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AN ALGEBRAIC EXTENSION OF THE
LAX-MILGRAM THEOREM

GABRIEL M. M. OBI

In this work a Lax-Milgram type theorem is proved for
quadratic spaces over a division ring K with involution *,
say, whose center contains an ordered domain P such that
for every element a in K9 αα* = |α|2, (where |α|, the absolute
value of a, is in P+ which is the set of positive elements
of P), and for every element b in P+ there exists an ele-
ment c in P + , denoted by δ1/2, such that c2 = b. Specifi-
cally, with the above assumptions on K, the following is
proved:

Let (Hif Φi) i — 1,2 be quadratic spaces over K such that
for each u in H2 sup |Φ2(w, v)\(\Φ2(v, v)!172)"1 exists and equals
|Φ2(w, ̂ )|1/2. Let B: Hx X iϊ 2 -> K be an orthocontinuous bi-
linear form satisfying:

( i ) inJUo sup^o \B(x, y)\(\Φ,(x, x)\1/2 \Φ*(y, yWT^r exists
and γ — δ is in P+ for some 5 in P+.

(ii) sup \B(x,y)\ exists and is in P + for all y Φ 0 α e i l .
Then given any orthocontinuous linear functional ψ on

H2 whose kernel is splitting there exists a unique element
x0 in Hx such that φ(y) = B(xo,y) for all # in £Γ2.

Moreover

5"1 sup^o l̂ to)l (IΦ.to,2/)!172)-1 - |Φi(a?0,^o)l1/2 e P+ U{0} .

l Introduction. Motivated by what he referred to as "happy

accidents in the Hubert space theory that correlate algebraic and
topological considerations" Piziak [3] proposed an algebraic approach
to the study of sesquilinear forms in infinite dimensions. In this
approach he introduced the notion of quadratic spaces by the means
of which he obtained an algebraic generalization of some Hubert
space results. He proved an algebraic version of the Riesz-Frechet
Representation Theorem and discussed continuity all in the algebraic
context of a vector space over a division ring in which no natural
topology is present.

We here consider an algebraic extension of the Lax-Milgram
Theorem, a variant of the Riesz Representation Theorem.

Our results are of pure algebra. We have not assumed a to-
pology either on the division ring or on the vector space which we
considered. It is thus interesting to note that these results imply
their analogous standard topological results in the context of Hubert
space.
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2* Preliminaries*

DEFINITION 2.1. [2], [3]. A quadratic space is a triple (K, H, Φ)
where K is a division ring with involution, *, i ϊ is a left vector space
over K, and Φ is a nondegenerate orthosymmetric *-sesquilinear
form on H with respect to the involutive anti-automorphism * of
K.

Where there is no confusion we shall denote a quadratic space
simply by H or (H, Φ).

DEFINITION 2.2. Let H be a quadratic space. For x, y in H
we say x is orthogonal to y and write x j_ y if Φ{x, y) = 0.

We note that since Φ is orthosymmetric cc J_ y implies y JL x and
vice-versa.

NOTATION 2.3. For any subset M of H, put

M1 = {2/ in H: Φ(x, y) = 0 for all α in M} .

It is easy to see that ML is a subspace of i ϊ for every subset M
of if. A vector x in i ϊ is said to be isotropic if x _L x and aniso-
tropic otherwise. If every nonzero vector in H is anisotropic then
H is called an anisotropic quadratic space.

DEFINITION 2.4. We call a subspace M of H l-closed iff
M = Λf11. We say Λf splits H if H — MφM1 and we say jlί is
semi-simple if M Π M1 = {0}.

3* Lax-Milgram theorem* The Lax-Milgram states, [4]:
Let if be a Hubert space (real or complex) and B a bilinear

form on H such that
( i ) \B(x,y)\ ^ p\\x\\\\y\\ for all x, y in H and some positive

real constant p.
(ii) There exists a positive real number d such that B(x, x) >

δ\\x\\2 for every x in iϊ.
Then there exists a unique bounded linear operator T on H such

that
(a) <», y) = JB(», Γj/) for all a?, # in iϊ.
(b) \\T\\£δ-K

(Here < , •> denotes the inner product on H.)
An observation of this theorem shows that condition (i) implies

that B is continuous and (ii) implies that
(ii) (a) B is positive definite.
(ii) (b) The maps Bx( ), B%-): H-+Cdefined by B,(y) = B(x, y);
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By{x) = B(x, y) are nontrivial for each x (resp. each y) in H i.e.,
Bv(x) = 0 for all x in H implies y = 0 and Bx{y) = 0 for all y in H
implies x = 0.

