ISOMORPHISMS OF THE FOURIER ALGEBRAS IN CROSSED PRODUCTS

Yoshikazu Katayama

Let (M, G, α) , (N, H, β) be W^* -systems, $F_{\alpha}(G; M_*)$ and $F_{\beta}(H; N_*)$, their Fourier algebras. The main result is that $F_{\alpha}(G; M_*)$ and $F_{\beta}(H; N_*)$ are isometrically isomorphic as Banach algebras if and only if M (resp. G) is isomorphic to N (resp. H) by θ (resp. I) such that $\beta_{I(g)} \circ \theta = \theta \circ \alpha_g$ for all $g \in G$, or M (resp. G) is anti-isomorphic to N (resp. H) such that $\beta_{I(g^{-1})} \circ \theta = \theta \circ \alpha_g$ for all $g \in G$.

1. Introduction. For locally compact abelian groups G and H, Pontryagin's duality theorem mentions that $L^1(G)$ is isomorphic to $L^1(H)$ if and only if G is isomorphic to H. Y. Kawada [4] and J. G. Wendel [11] proved the same statement for arbitrary locally compact groups.

When G is a locally compact abelian group, $L^1(G)$ is isometrically isomorphic to the Fourier algebra A(G) in [7]. Therefore A(G) is isomorphic to A(H) as Banach algebras if and only if G is isomorphic to H.

P. Eymard [1], on the other hand, defined the Fourier algebra A(G) of a locally compact group G and showed that it is isomorphic to the predual $m(G)_*$ of the von Neumann algebra m(G) generated by the left regular representation of G.

M. E. Walter [10] showed that A(G) and A(H) are isometrically isomorphic as Banach algebras if and only if G and H are isomorphic.

Recently for W^* -system (M, G, α) , the Fourier space $F_{\alpha}(G; M_*)$ was defined in [8] such that $F_{\alpha}(G; M_*)$ is isometrically isomorphic to the predual of the crossed product $G \bigotimes_{\alpha} M$ as Banach spaces.

M. Fugita [2] quite recently defined the Banach algebra structure in the Fourier space $F_{\alpha}(G; M_*)$. Then he showed that the group of all characters $F_{\alpha}(\widehat{G}; M_*)$ of $F_{\alpha}(G; M_*)$ is isomorphic to G and studied the support of the operators in $G \bigotimes_{\alpha} M$.

In this paper we generalize the Walter's result for W^* -system (M, G, α) .

The author would like to express his thanks to Professor O. Takenouchi, Mr. M. Fugita for many fruitful discussions, Professor M. Takesaki for a lot of suggestions and constant encourgement during his stay at U.C.L.A.

2. Notations and preliminaries. Let M be a von Neumann

algebra on a Hilbert space \mathfrak{H} and G be a locally compact group. The triple (M, G, α) is said to be a W^* -system if the mapping α of G into the group $\operatorname{Aut}(M)$ of all automorphisms of M is a homomorphism and the function $g \mapsto \omega \circ \alpha_g(x)$ is continuous on G for all $x \in M$ and $\omega \in M_*$ where M_* is the predual of M.

The crossed product $G \bigotimes_{\alpha} M$ of M by α is the von Neumann algebra generated by the family of operators $\{\pi_{\alpha}(x), \lambda_{G}(g); x \in M, g \in G\};$

(2.1)
$$\begin{aligned} (\pi_{\alpha}(x)\xi)(h) &= \alpha_{h}^{-1}(x)\xi(h) \\ (\lambda_{G}(g)\xi)(h) &= \xi(g^{-1}h) \end{aligned}$$

for $\xi \in L^2(G; \mathfrak{H})$.

Each element ω in the predual $(G \bigotimes_{\alpha} M)_*$ of $G \bigotimes_{\alpha} M$ may be regarded as an element u_{ω} of $C^b(G; M_*)$;

(2.2)
$$u_{\omega}[g](x) = \langle \pi_{\alpha}(x)\lambda_{G}(g), \omega \rangle$$

for all $x \in M$, $g \in G$ where $C^b(G; M_*)$ is the space of all bounded continuous M_* -valued functions on G. We denote $F_{\alpha}(G; M_*) = \{u_{\alpha}; \omega \in (G \bigotimes_{\alpha} M)_*\} \subset C^b(G; M_*)$. A norm $|| \quad ||$ is defined on $F_{\alpha}(G; M_*)$ by

