ISOMORPHISMS OF THE FOURIER ALGEBRAS IN CROSSED PRODUCTS

Yoshikazu Katayama

Abstract

Let $(M, G, \alpha),(N, H, \beta)$ be W^{*}-systems, $F_{\alpha}\left(G ; M_{*}\right)$ and $F_{\beta}\left(H ; N_{*}\right)$, their Fourier algebras. The main result is that $F_{\alpha}\left(G ; M_{*}\right)$ and $F_{\beta}\left(H ; N_{*}\right)$ are isometrically isomorphic as Banach algebras if and only if M (resp. G) is isomorphic to N (resp. H) by θ (resp. I) such that $\beta_{I(g)} \circ \theta=\theta \circ \alpha_{g}$ for all $g \in G$, or M (resp. G) is anti-isomorphic to N (resp. H) such that $\beta_{I\left(g^{-1}\right)} \circ \theta=\theta \circ \alpha_{g}$ for all $g \in G$.

1. Introduction. For locally compact abelian groups G and H, Pontryagin's duality theorem mentions that $L^{1}(G)$ is isomorphic to $L^{1}(H)$ if and only if G is isomorphic to H. Y. Kawada [4] and J. G. Wendel [11] proved the same statement for arbitrary locally compact groups.

When G is a locally compact abelian group, $L^{1}(G)$ is isometrically isomorphic to the Fourier algebra $A(G)$ in [7]. Therefore $A(G)$ is isomorphic to $A(H)$ as Banach algebras if and only if G is isomorphic to H.
P. Eymard [1], on the other hand, defined the Fourier algebra $A(G)$ of a locally compact group G and showed that it is isomorphic to the predual $m(G)_{*}$ of the von Neumann algebra $m(G)$ generated by the left regular representation of G.
M. E. Walter [10] showed that $A(G)$ and $A(H)$ are isometrically isomorphic as Banach algebras if and only if G and H are isomorphic.

Recently for W^{*}-system (M, G, α), the Fourier space $F_{\alpha}\left(G ; M_{*}\right)$ was defined in [8] such that $F_{\alpha}\left(G ; M_{*}\right)$ is isometrically isomorphic to the predual of the crossed product $G \boldsymbol{\otimes}_{\alpha} M$ as Banach spaces.
M. Fugita [2] quite recently defined the Banach algebra structure in the Fourier space $F_{\alpha}\left(G ; M_{*}\right)$. Then he showed that the group of all characters $F_{\alpha}\left(\widehat{G ; M_{*}}\right)$ of $F_{\alpha}\left(G ; M_{*}\right)$ is isomorphic to G and studied the support of the operators in $G \boldsymbol{\otimes}_{\alpha} M$.

In this paper we generalize the Walter's result for W^{*}-system (M, G, α).

The author would like to express his thanks to Professor 0. Takenouchi, Mr. M. Fugita for many fruitful discussions, Professor M. Takesaki for a lot of suggestions and constant encourgement during his stay at U.C.L.A.
2. Notations and preliminaries. Let M be a von Neumann
algebra on a Hilbert space $\mathscr{S}_{\mathcal{L}}$ and G be a locally compact group. The triple (M, G, α) is said to be a W^{*}-system if the mapping α of G into the group $\operatorname{Aut}(M)$ of all automorphisms of M is a homomorphism and the function $g \mapsto \omega \circ \alpha_{g}(x)$ is continuous on G for all $x \in M$ and $\omega \in M_{*}$ where M_{*} is the predual of M.

The crossed product $G \boldsymbol{\otimes}_{\alpha} M$ of M by α is the von Neumann algebra generated by the family of operators $\left\{\pi_{\alpha}(x), \lambda_{G}(g) ; x \in M\right.$, $g \in G\}$;

$$
\begin{align*}
& \left(\pi_{\alpha}(x) \xi\right)(h)=\alpha_{h}^{-1}(x) \xi(h) \\
& \left(\lambda_{G}(g) \xi\right)(h)=\xi\left(g^{-1} h\right) \tag{2.1}
\end{align*}
$$

for $\xi \in L^{2}(G ; \mathfrak{S})$.
Each element ω in the predual $\left(G \boldsymbol{\otimes}_{\alpha} M\right)_{*}$ of $G \boldsymbol{\otimes}_{\alpha} M$ may be regarded as an element u_{ω} of $C^{b}\left(G ; M_{*}\right)$;

