero measure on G' with Xesuppμ £ B(G', Jzf'). This can be
lifted back to G as required to finish the proof of part (iii). This
completes the proof of 1.3.
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Note. In the nonlinear case, unless the nilradical is simply con-
nected we do not seem to be able to take x e B(G, jzf) and find an
j^-invariant measure μ with suppμ = ( j y #)~, rather than («J^ #)~£
supp/ί £ JB(G, j y ) . The possibility of doing this gets lost during
the transition from G to G/K if we have to deal with compact sub-
groups in the nilradical.

The density Theorem 1.1 now follows easily from 1.3.

Proof of 1.1. We may assume j&, & are closed in Aut(G), see
2.10. Let xeG have bounded ^-orbit . Then there is an ^ - i n -
variant finite Borel measure μ ^ 0 such that #esuppμ £ B{G, &).
Pushing this around by elements of *5%f and taking an average over
*$/\& we get a -finite j^-invariant measure v on G: define (Taμ,
/> = <Λ, f°a) for a e Aut (G), so that Taβμ = Taμ for all a e
β e &. If λ is the finite volume on jy/^i* we take

\ t <Taμ, f)d\(a) all fe CC(G) .

Clearly ||v|| < oo, Tav = v for all α e j / , and

supp v = (U supp 2V0~ .

Thus we get x e supp /« £ supp v £ ΰ(G, J ^ ) and j&x is bounded as
required.

Can one drop the condition on the Levi factor in G, thereby
obtaining 1.1-1.3 for all connected G? There is a natural test case:
G a simply connected semisimple Lie group with infinite center. By
direct calculations, which we omit, we have shown that the results
are true when G is the covering group of SL (2, R). For arbitrary
simply connected semisimple groups, it would suffice to verify that
closures of conjugacy classes have the following geometric property:
let π: G —> G/Z(G) = Gx be the covering homomorphism. For x e G,
y e Gx let Cx, Cy be their conjugacy classes and let Cx, Cy be their
closures.

Conjecture. If xeG and y = π(x) then π: Cx—>Cy is surjective

and proper (inverse image of compact is compact).

If x is a semisimple element, then Cx is already closed and the
desired property follows easily; however, to derive 1.3 one needs to
know that all classes have the property. Further work on this
problem will be reported later.

Remark on bounded orbits. If G x X->X is a locally compact
G-space, an element x with bounded orbit G x may actually have
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the property:

* There is a neighborhood U of x with infinitely many disjoint
transforms {g^ U: j — 1, 2, •}.

For the actions of automorphisms we have been considering, j*f x
G —> G where *$/ £ Aut (G), this kind of behavior cannot occur;
hence, the terminal set in any j^-invariant layering G — Xo 2 2
Xm must contain B(G, j ^ ) . There does not seem to be direct proof
of this from general arguments about compactness, etc. However,
it does follow from part (iii) of 1.3: if x e B(G, jzf) then there is a
finite, j^-invariant Borel measure with #esuppμ. Since \\μ\\ < °°,
suppμ is forced to lie within the terminal set for any layering, so
B(G, jzf) £ Xm; in particular, property (*) cannot hold for x.

In [5] there is a (harmless) misstatement concerning this point,
see pp. 226 (5b) and 227 (5t). These remarks are never really used
in the paper and may be deleted. Actually, the assertion being
made is true, as a consequence of the main theorems of the paper;
it does not seem to follow from general compactness arguments, as
implied in the original lines.

5* Bounded displacement of automorphisms* We now take
up discussion of Theorem 1.2, and some of its variants.

LEMMA 5.1. Let G be a connected Lie group, A 2 B closed sub-
groups, and a e Aut (G). For any compact characteristic subgroup
KQG, form G~ = G/K, A~=AK/K, B~=BK/K, and let αeAut((Γ)
be the induced automorphism. Then

( i ) A/B has finite volume <=> AΓ\B^ does.
(ii) disp (α, A) is bounded >̂ disp (α, A") is bounded.

If K contains the largest compact connected subgroup in the nil-
radical N, then N(G/K) = NK and N{GjK) is simply connected.

Proof. Clearly AC, IT are closed in G". In (i), (=») follows from
2.10 and (*=) from compactness of K. In (ii), (=>) is trivial and the
converse follows since ^(disp (α, A")) 2 disp (α, A) is compact. The
last point follows from the remarks at the beginning of the proof
of 1.3.

Now we are ready to prove 1.2.