 $||u_{\omega}|| = ||\omega||.$

Then $||u||_{\infty} \leq ||u||$ for all $u \in F_{\alpha}(G; M_*)$ where $|| ||_{\infty}$ is the sup-norm on $C^b(G; M_*)$. We define a product on $F_{\alpha}(G; M_*)$ by

$$(2.3) (u*v)[g](x) = u[g](x)v[g](1)$$

for all $u, v \in F_{\alpha}(G; M_*), x \in M$ and $g \in G$. Then $F_{\alpha}(G; M_*)$ is a Banach algebra ([2] Theorem 3.5). So that we can define products between $G \bigotimes_{\alpha} M$ and $F_{\alpha}(G; M_*)$;

$$egin{aligned} &\langle u\,T,\,v
angle &= \langle T,\,v*u
angle \ &\langle Tu,\,v
angle &= \langle T,\,u*v
angle \end{aligned}$$

for $T \in G \bigotimes_{\alpha} M$, $u, v \in F_{\alpha}(G; M_*)((3.7), (3.9)$ in [2]).

Let T be an operator in $G \bigotimes_{\alpha} M$. Then the supp (T) of T is the set of all $g \in G$ satisfying the condition that $\lambda_{G}(g)$ belongs to the σ -weak closure of $TF_{\alpha}(G; M_{*})$ [See [2] Proposition 4.1].

THEOREM 1. Let (M, G, α) , (N, H, β) be W*-systems and $F_{\alpha}(G; M_*)$, $F_{\beta}(H; N_*)$ their associated Fourier algebras. Let ϕ be an isometric isomorphism of $F_{\alpha}(G; M_*)$ onto $F_{\beta}(H; N_*)$ as Banach algebras.

Then we have five elements (k, p, q, I, θ) with the following properties:

506

(1) $k \in G$ such that $\lambda_G(k) = {}^t \phi(\lambda_H(e))$ where ${}^t \phi$ is the transposed map of ϕ and e is the identity of H.

(2) I is an isomorphism or anti-isomorphism of H onto G.

(3) p (resp. q) is a projection of $Z_M \cap M^G$ (resp. $Z_N \cap N^H$) where Z_M (resp. Z_N) is the center of M (resp. N) and $M^G = \{x \in M: \alpha_g(x) = x \text{ for all } g \in G\}, N^H = \{x \in N: \beta_h(x) = x \text{ for all } h \in H\}.$

(4) θ is an isometric linear map of N onto M such that

 θ is an isomorphism of N_q onto M_p ,

 θ is an anti-isomorphism of N_{l-q} onto M_{l-p} .

 $\begin{array}{ll} (5) & \phi(u)[h](y) = (_{k}u)[I(h)](\theta(y)p) + (_{k}u)[I(h))](\alpha_{I(h)}(\theta(y)(l-p))) \\ \text{for all } y \in N, \, h \in H \text{ and } u \in F_{\alpha}(G;\,M_{*}), \text{ where } (_{k}u)[g](y) = u[kg](\alpha_{k}(y)). \\ (6) & \theta[\beta_{k}(y)] = [\alpha_{I(h)}\theta(y)]p + [\alpha_{I(h)}^{-1}\theta(y)](l-p) \text{ for all } y \in N, \, h \in H. \end{array}$

Proof. The transposed map ${}^{t}\phi$ of ϕ is an isometric linear map of $H\bigotimes_{\beta} N$ onto $G\bigotimes_{\alpha} M$. Using [3] Theorem 7, 10, we get;

$${}^t\phi = {}^t\phi(\lambda_{\scriptscriptstyle H}(e))(\gamma_{\scriptscriptstyle I}+\gamma_{\scriptscriptstyle A})$$

where γ_I is an isomorphism of $(H \bigotimes_{\beta} N)_{z'}$ onto $(G \bigotimes_{\alpha} M)_{z}$, γ_A is an anti-isomorphism of $(H \bigotimes_{\beta} N)_{(l-z')}$ onto $(G \bigotimes_{\alpha} M)_{(l-z)}$, z (resp. z') being a central projection of $G \bigotimes_{\alpha} M$ (resp. $H \bigotimes_{\beta} N$). (2.4)

It follows from (2.3) that for all $u, v \in F_{\alpha}(G; M_*)$,

$$egin{aligned} &\langle {}^t\!\phi(\lambda_{\!_H}(h)),\; u\!*\!v
angle &= \langle \lambda_{\!_H}(h),\, \phi(u\!*\!v)
angle \ &= \langle \lambda_{\!_H}(h),\, \phi(u)\!*\!\phi(v)
angle \ &= \langle \lambda_{\!_H}(h) \otimes \lambda_{\!_H}(h),\, \phi(u) \otimes \phi(v)
angle \ &= \langle {}^t\!\phi(\lambda_{\!_H}(h)),\, u
angle \langle {}^t\!\phi(\lambda_{\!_H}(h)),\, v
angle \,. \end{aligned}$$