$$
\begin{equation*}
u_{\omega}[g](x)=\left\langle\pi_{\alpha}(x) \lambda_{G}(g), \omega\right\rangle \tag{2.2}
\end{equation*}
$$

for all $x \in M, g \in G$ where $C^{b}\left(G ; M_{*}\right)$ is the space of all bounded continuous M_{*}-valued functions on G. We denote $F_{\alpha}\left(G ; M_{*}\right)=\left\{u_{\omega}\right.$; $\left.\omega \in\left(G \boldsymbol{\otimes}_{\alpha} M\right)_{*}\right\} \subset C^{b}\left(G ; M_{*}\right)$. A norm \| \| is defined on $F_{\alpha}\left(G ; M_{*}\right)$ by

$$
\left\|u_{\omega}\right\|=\|\omega\|
$$

Then $\|u\|_{\infty} \leqq\|u\|$ for all $u \in F_{\alpha}\left(G ; M_{*}\right)$ where $\left\|\|_{\infty}\right.$ is the sup-norm on $C^{b}\left(G ; M_{*}\right)$. We define a product on $F_{\alpha}\left(G ; M_{*}\right)$ by

$$
\begin{equation*}
(u * v)[g](x)=u[g](x) v[g](1) \tag{2.3}
\end{equation*}
$$

for all $u, v \in F_{\alpha}\left(G ; M_{*}\right), x \in M$ and $g \in G$. Then $F_{\alpha}\left(G ; M_{*}\right)$ is a Banach algebra ([2] Theorem 3.5). So that we can define products between $G \boldsymbol{\otimes}_{\alpha} M$ and $F_{\alpha}\left(G ; M_{*}\right)$;

$$
\begin{aligned}
& \langle u T, v\rangle=\langle T, v * u\rangle \\
& \langle T u, v\rangle=\langle T, u * v\rangle
\end{aligned}
$$

for $T \in G \boldsymbol{\otimes}_{\alpha} M, u, v \in F_{\alpha}\left(G ; M_{*}\right)((3.7)$, (3.9) in [2]).
Let $: T$ be an operator in $G \boldsymbol{\otimes}_{\alpha} M$. Then the $\operatorname{supp}(T)$ of T is the set of all $g \in G$ satisfying the condition that $\lambda_{G}(g)$ belongs to the σ-weak closure of $T F_{\alpha}\left(G ; M_{*}\right)$ [See [2] Proposition 4.1].

Theorem 1. Let $(M, G, \alpha),(N, H, \beta)$ be W^{*}-systems and $F_{\alpha}(G$; $\left.M_{*}\right), F_{\beta}\left(H ; N_{*}\right)$ their associated Fourier algebras. Let ϕ be an isometric isomorphism of $F_{\alpha}\left(G ; M_{*}\right)$ onto $F_{\beta}\left(H ; N_{*}\right)$ as Banach algebras.

Then we have five elements (k, p, q, I, θ) with the following properties:
(1) $k \in G$ such that $\lambda_{G}(k)={ }^{t} \phi\left(\lambda_{H}(e)\right)$ where ${ }^{t} \dot{\phi}$ is the transposed map of ϕ and e is the identity of H.
(2) I is an isomorphism or anti-isomorphism of H onto G.
(3) p (resp. q) is a projection of $Z_{M} \cap M^{G}$ (resp. $Z_{N} \cap N^{I}$) where $Z_{M}\left(\right.$ resp. $\left.Z_{N}\right)$ is the center of M (resp. N) and $M^{G}=\{x \in M$: $\alpha_{g}(x)=x$ for all $\left.g \in G\right\}, N^{H}=\left\{x \in N: \beta_{h}(x)=x\right.$ for all $\left.h \in H\right\}$.
(4) θ is an isometric linear map of N onto M such that θ is an isomorphism of N_{q} onto M_{p}, θ is an anti-isomorphism of N_{l-q} onto M_{l-p}.
(5) $\left.\quad \phi(u)[h](y)=\left({ }_{k} u\right)[I(h)](\theta(y) p)+\left({ }_{k} u\right)[I(h))\right]\left(\alpha_{I(h)}(\theta(y)(l-p))\right)$ for all $y \in N, h \in H$ and $u \in F_{\alpha}\left(G ; M_{*}\right)$, where $\left({ }_{k} u\right)[g](y)=u[k g]\left(\alpha_{k}(y)\right)$.
(6) $\theta\left[\beta_{k}(y)\right]=\left[\alpha_{I(h)} \theta(y)\right] p+\left[\alpha_{I(h)}^{-1} \theta(y)\right](l-p)$ for all $y \in N, h \in H$.