Also the conclusion of the theorem can be reframed thus:
Then given any bounded linear functional f on H there exists

a unique vector u0 in JHΓ such that f{u) = 2?(tt0, %) for all u in H
and M^δ-MI/H.
We shall now generalize this result to quadratic spaces.

DEFINITION 3.1. Let (Hi9 Φ<), i = 1, 2 be quadratic spaces. Let
L\Ή.X —> H2 be a linear transformation such that L(M1A-) Q L(M)LL

for every subspace M of flΊ. Then L is said to be orthocontinuous.

PROPOSITION 3.2. [2], [3]. Let (Hi9 ΦJ, i = 1,2 be quadratic
spaces and L: H1 —> H2 be a linear transformation. Then the follow-
ing are equivalent:

( i ) M — M11 implies Ir\M) = Lr\M)LL for all subspaces M
of H2.

(ii) If M is a 1.-closed subspace of H2 then L~1{M) is a In-
closed subspace of Hx.

(iii) L(Mλl) £ L(M)11 for all subspaces M of Hx.
(iv) L~\M)LL S L~\MLL) for all subspaces M of H2.
( v) L is orthocontinuous.

DEFINITION 3.3. [2], [3]. Let (K, H, Φ) be a quadratic space.
A linear map ψ: H~^ K is called an orthocontinuous linear functional
if (Kerφ)11 = Ker^.

Now, in Hubert space a bilinear form B(x, y) is continuous iff
there exists a continuous linear transformation L on H such that
B(x9 y) — (Lx, y) for all x, y in H. Motivated by this fact we make
the following definition:

DEFINITION 3.4. Let (Hif Φt), i = 1, 2 be quadratic spaces. A
bilinear form B: Hλ x H2—> K is said to be orthocontinuous if there
exists an orthocontinuous linear operator L: Ht —> H2 such that
B(x, y) = Φ2{Lx, y) for every (x, y) in Hλ x H2.

PROPOSITION 3.5. Let (Hi9 Φι), i = 1, 2 δβ quadratic space and
B: ίίj, x JEΓ2 —> If 6e α?2, orthocontinuous bilinear form. Then the
mappings Bx{-): H2 -> iί", By( ): Hγ->K are orthocontinuous.

Proof. Let L be as in 3.4.

Ker Bm( ) = {y: B(x, y) = 0}
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= {y: Φ2(Lx, y) = 0}

= (Lx)1 a _L -closed subspace

Also

KerBy( ) = {x:B(x,y) = 0}

- {x: Φ2(Lx, y) = 0}

= {x: Lx e 2/1}

= L~\yλ) a ±-closed subspace

since L is orthocontinuous .

We note that the orthocontinuity of B implies that of Bx and By.
The converse is not true in general, however. This is a consequence
of [3, Theorem 3].

PROPOSITION 3.6. Let (Hi9 Φt), i = 1,2 be quadratic spaces. Let
M = {0} x H2 = H2 and π: Hx x H2 —> jff2 fee έfee projection π((x, y)) = y
for all (x, y) in H± x H2. Then π maps L-closed subspaces of Hx x H2

onto L-closed subspaces of H2.

Proof. We first note that any subspace of Hx x H2 of the form
A x B where A is a subspace of Hx and B a subspace of H2 is in-
closed in .Hi x JEΓ2 iff A is j.-closed in ί^ and S is l-closed in H2.
Hence a subspace B of iϊ2 is _L-closed iff π~\B) is j_ -closed. We also
note that {Hx x H2, Φx 0 Φ2) is a quadratic space [2] and that Λf is
a semi-simple splitting subspace. Let ΦM be the restriction of
Φi Θ Φ2 to M. Then (M, Φ )̂ is a quadratic space. Since π is a
homomorphism there exists an isomorphism φ: H^ x HJH^ x {0} -> M.
For u, v in ίίx x jffg/ίfx x {0} define

Ψ(u, v) = ΦM{φ{u), φ{v)) .

Then since φ is 1-1 onto we have that Ψ is a nondegenerate ortho-
symmetric and *-sesquilinear form on ΈLλ x HJHx x {0}. Let A C
ίίi x jayiΪ! x {0}. If % is in AL then

ΦM(Φ(U), φ(v)) = 0 for all v in i

Thus φ(Aλ) = ̂ (A)1. Also if 5 £ AT then there exists A £ i^ x
/i x {0} such that φ(A) = 5. Suppose B = B11 then
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= φ~\φ{ALL)) by the above argument

= A11 .