THEOREM 5.2. Let G be any connected Lie group with Levi
factor S which is faithfully represented. Let B ζZ A be closed sub-
groups of G such that A/B has finite volume, and let αeAut(G).
If disp (a, B) is bounded then disp (a, A) is bounded.
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Proof. Factoring out the largest compact connected subgroup
in N( = largest compact connected subgroup normal in N), we may
assume that N is simply connected in view of 5.1; this does not
affect the condition on the Levi factor. In G x σ Aut (G) we have
(g, I)(e, a)(g, I)'1 = (ga(g)~\ a) for all g e G. If we now consider g
lying in either A or B, it follows that the orbit OB(e, a) under con-
jugation by B x I is bounded <=> disp (a, B) is bounded, and similarly
for the orbit OA(e, a) under A x I. Now take a faithful representa-
tion Θ\G x σ Aut(G)-^GL(F) as in 3.7, such that G' = Θ(G x /) is
closed. By making a further imbedding of GL(F) into SL(VφR)
we may assume G' is a closed set in W = End (V). Now G x (a) is
invariant under congujation by elements of G x /, and S=θ(Gx(a))
is a closed G'-invariant set in W if we let G' act on W by similarity
transforms, X -> AXA~\A eff, X e End (V)). Obviously θ:Gx (α) ->
S is an equivariant homeomorphism. Letting Af = Θ{A x /), B' =
Θ(B x I), it follows from 1.1 that these have the same bounded
elements in W: B(W, Af) = B(W, B'). Since S is closed, B(S, A') =
S Π B(W, A') = S n B(W, B') - 5(S, S') Transferring this back to
G x (a), we see that OB(e, a) bounded => OA(e, a) bounded, which
proves the theorem.

The restriction on the Levi factor in 5.2 can be removed in
certain special circumstances. We have not, as yet, been able to
prove Theorems 1.1 and 1.3 in these cases.

PROPOSITION 5.3. Let G be a connected Lie group, H a closed
subgroup with G/H of finite volume, and αeAut(G). Take the
linear Lie group Ad (6?) (in its Lie topology ~ G/Z(G)) and suppose
that Aά(G) has no automorphisms of bounded displacement. If
disp (a, H) is bounded, then a has bounded displacement on all ofG.

Proof. Clearly a induces an a e Aut (Ad(G)). If π: G -> Ad(G)
is the adjoint representation, then Ad (G)/π(H)~ has finite volume
by 2.10. Since disp (a, π{H)) is bounded, the same is true of disp
(a, π{H)~). Since Ad (G) is a linear Lie group, its Levi factor is
faithfully represented; thus, by 5.2, disp (a, Ad (G)) is bounded, hence
a = id. This means φ(g) = a(g)g~ι e Z(G). It follows that the func-
tion φ: G —> Z(G) is a continuous homomorphism. In particular Φ(H)~
and φ(G)~ are closed subgroups of Z(G) with φ(H)~~ compact, since
disp (a, H) is bounded. By 2.10, φ(G)~/φ(H)~ has finite volume, and
is hence compact since Φ(G)~ is abelian. Thus φ{G)~~ is compact and
a has bounded displacement.

As noted in the proof, disp (a) in fact lies in a compact central
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subgroup of G.

COROLLARY 5.4. Let G be either minimally almost periodic,
complex analytic, or reductive. If H is a closed subgroup with
G/H of finite volume and if ae Aut (G), then disp (a, H) is bounded
<=> disp (a, G) is bounded.

Proof. If G is complex analytic, then the Levi factor is faith-
fully represented and this result already follows from 5.2. If G is
minimally almost periodic, so is Ad (G), which therefore has no auto-
morphisms of bounded displacement [14]; thus we may apply 5.3.

If G is reductive then G = Z(G)0 [G, G] where [Gf G] is semi-
simple. The largest compact normal connected subgroup K(G) con-
tains the product C of the compact factors in [G, G], since C is
normal; by 5.1 we may assume that C is trivial. But then Ad(G) =
Ad ([G, G]) also has no compact factors, and therefore has no auto-
morphisms of bounded displacement [18].

COROLLARY 5.5. Let G be a connected Lie group, H a closed
subgroup with G/H of finite volume, and let αeAut(G). Suppose
that G/R has no compact factors, and that the radical R has a type
E Lie algebra or is 2-step solvable. If disp (a, H) is bounded, then
a has bounded displacement.