Proof. The transposed map ${ }^{t} \phi$ of ϕ is an isometric linear map of $H \boldsymbol{\otimes}_{\beta} N$ onto $G \boldsymbol{\otimes}_{\alpha} M$. Using [3] Theorem 7, 10, we get;

$$
{ }^{t} \phi={ }^{t} \phi\left(\lambda_{H}(e)\right)\left(\gamma_{I}+\gamma_{A}\right)
$$

where γ_{I} is an isomorphism of $\left(H \boldsymbol{\otimes}_{\beta} N\right)_{z^{\prime}}$ onto $\left(G \boldsymbol{\otimes}_{\alpha} M\right)_{z}, \gamma_{A}$ is an anti-isomorphism of $\left(H \boldsymbol{\otimes}_{\beta} N\right)_{\left(l-z^{\prime}\right)}$ onto $\left(G \boldsymbol{\otimes}_{\alpha} M\right)_{(l-z)}, \quad z$ (resp. $\left.z^{\prime}\right)$ being a central projection of $G \boldsymbol{\otimes}_{\alpha} M$ (resp. $H \boldsymbol{\otimes}_{\beta} N$).

It follows from (2.3) that for all $u, v \in F_{\alpha}\left(G ; M_{*}\right)$,

$$
\begin{aligned}
\left\langle^{t} \dot{\phi}\left(\lambda_{H}(h)\right), u * v\right\rangle & =\left\langle\lambda_{H}(h), \phi(u * v)\right\rangle \\
& =\left\langle\lambda_{H}(h), \phi(u) * \phi(v)\right\rangle \\
& =\left\langle\lambda_{H}(h) \otimes \lambda_{H}(h), \phi(u) \otimes \phi(v)\right\rangle \\
& =\left\langle{ }^{t} \phi\left(\lambda_{H}(h)\right), u\right\rangle\left\langle{ }^{t} \phi\left(\lambda_{H}(h)\right), v\right\rangle
\end{aligned}
$$

Therefore ${ }^{t} \phi\left(\lambda_{H}(h)\right)$ is a character of $F_{\alpha}\left(G ; M_{*}\right)$ for all $h \in H$, which implies that ${ }^{t} \phi\left(\lambda_{H}(H)\right) \subseteq \lambda_{G}(G)$ because the group of all characters $F_{\alpha}\left(\widehat{G ; M}_{*}\right)$ is isomorphic to G ([2] Theorem 3.14), moreover since ϕ is an isomorphism,

$$
{ }^{t} \phi\left(\lambda_{H}(H)\right)=\lambda_{G}(G) .
$$

We denote $\lambda_{G}(k)={ }^{t} \phi\left(\lambda_{H}(e)\right)$.
By the same argument in [10] Theorem 2, we get that

$$
\begin{equation*}
\gamma \equiv{ }^{t} \phi\left(\lambda_{H}(e)\right)^{-1 t} \phi=\gamma_{I}+\gamma_{A} \tag{2.5}
\end{equation*}
$$

is a C^{*}-isomorphism in Kadison's sense [3] and $\gamma\left(\lambda_{H}\left(h_{1}\right) \lambda_{H}\left(h_{2}\right)\right)$ is either $\gamma\left(\lambda_{H}\left(h_{1}\right)\right) \gamma\left(\lambda_{H}\left(\dot{h}_{2}\right)\right)$ or $\gamma\left(\lambda_{H}\left(h_{2}\right)\right) \gamma\left(\lambda_{H}\left(h_{1}\right)\right)$, moreover if we put $\lambda_{G}(I(h))=\gamma\left(\lambda_{H}(h)\right)$,
(2.6) then I is either an isomorphism or an antiisomorphism of H onto G.