Hence φ, φ~ι map i_ -closed subspaces onto J_-closed subspaces. Now
consider the following diagram where p is the canonical projection.

A subspace B of Rx x HJHX x {0} is ±-closed iff p~~\B) is 1 -closed.
Indeed let ΰ be l -closed then φ(B) is _L -closed and π~ι(φ(B)) = p~~\B)
is _l_ -closed since π being a projection is orthocontinuous. Also if
p~\B) is l-closed then since p'\B) — π~\φ(B)) we must have that
Φ(B) is i_ -closed by the observation at the beginning of the proof.
Hence B = φ~\φ(B)) is J_ -closed. Finally if A is ± -closed in JE^xίζ,
let B be such that p'\B) = A. Then

τr(A) = φ(p(A))

= Φ(P(P'\B)))
= φ(B)

which is j_ -closed.

LEMMA 3.7. Let B be an orthocontinuous bilinear form on
Hx x JBΓ2. Let L be such that B{x, y) = Φ2(Lx, y) by Definition 3.4.
If Bx(')9 By(-) are nontrivial for each x in H} and y in H2y then
L is 1-1 and onto.

Proof. Suppose Lxγ — Lx2. Then

Φ2{Lx1 — Lx2, v) = 0 for all v in H2 ,

therefore

= Φ2{Lxx — I/θ?2, t?)

= 0

for all i; in iϊ2. Since Bβ( ) is nontrivial we must have that
χi — %2 = 0 or xx — x2. Thus L is 1-1. To show that L is onto we
note that since L is orthocontinuous its graph, G(L), is a JL -closed
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subspace of ( ^ x H2, Φ1@Φ2). Hence π(G{L)) is l_ -closed in H2.
Suppose L(iϊi) = π(G(L)) Φ H2. Then there exists a nonzero vector
x in H2 such that for all x in Hl9 Φ2(Lx, z) = 0 [4]. Thus

0 = Φ2(Lx, 2)

= B(x, z)

B*{x)

for every x in i^. Since 2?v( ) is nontrivial we must have 2; = 0.
This contradiction establishes the result.

LEMMA 3.8. Let S: Hλ —> H2 be an orthocontinuous linear trans-
formation from a quadratic space Hx to a quadratic space H2. If
S'1 exists then (S*)"1 exists and (S*)"1 = (S"1)*.

Proof. Since Im (S*) = Ker (S)1 and Im (S) = Ker (S*)1 [3], and
since S is 1-1 onto because of the existence of S"1, we must have
that S* is 1-1 and onto and hence that (S*)"1 exists. Also since S
is orthocontinuous the graph of S"1 is i_-closed in {H2 x Hlf Φ2φ^>i)
So S"1 is a CDD transformation [2]. Let x be in the domain of S"1

and y in the domain of (S*)"1. Then since S is CDD we have that

Φ2(£, (S*)-^) = Φ2(S^, (S*)"1!/) for some % in iί",

= Φ^S-'Su, v)

= Φ^S-% y) .

Therefore (S"1)* S (S*)"1 [2], [3]. Now let R and Ϊ7 be the mappings
defined on Hιx H2-+ H2 x H^ by

, v)) = (y, x)
U((x, y)) = (-», α) .

Then, as can be easily checked, we have that R, U are 1-1, onto;
R~\AL) = R-\A)L and U{AL) = U(A)\ Now

and
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G((S~T) = {(S-% y): y e H^ [2]

= {-Br\-Sx,

= R~\U(G(SW

Therefore the domain of OS*)"1 and that of (S"1)* coincide. Hence
[2], [3], we have that (S"1)* - (S*)"1.

LEMMA 3.9. Let (Hi9 Φ<), i = 1, 2 be quadratic spaces. If S is a
1-1, onto orthocontinuous transformation on Hx to H2 then S"1 is
orthocontinuous.

Proof By 3.8 (S*)"1 exists and equals (S~ψ. This shows that
S"1 is an everywhere defined linear transformation which is such
that (S"1)* everywhere defined. Therefore S"1 is orthocontinuous
[2], [3].

THEOREM 3.10. Let (Hu Φ%), i — 1,2 be quadratic spaces and B
an orthocontinuous bilinear form on H1 x H2. If Bx( ), By( ) are
nontrivial then there exists an orthocontinuous linear transformation,
T, on H2 to H1 such that

Φ2(u, v) = B{Tu, v)

for all u, v in H2. Further if H2 is such that every _L -closed sub-
space is splitting then T is unique.

Proof. Let L be the linear map on Hλ to H2 associated with B
as in Definition 3.4. Then by 3.7, 3.8, and 3.9 T = Lr1 is ortho-
continuous and

B(Tu, v) = Φ2(u, v) for all u, v in H2.