Therefore ${}^{t}\phi(\lambda_{H}(h))$ is a character of $F_{\alpha}(G; M_{*})$ for all $h \in H$, which implies that ${}^{t}\phi(\lambda_{H}(H)) \subseteq \lambda_{G}(G)$ because the group of all characters $F_{\alpha}(\widehat{G}; \widehat{M}_{*})$ is isomorphic to G ([2] Theorem 3.14), moreover since ϕ is an isomorphism,

$${}^t\!\phi(\lambda_{\scriptscriptstyle H}(H))=\lambda_{\scriptscriptstyle G}(G)$$
 .

We denote $\lambda_{G}(k) = {}^{t}\phi(\lambda_{H}(e)).$

By the same argument in [10] Theorem 2, we get that

(2.5)
$$\gamma \equiv {}^{t}\phi(\lambda_{H}(e))^{-1}\phi = \gamma_{I} + \gamma_{A}$$

is a C*-isomorphism in Kadison's sense [3] and $\gamma(\lambda_H(h_1)\lambda_H(h_2))$ is either $\gamma(\lambda_H(h_1))\gamma(\lambda_H(h_2))$ or $\gamma(\lambda_H(h_2))\gamma(\lambda_H(h_1))$, moreover if we put $\lambda_{\mathcal{G}}(I(h)) = \gamma(\lambda_H(h))$,

(2.6) then I is either an isomorphism or an antiisomorphism of H onto G.

The transposed map ψ of γ is also an isometric isomorphism of $F_{\alpha}(G; M_*)$ onto $F_{\beta}(H; N_*)$. Then we get;

$$egin{aligned} &\langle \gamma(\pi_{m{ extsf{ heta}}}(y)),\; u*v
angle &= \langle \pi_{m{ extsf{ heta}}}(y),\; \psi(u)*\psi(v)
angle \ &= \langle \pi_{m{ heta}}(y) \otimes \mathbf{1},\; \psi(u) \otimes \psi(v)
angle \ &= \langle \gamma(\pi_{m{ heta}}(y)),\; u*v
angle \end{aligned}$$

for all $y \in N$, $u, v \in F_{\alpha}(G; M_*)$.

By [5] Proposition 2.3, we obtain $\gamma(\pi_{\beta}(y))$ is an element of $\pi_{\alpha}(M)$, so that we can define an isometric surjective linear map θ of N onto M by $\theta = \pi_{\alpha}^{-1} \circ \gamma \circ \pi_{\beta}$.

Since γ is a Jordan isomorphism,

$$\gamma(T)\gamma(\mathbf{z}') + \gamma(\mathbf{z}')\gamma(T) = \gamma([T, \mathbf{z}']) = 2\gamma(T\mathbf{z}')$$

for all $T \in H \bigotimes_{\beta} N$, therefore we get $\gamma(Tz') = \gamma(T)z$.

Hence $\gamma(\pi_{\beta}(xy))z = \gamma(\pi_{\beta}(x))\gamma(\pi_{\beta}(y))z$ for all $x, y \in N$.

Since z is a central projection of $G \bigotimes_{\alpha} M, z$ is also a projection of $\pi_{\alpha}(M)'$, then we get;

(2.7)
$$\gamma(\pi_{\beta}(xy))p = \gamma(\pi_{\beta}(x))\gamma(\pi_{\beta}(y))p$$

for all $x, y \in N$ where p is the central support of z in $\pi_{\alpha}(M)'$.

We denote by q the central support of z' in $\pi_{\beta}(N)'$, then the equations $\gamma(q)z = \gamma(qz') = \gamma(z') = z$ imply that $\gamma(q)p = p$, similarly we obtain $\gamma^{-1}(p)q = q$ so that $\gamma(q) = \gamma(\gamma^{-1}(p)q) = \gamma(\gamma^{-1}(p))\gamma(q)p = p\gamma(q) = p$.

Hence θ is an isomorphism of N_q onto M_p and θ is an antiisomorphism of $N_{(1-q)}$ onto $M_{(1-p)}$.

The projection p (resp. q) is G-invariant (resp. H-invariant) since $\pi_{\alpha}(M)' = \lambda_{\sigma}(g)\pi_{\alpha}(M)'\lambda_{\sigma}(g)^*$ and $\lambda_{\sigma}(g)z\lambda_{\sigma}(g)^* = z$.