The transposed map ψ of γ is also an isometric isomorphism of $F_{\alpha}\left(G ; M_{*}\right)$ onto $F_{\beta}\left(H ; N_{*}\right)$. Then we get;

$$
\begin{aligned}
\left\langle\gamma\left(\pi_{\beta}(y)\right), u * v\right\rangle & =\left\langle\pi_{\beta}(y), \psi(u * v)\right\rangle \\
& =\left\langle\pi_{\beta}(y), \psi(u) * \psi(v)\right\rangle \\
& =\left\langle\pi_{\beta}(y) \otimes 1, \psi(u) \otimes \psi(v)\right\rangle \\
& =\left\langle\gamma\left(\pi_{\beta}(y)\right), u * v\right\rangle
\end{aligned}
$$

for all $y \in N, u, v \in F_{\alpha}\left(G ; M_{*}\right)$.
By [5] Proposition 2.3, we obtain $\gamma\left(\pi_{\beta}(y)\right)$ is an element of $\pi_{\alpha}(M)$, so that we can define an isometric surjective linear map θ of N onto M by $\theta=\pi_{\alpha}^{-1} \circ \gamma \circ \pi_{\beta}$.

Since γ is a Jordan isomorphism,

$$
\gamma(T) \gamma\left(z^{\prime}\right)+\gamma\left(z^{\prime}\right) \gamma(T)=\gamma\left(\left[T, z^{\prime}\right]\right)=2 \gamma\left(T z^{\prime}\right)
$$

for all $T \in H \boldsymbol{\otimes}_{\beta} N$, therefore we get $\gamma\left(T z^{\prime}\right)=\gamma(T) z$.
Hence $\gamma\left(\pi_{\beta}(x y)\right) z=\gamma\left(\pi_{\beta}(x)\right) \gamma\left(\pi_{\beta}(y)\right) z$ for all $x, y \in N$.
Since z is a central projection of $G \boldsymbol{\otimes}_{\alpha} M, z$ is also a projection of $\pi_{\alpha}(M)^{\prime}$, then we get;

$$
\begin{equation*}
\gamma\left(\pi_{\beta}(x y)\right) p=\gamma\left(\pi_{\beta}(x)\right) \gamma\left(\pi_{\beta}(y)\right) p \tag{2.7}
\end{equation*}
$$

for all $x, y \in N$ where p is the central support of z in $\pi_{\alpha}(M)^{\prime}$.
We denote by q the central support of z^{\prime} in $\pi_{\beta}(N)^{\prime}$, then the equations $\gamma(q) z=\gamma\left(q z^{\prime}\right)=\gamma\left(z^{\prime}\right)=z$ imply that $\gamma(q) p=p$, similarly we obtain $\gamma^{-1}(p) q=q$ so that $\gamma(q)=\gamma\left(\gamma^{-1}(p) q\right)=\gamma\left(\gamma^{-1}(p)\right) \gamma(q) p=p \gamma(q)=p$.

Hence θ is an isomorphism of N_{q} onto M_{p} and θ is an antiisomorphism of $N_{(1-q)}$ onto $M_{(1-p)}$.

The projection p (resp. q) is G-invariant (resp. H-invariant) since $\pi_{\alpha}(M)^{\prime}=\lambda_{G}(g) \pi_{\alpha}(M)^{\prime} \lambda_{G}(g)^{*}$ and $\lambda_{G}(g) z \lambda_{G}(g)^{*}=z$.

Now we have already proved (1) $\sim(4)$ and the statements (5), (6) still remain to prove.

For all $y \in N, h \in H$ we get,

$$
\begin{aligned}
\left\{\pi_{\alpha} \circ \theta\left(\beta_{h}(y)\right)\right\} z & =\gamma\left(\lambda_{H}(h) \pi_{\beta}(y) \lambda_{H}(h)^{*} z^{\prime}\right) \\
& =\lambda_{G}(I(h)) \pi_{\alpha} \circ \theta(y) \lambda_{G}\left(I(h)^{-1}\right) z \\
& =\left\{\pi_{\alpha^{\circ}} \circ \alpha_{I(h)} \circ \theta\right\}(y) z,
\end{aligned}
$$

hence

$$
\theta \circ \beta_{h}=\alpha_{I(h)} \circ \theta \text { on } N_{q},
$$

and similarly

$$
\theta \circ \beta_{h}=\alpha_{I(h-1)} \circ \theta \text { on } N_{(1-q)} .
$$

Therefore $\theta \circ \beta_{h}(y)=\alpha_{I(h)} \circ \theta(y) p+\alpha_{I\left(h^{-1}\right)} \circ \theta(y)(1-p)$ for all $y \in N$ and $h \in H$. To prove the statement (5), we shall show first,

$$
\operatorname{supp} \gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right)=\{I(h)\}
$$