Now suppose every J_ -closed subspace of H2 splits H2 Then the
mapping Bx: H2—>K being orthocontinuous we have by [3, Theorem
3.1], that there exists a unique vector u0 in H2 such that Bx(y) —
$Z(UQ, y) for all y in H2. For each x define Lx = uQ. Then L is
linear and the uniqueness of uQ implies that L — L. Hence L~λ — T
is unique.

THEOREM 3.11. Let (Hif Φt) be quadratic spaces and B: H1 x
H2->K an orthocontinuous bilinear form such that Bz( ), By( ) are
nontrivial. Then given any orthocontinuous linear functional φ on
H2 such that Ker φ splits H2 there exists a unique vector u0 in H1
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such that

φ(y) = B(u0, y) for all y in H2 .

Proof. Since Ker^ splits H2 we have by [3, Theorem 3.1] that
there exists a unique vector y0 in H2 such that φ{y) = Φ2(y0, y) for
all y in H2. Let L be the orthocontinuous linear transformation
associated with B as in 3.4. Then by 3.7, 3.8, and 3.9 L~ι exists
and is orthocontinuous. Put u0 = L^y^ Then the uniqueness of y0

and the fact that L is a bisection implies that y0 is unique. Also

Φ(v) = #2(2/0, v)

% y)

0, 1/)

= B(uot y)

for all y in H2.

In what follows we shall assume that the center of K contains
an ordered domain P [1] and that

( i ) for every a in K aa* = \a\2,
(ii) for any b in P+ there exists an element c in P+ such that

c2 = b. Put c = bι/\
Here P + denotes the set of positive elements of P. \a\ is a defined
in [2]. We also assume that sup^0 |Φ2(w, v)|(|Φ2(^ v)!172)"1 exists for
each % in H2 and that it is equal to \Φ2(u, u)\m.

THEOREM 3.12. Let (Hit Φt), i = 1,2 be quadratic spaces. With
the above assumption on K, Φ19 Φ2 let B be an orthocontinuous
bilinear form satisfying:

3.12.1 sup \B(x, y)\ exists and is in P+ for all y Φ 0 .
xeHλ

3.12.2 inf sup | B(x, y) | (| Φ^x, y) |1/21 Φ2(y, y) I1'2)"1 = 7
xΦQ yΦU

exists and 7 — 8 is in P+

for some 8 in P+ .

Then given any orthocontinuous linear functional φ on H2 such that
Ker φ splits H2 there exists a unique element x0 in Hx such that

φ(y) = B(x0, y) for all y in H2.

Moreover

8'1 sup I φ(y) I (I Φ2{y, y) H " 1 - I Φi(»0, *o) \m e P + U {0} .
ΦOyΦO

Proof. By 3.12.1, 3.12.2 we have that Sβ( ), Bv(>) are non-
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trivial for each x in H1 and y in H2. Hence by 3.11 there exists a
unique vector x0 in Hx such that φ(y) = B(xOf y) for all y in JT2. By
condition 3.12.2 we have

, »o) ί1/2 < S"1 sup 1£(a;0, y) I (I Φ2(y, y) Π " 1

yφo

= ί-1 sup

REMARK 3. We note that a continuous linear functional on a
pre-Hilbert space H, say, is orthocontinuous and if H is a Hubert
space then the kernel of a continuous functional, which is a closed
subspace, is splitting. Also if H19 H2 are pre-Hilbert spaces with H2

complete then a continuous bilinear form on H1 x H2 is orthoconti-
nuous. Hence the corollary that follows is an immediate consequence
of the theorem.

COROLLARY 3.13. Let H1 be a pre-Hilbert space and H2 be a
Hilbert space (both real, complex or quaternion) and J5( , •) a bili-
near form on Ht x H2 such that

3.13.1 \B(x,y)\£δ'\\x\\Hί\\y\\St

for all x in Hγ and y in H2 and for some positive real dr < oo,

3.13.2 inf sup \B(x, y)\ ^ δ > 0 ,
\ \ χ \ \ H l = i \ \ \ \ ^

3.13.3 sup \B(x, y)\ > 0 for all y Φ 0 .

Let φ be a bounded linear functional on H2. Then there exists a
unique vector x0 in Hγ such that

φ{y) = B(x0, y) for all y in H2 .

Moreover

REMARK 4. We note from the foregoing that the completeness
of H1 is not necessary for these results to hold unless Hλ = H2; in
which case we obtain the Lax-Milgram Theorem.
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