Now we have already proved $(1) \sim (4)$ and the statements (5), (6) still remain to prove.

For all $y \in N$, $h \in H$ we get,

$$egin{aligned} &\{\pi_lpha \circ heta(eta_h(y))\}m{z} = \gamma(\lambda_H(h)\pi_eta(y)\lambda_H(h)^*m{z'}) \ &= \lambda_G(I(h))\pi_lpha \circ heta(y)\lambda_G(I(h)^{-1})m{z} \ &= \{\pi_lpha \circ lpha_{I\langle h
angle} \circ m{ heta}\}(y)m{z} \;, \end{aligned}$$

hence

$$heta \circ eta_h = lpha_{I(h)} \circ heta$$
 on N_q ,

and similarly

$$\theta \circ \beta_h = lpha_{I(h^{-1})} \circ \theta$$
 on $N_{(1-q)}$.

Therefore $\theta \circ \beta_h(y) = \alpha_{I(h)} \circ \theta(y)p + \alpha_{I(h^{-1})} \circ \theta(y)(1-p)$ for all $y \in N$ and $h \in H$. To prove the statement (5), we shall show first,

$$\operatorname{supp}\gamma(\pi_{\scriptscriptstyleoldsymbol{eta}}(y)\lambda_{\scriptscriptstyle H}(h))=\{I(h)\}\;.$$

508

For since $\gamma(\pi_{\beta}(y)\lambda_{H}(h))u = \gamma(\pi_{\beta}(y)\lambda_{H}(h)\psi(u))$ for all $u \in F_{\alpha}(G; M^{*})$ and ψ is surjective,

$$egin{aligned} & [\gamma(\pi_{eta}(y)\lambda_{H}(h))F_{lpha}(G;\,M_{*})]^{-\sigma-w} \ & = \gamma[\pi_{eta}(y)\lambda_{H}(h)F_{eta}(H;\,N_{*})]^{-\sigma-w} \end{aligned}$$

where $[\cdots]^{-\sigma-w}$ means a σ -weak closure, on the other hand,

$$[\pi_{\scriptscriptstyleeta}(y) \lambda_{\scriptscriptstyle H}(h) F_{\scriptscriptstyleeta}(H;N_*)]^{-\sigma-w} \cap \lambda_{\scriptscriptstyle H}(H) = C \lambda_{\scriptscriptstyle H}(h)$$

because of supp $\pi_{\beta}(y)\lambda_{H}(h) = \{h\}$, so that we obtain;

By [2] Theorem 4.4 or [6] Proposition 6.1, there exists an element x of M such that $\gamma(\pi_{\beta}(y)\lambda_{H}(h)) = \pi_{\alpha}(x)\lambda_{\mathcal{G}}(I(h))$.

$$egin{aligned} \pi_{lpha}(x)\lambda_{\scriptscriptstyle G}(I(h))m{z}\ &=\gamma(\pi_{eta}(y)\lambda_{\scriptscriptstyle H}(h))m{z}\ &=\gamma(\pi_{eta}(y))\gamma(\lambda_{\scriptscriptstyle H}(h))m{z}\ &=\pi_{lpha}(heta(y))\lambda_{\scriptscriptstyle G}(I(h))m{z} \end{aligned}$$

then

$$xp = \theta(y)p$$
, and similarly $x(1-p) = \alpha_{I(h)}\theta(y)(1-p)$

We get;

$$x = heta(y)p + lpha_{I(h)} heta(y)(1-p) \;,$$

 $\gamma(\pi_{eta}(y)\lambda_{H}(h)) = \pi_{lpha}(heta(y)p)\lambda_{G}(I(h)) + \pi_{lpha}(lpha_{I(h)} heta(y)(1-p))\lambda_{G}(I(h)) \;.$

By (2.2), $\phi(u) = \psi({}_{k}u)$ for $u \in F_{\alpha}(G; M_{*})$ and the above equation, we can get the statement (5).

REMARK 2. Theorem 1 is a generalization of [10] Theorem 2.

COROLLARY 3. Let (M, G, α) , (N, H, β) be W^* -systems and the two actions α and β are ergodic on their centers (that is $Z_M \cap M^G = Z_N \cap N^H = C$).

The following statements are equivalent;

(1) $F_{\alpha}(G; M_*)$ is isomorphic to $F_{\beta}(H; N_*)$ in the sense of Banach algebra

(2) there exists either an isomorphism I of H onto G, an isomorphism θ of N onto M such that $\theta \circ \beta_h = \alpha_{I(h)} \circ \theta$ for all $h \in H$, or an anti-isomorphism I of H onto G, an anti-isomorphism θ of N onto M such that $\theta \circ \beta_h = \alpha_{I(h^{-1})} \circ \theta$ for all $h \in H$.