For since $\gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right) u=\gamma\left(\pi_{\beta}(y) \lambda_{H}(h) \psi(u)\right)$ for all $u \in F_{\alpha}(G ; M *)$ and ψ is surjective,

$$
\begin{aligned}
& {\left[\gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right) F_{\alpha}\left(G ; M_{*}\right)\right]^{-\sigma-w}} \\
& \quad=\gamma\left[\pi_{\beta}(y) \lambda_{H}(h) F_{\beta}\left(H ; N_{*}\right)\right]^{-\sigma-w}
\end{aligned}
$$

where $[\cdots]^{-\sigma-w}$ means a σ-weak closure, on the other hand,

$$
\left[\pi_{\beta}(y) \lambda_{H}(h) F_{\beta}\left(H ; N_{*}\right)\right]^{-\sigma-w} \cap \lambda_{H}(H)=C \lambda_{H}(h)
$$

because of $\operatorname{supp} \pi_{\beta}(y) \lambda_{H}(h)=\{h\}$, so that we obtain;

$$
\begin{gathered}
{\left[\gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right) F_{\alpha}\left(G ; M_{*}\right)\right]^{-\sigma-w} \cap \lambda_{G}(G)=C \lambda_{G}(I(h))} \\
\operatorname{supp} \gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right)=\{I(h)\}
\end{gathered}
$$

By [2] Theorem 4.4 or [6] Proposition 6.1, there exists an element x of M such that $\gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right)=\pi_{\alpha}(x) \lambda_{G}(I(h))$.

$$
\begin{aligned}
& \pi_{\alpha}(x) \lambda_{G}(I(h)) z \\
& \quad=\gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right) z \\
& \quad=\gamma\left(\pi_{\beta}(y)\right) \gamma\left(\lambda_{H}(h)\right) z \\
& \quad=\pi_{\alpha}(\theta(y)) \lambda_{G}(I(h)) z
\end{aligned}
$$

then

$$
x p=\theta(y) p, \text { and similarly } x(1-p)=\alpha_{I(k)} \theta(y)(1-p) .
$$

We get;

$$
\begin{gathered}
x=\theta(y) p+\alpha_{I(h)} \theta(y)(1-p), \\
\gamma\left(\pi_{\beta}(y) \lambda_{H}(h)\right)=\pi_{\alpha}(\theta(y) p) \lambda_{G}(I(h))+\pi_{\alpha}\left(\alpha_{I(h)} \theta(y)(1-p)\right) \lambda_{G}(I(h)) .
\end{gathered}
$$

By (2.2), $\phi(u)=\psi\left({ }_{k} u\right)$ for $u \in F_{\alpha}\left(G ; M_{*}\right)$ and the above equation, we can get the statement (5).

Remark 2. Theorem 1 is a generalization of [10] Theorem 2.
Corollary 3. Let (M, G, α), (N, H, β) be W^{*}-systems and the two actions α and β are ergodic on their centers (that is $Z_{M} \cap M^{G}=$ $\left.Z_{N} \cap N^{H}=\boldsymbol{C}\right)$.

The following statements are equivalent;
(1) $\quad F_{\alpha}\left(G ; M_{*}\right)$ is isomorphic to $F_{\beta}\left(H ; N_{*}\right)$ in the sense of Banach algebra
(2) there exists either an isomorphism I of H onto G, an isomorphism θ of N onto M such that $\theta \circ \beta_{h}=\alpha_{I(h)} \circ \theta$ for all $h \in H$, or an anti-isomorphism I of H onto G, an anti-isomorphism θ of N onto M such that $\theta \circ \beta_{h}=\alpha_{I(h-1)} \circ \theta$ for all $h \in H$.

Proof. Suppose ϕ is an isometric isomorphism of $F_{\alpha}\left(G ; M_{*}\right)$ onto $F_{\beta}\left(H ; N_{*}\right)$ and we use the same notations in Theorem 1. The projection p in (3) of Theorem 1 must be zero or 1 by the ergodicity of the action α, then θ is either an isomorphism or an anti-isomorphism of N onto M.

When G is a locally compact abelian group (it follows from (2.6) that H is a locally compact abelian group), I in (2.6) can be regarded as both an isomorphism and an anti-isomorphism, therefore the statement (2) follows from Theorem 1 when G is abelian. Hence we may assume that G is non-abelian.