Proof. If R is not simply connected then it has a proper central
torus [14], which by 5.1 we may assume is absent. Assuming R
simply connected, the proof works by induction on the degree d of
solvability of R. If eZ = 0 then G is semisimple without compact
factors and so is minimally almost periodic, and the result follows
from 5.4. In general, let V be the last proper term in the derived
series for R, a closed vector group characteristic in both R and G.
Then R/V is simply connected solvable of type E and the radical of
G/V has lower degree of solvability; also, G/R = (G/V)/(R/V) and
there are no compact factors. Now a induces a e Aut (G/V) and
disp (a, π(H)~) is bounded, where π:G —>G/V is the canonical map.
By induction, a has bounded displacement on G/V; but by [14] it
must be trivial on G/V, so Φ(g) = Oί(g)g~1 e V for all geG. Now
φ: G -> V is a continuous map which satisfies the cocycle identity:
Φfoiffi) = Φigΰ OiΦi^gϊ1- If *> denotes the Lie algebra of V then
exp: Ό—> V is a diffeomorphism, and ψ(g) = log φ(g) is bounded on a
subset of G if and only if φ is. By the Campbell-Hausdorff formula,
since V is abelian and Int (G)-stable, we get

log (g
1
φ(g

2
)gϊ

1
)

Ad
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Thus Ϋ is a 1-cocycle with respect to the adjoint representation of
G on t>. Since disp (a, H) is bounded, φ \ H is bounded and so is
ψ\H. By 2.6 ψ is bounded on G, and so is φ; a has bounded dis-
placement.

If R is 2-step solvable then [R, R\~ is abelian, and is the direct
product V x T of a vector group and a torus. The Γ is character-
istic in G, and by 5.1 may be assumed to be trivial. Now G/Fhas
an abelian (type E) radical. By the previous paragraph, d e
Aut(G/F) is trivial, so φ(g) = a(g)g~1e V for all geG. Now we
may again argue as above.

6* Infinite dimensional representations* In this section we
deal with two infinite dimensional analogs of the Jϊ-fixed/G-fixed
results of [14]. One of these uses a recent generalization of the
Borel density theorem, given in [13]. If G operates on X then it
also operates on Me(X) = finite Borel measures with compact support,
giving rise to an infinite dimensional linear representation.

THEOREM 6.1. Let G be a locally compact group, H a closed
subgroup with G/H of finite volume, and G x V—> V a linear action
on a finite dimensional vector space V. Assume that

( i ) G is minimally almost periodic, or
(ii) G is complex analytic with holomorphic action, or
(iii) G is solvable linear Lie group with only real eigenvalues.

Then any μeMc(V) which is H-invariant is also G-invariant. Fur-
thermore, if

(iv) G is a linear Lie group such that G/R has no compact
factors, and the radical R satisfies (ii),

then the same conclusion holds.

Proof. If μ is if-invariant this means it is iϊ-fixed under the
action of G on MC(V). By 2.3, it is infixed. But by [13] (or in
case (i), by [2]) these conditions imply that μ is G-fixed; therefore
μ is a G-invariant measure.

We now turn to quite general, but unitary, representations on
a Hubert space V. /y^S^(V) denotes the Hilbert-Schmidt operators
on V. The following is a well known result of Mackey [12].

THEOREM 6.2. Let p be a strongly continuous unitary repre-
sentation of the locally compact group G on a Hilbert space V. Let
G act on 3έf£f{V) by (g, T) -> pgTpg\ Then this representation is
equivalent to p® p on V ® V. Hence it is a strongly continuous
representation of G on <£%f.9*{V). It is weakly holomorphic if G is
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complex analytic and p is weakly holomorphic.

The following extends a result of S. P. Wang [21], see also
[20]; 6.3 below is also an analog of results in [13]. Here the repre-
sentations are unitary and infinite dimensional, while those of [13]
were nonunitary and finite dimensional.

THEOREM 6.3. Let G he a locally compact group, H a closed
subgroup with G/H of finite volume, and p a strongly continuous
unitary representation of G on the Hilbert space V. Then the H-
fixed and G-fixed vectors coincide in

Moreover, if
( i ) G is minimally almost periodic, or
(ii) G is complex analytic and p weakly holomorphic,

then any finite dimensional H-invariant subspace W £ V is automa-
tically G-invariant (and in fact G-fixed pointwise).

Proof. For a representation such as p, and G minimally almost
periodic, it is proved in [21] that if v e V is iϊ-fixed, then it is G-
fixed. The same argument applies to holomorphic representations
of complex groups. Now the action (g, T) —> PgTp'1 is just such an
action. If Te^fS^(V) and phT = Tph for all heH, then by the
above we have ρgT = Tpg for all gsG, as required.

Now let Pw be the orthogonal projection of V on W. Since W
is finite dimensional, Pwe£^<9*(V). By if-invariance and the fact
that p is unitary, phPw — Pwph for all heH. By the above, pgPw —
Pwpg for all g e G, which means that W is G-invariant. Clearly, it
is G-fixed.

We remark that the extension of 6.3 to infinite dimensional sub-
spaces W is false. In general, the compact quotient case of 6.3 as
well as the corresponding statement in [21] is also false.
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