Proof. Suppose ϕ is an isometric isomorphism of $F_{\alpha}(G; M_*)$ onto $F_{\beta}(H; N_*)$ and we use the same notations in Theorem 1. The projection p in (3) of Theorem 1 must be zero or 1 by the ergodicity of the action α , then θ is either an isomorphism or an anti-isomorphism of N onto M.

When G is a locally compact abelian group (it follows from (2.6) that H is a locally compact abelian group), I in (2.6) can be regarded as both an isomorphism and an anti-isomorphism, therefore the statement (2) follows from Theorem 1 when G is abelian. Hence we may assume that G is non-abelian.

When I is an anti-isomorphism of H onto G, the projection (1-z) in (2.4) must be nonzero. For if the projection z is the identity in $G\bigotimes_{\alpha} M$, then γ in (2.5) is an isomorphism of $H\bigotimes_{\beta} N$ onto $G\bigotimes_{\alpha} M$, so I is an isomorphism, which is a contradiction. Taking the central support of (1-z) in $\pi_{\alpha}(M)'$ as (2.7), θ is an anti-isomorphism of H onto G such that $\alpha_{I(h^{-1})} \circ \theta = \theta \circ \beta_h$ for all $h \in H$. If I is an isomorphism, θ is an isomorphism such that $\alpha_{I(h)} \circ \theta = \theta \circ \beta_h$ for all $h \in H$.

Conversely suppose I is an isomorphism of H onto G such that $\theta \circ \beta_h = \alpha_{I(h)} \circ \beta_h$ for all $h \in H$. Then there exists an isomorphism Γ of $H \bigotimes_{\beta} N$ onto $G \bigotimes_{\alpha} M$ such that $\Gamma(\pi_{\beta}(y)) = \pi_{\alpha}(\theta(y))$ for all $y \in N$ and $\Gamma(\lambda_H(h)) = \lambda_G(I(h))$ for all $h \in H$ (cf. [9] Proposition 3.4). Then the transposed map ϕ of Γ is an isometric isomorphism of $F_{\alpha}(G; M_*)$ onto $F_{\beta}(H; N_*)$.

Suppose I is an anti-isomorphism of H onto G such that $\theta \circ \beta_h = \alpha_{I(h^{-1})} \circ \theta$ for all $h \in H$. Considering the opposite von Neumann algebra M° of M and the isomorphism J of H onto G by $J(h) = I(h^{-1})$ for all $h \in H$, there exists an isomorphism Γ of $H \bigotimes_{\beta} N$ onto $G \bigotimes_{\alpha} M^{\circ}$ such that $\Gamma(\pi_{\beta}(y)) = \pi_{\alpha}(\theta(y))$ for all $y \in N$, $\Gamma(\lambda_H(h)) = \lambda_G(J(h))$ for all $h \in H$. On the other hand, $G \bigotimes_{\alpha} M^{\circ}$ is isometrically isomorphic to $G \bigotimes_{\alpha} M$ as Banach spaces, therefore Γ is a σ -weakly continuous isometric linear map of $H \bigotimes_{\beta} N$ onto $G \bigotimes_{\alpha} M$. Then the transposed map ϕ of Γ is an isometric isomorphism of $F_{\alpha}(G; M_*)$ onto $F_{\beta}(H; N_*)$.

References

1. P. Eymard, L, algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, **92** (1964), 181-236.

2. M. Fugita, Banach algebra structure in Fourier spaces and generalization of harmonic analysis on locally compact groups, (preprint).

3. R. V. Kadison, Isometries of operator algebras, Ann. of Math., 54 (1951), 325-338.

4. Y. Kawada, On the group ring of a topolopical group, Math. Japonica, 1 (1948), 1-5.

5. M. B. Landstad, Duality theory for covariant systems, (preprint).

6. Y. Nakagami, Dual action of a von Neumann algebra and Takesaki's duality for a locally compact group, preprint University of Kyushu, 1975.

7. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.

8. H. Takai, On a Fourier expansion in continuous crossed products, Publ. R.I.M.S. Kyoto Univ., 11 (1976), 849-880.

9. M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta. Math., 131 (1973), 249-310.

10. M. E. Walter, W*-algebras and non-abelian harmonic analysis, J. Functional Analysis, 11 (1972), 17-38.

11. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261.

Received January 30, 1979.

Osaka University Toyonaka, Osaka, Japan