When I is an anti-isomorphism of H onto G, the projection $(1-z)$ in (2.4) must be nonzero. For if the projection z is the identity in $G \boldsymbol{\theta}_{\alpha} M$, then γ in (2.5) is an isomorphism of $H \boldsymbol{\otimes}_{\beta} N$ onto $G \boldsymbol{\otimes}_{\alpha} M$, so I is an isomorphism, which is a contradiction. Taking the central support of $(1-z)$ in $\pi_{\alpha}(M)^{\prime}$ as (2.7), θ is an anti-isomorphism of H onto G such that $\alpha_{I\left(h^{-1}\right)} \circ \theta=\theta \circ \beta_{h}$ for all $h \in$ H. If I is an isomorphism, θ is an isomorphism such that $\alpha_{I(h)} \circ \theta=$ $\theta \circ \beta_{h}$ for all $h \in H$.

Conversely suppose I is an isomorphism of H onto G such that $\theta \circ \beta_{h}=\alpha_{I(h)} \circ \beta_{h}$ for all $h \in H$. Then there exists an isomorphism Γ of $H \boldsymbol{\otimes}_{\beta} N$ onto $G \boldsymbol{\otimes}_{\alpha} M$ such that $\Gamma\left(\pi_{\beta}(y)\right)=\pi_{\alpha}(\theta(y))$ for all $y \in N$ and $\Gamma\left(\lambda_{H}(h)\right)=\lambda_{G}(I(h))$ for all $h \in H$ (cf. [9] Proposition 3.4). Then the transposed map ϕ of Γ is an isometric isomorphism of $F_{\alpha}\left(G ; M_{*}\right)$ onto $F_{\beta}\left(H ; N_{*}\right)$.

Suppose I is an anti-isomorphism of H onto G such that $\theta \circ \beta_{h}=$ $\alpha_{I\left(h^{-1}\right)} \circ \theta$ for all $h \in H$. Considering the opposite von Neumann algebra M° of M and the isomorphism J of H onto G by $J(h)=I\left(h^{-1}\right)$ for all $h \in H$, there exists an isomorphism Γ of $H \boldsymbol{\otimes}_{\beta} N$ onto $G \boldsymbol{\otimes}_{\alpha} M^{\circ}$ such that $\Gamma\left(\pi_{\beta}(y)\right)=\pi_{\alpha}(\theta(y))$ for all $y \in N, \Gamma\left(\lambda_{H}(h)\right)=\lambda_{G}(J(h))$ for all $h \in H$. On the other hand, $G \boldsymbol{\otimes}_{\alpha} M^{\circ}$ is isometrically isomorphic to $G \boldsymbol{\otimes}_{\alpha} M$ as Banach spaces, therefore Γ is a σ-weakly continuous isometric linear map of $H \boldsymbol{\otimes}_{\beta} N$ onto $G \boldsymbol{\otimes}_{\alpha} M$. Then the transposed map ϕ of Γ is an isometric isomorphism of $F_{\alpha}\left(G ; M_{*}\right)$ onto $F_{\beta}\left(H ; N_{*}\right)$.

References

1. P. Eymard, L, algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
2. M. Fugita, Banach algebra structure in Fourier spaces and generalization of harmonic analysis on locally compact groups, (preprint).
3. R. V. Kadison, Isometries of operator algebras, Ann. of Math., 54 (1951), 325-338.
4. Y. Kawada, On the group ring of a topolopical group, Math. Japonica, 1 (1948), 1-5.
5. M. B. Landstad, Duality theory for covariant systems, (preprint).
6. Y. Nakagami, Dual action of a von Neumann algebra and Takesaki's duality for a locally compact group, preprint University of Kyushu, 1975.
7. W. Rudin, Fourier Analysis on Groups, Interscience, New York, 1962.
8. H. Takai, On a Fourier expansion in continuous crossed products, Publ. R.I.M.S. Kyoto Univ., 11 (1976), 849-880.
9. M. Takesaki, Duality for crossed products and the structure of von Neumann algebras of type III, Acta. Math., 131 (1973), 249-310.
10. M. E. Walter, W^{*}-algebras and non-abelian harmonic analysis, J. Functional Analysis, 11 (1972), 17-38.
11. J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math., 2 (1952), 251-261.

Received January 30, 1979.
Osaka University
Toyonaka, Osaka, Japan

