
PACIFIC JOURNAL OF MATHEMATICS
Vol. 86, No. 2, 1980

DIRECT LIMIT GROUPS AND THE KEESLING-MARDESIC
SHAPE FIBRATION

K. R. GOODEARL AND T. B. RUSHING

We show that the Keesling-Mardesic shape fibration has
an uncountable number of fibers of different shape type.
This is done by showing that an uncountable number of
nonisomorphic groups can arise as direct limits of direct
limit sequences having all groups Z(&Z and all bonding

homomorphisms given by one of the two matrices ( n o ) or

(1 1\ V° Δ)

A* Introduction* The notion of shape fibration has been deve-
loped by Mardesic and Rushing in [4, 5, 6]. In [4] the following
question was raised: Let p: E —> B be a shape fibration and let
x, y e B loe points belonging to the same component. Do the fibers
p~\x) and p~~\y) have the same shape? In that paper, this was
shown to be the case if x and y belong to the same path component,
and in [5, Corollary 1], this was shown to be the case if x and y
belong to a subcontinuum of B of trivial shape. In [3], Keesling
and Mardesic gave an ingenious example of a shape fibration with
connected base space and showed that it has two fibers of different
shape. We show that their example, in fact, has an uncountable
number of fibers of different shape.

Let an inverse limit sequence of spaces be given where each
space is Γ2 = S1 x S1 and each bonding map is given by one of the

two matrices (Λ «) or (., o ) . Here the given matrices each induce
\{J ΔJ \L ΔJ

a continuous homomorphism on R2 which in turn defines a continuous
homomorphism on T2 via the covering map e x e: R2 —> T2 where
e(t) = e2πίt. Let X be the inverse limit space of such a sequence.
Then the discussion in [3, §§2, 3] and [3, Lemma 1] implies that the
Keesling-Mardesic fibration has a fiber homeomorphic to X.

Consider the direct limit sequence of groups where each group is
Z @ Z and each bonding map is given by the transpose of the cor-
responding matrix in the inverse sequence above. Then by [3, §5],
the first Cech cohomology group H\X, Z) of X is isomorphic to the
direct limit of this sequence. Since Cech cohomology is an invariant
of shape type, it suffices to show that there are an uncountable
number of isomorphism classes of such direct limit groups.

Thus the groups we are interested in arise as direct limits of
sequences
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n f°^ n f1 n f2

of abelian groups and group homomorphisms, where each Gn —

and each fn is given by one of two matrices ( Λ o ) or ( Λ o ) . (We
\υ ΔJ \υ ΔJ

are viewing the elements of ZφZ as column vectors, so that fn

acts as left multiplication by the chosen matrix.) Our task is to
show that among the groups G appearing as direct limits of the
above form, there are uncountably many isomorphism classes. This
result is folklore among abelian group theorists. An effort is made
here to give a presentation that is as accessible as possible.

For convenience in labelling these groups and comparing them,
we shall use a few computations within the field of 2-adic numbers.
For the reader's convenience, we review the basics of this field and
its construction in the following section. Details may be found, for
example, in [1, Chapter I] or [2, Chapter V, §5]. We would like to
thank Richard S. Pierce for bringing these 2-adic methods to our
attention.

B* 2-Adic numbers* For any rational number x, the 2-adic
valuation of x, denoted o2(x), is defined as follows. If x — 0, then
u2(χ) = oo. If x Φ 0, then x may be uniquely written in the form
x — 2na/b, where n, α, b are integers, a and 6 are odd, and b Φ 0; in
this case, υ2(x) = n. Clearly υ2(xy) = υ2(x) + v2(y), and it may be
checked that υ2(x + y) ^ min{̂ 2(a;), υ2(y)}.

The 2-adic valuation υ2( —) is used to define the 2-adic absolute
value I |2 on Q, by the formula

\χ\2 = 2-'J*{x) .

(Some authors refer to | |2, rather than υ2( —), as the 2-adic valuation
on Q.) The basic properties of υ2( —) translate into the following
basic properties of | |2:

( i ) I x |2 is a nonnegative real number, and | x |2 = 0 if and only
if x = 0.

(ii) |a?y|2 = \x\i\v\*
( i n ) \x + y \ 2 ^ m a x { | x | 2 , \ y \ 2 } ^ \ x \ 2 + \y[>.

It is clear from these properties that the rule δ2(x, y) = \x — y\2

defines a metric on Q, called the 2-adic metric.
We shall use Q2* to denote the completion of Q with respect to

the metric δ2. Since addition and multiplication in Q are uniformly
continuous with respect to δ2, they induce addition and multiplication
operations in Q2*. Then Q2* becomes a field, known as the field of
2-adic numbers. The completion of Z with respect to δ2 is then a
subring Z$ of Q2*, known as the ring of 2-adic integers, and it may
be checked that Q Γ\ Z* = Z.
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The elements of Z2* may be explicitly represented as (limits of)
series. Given any sequence ε0, εlf ε2, of zeros and ones, the series
ΣfcUεfc2

fc converges in Z2*; conversely, every element of Zf may be
uniquely represented as such a series. In particular, it follows that
Zf is uncountable.

C* Change of perspective. Given a group G obtained as a

direct limit as in § A, we wish to present G in a form more suitable

for computation. Each of the maps fk is given by a matrix (* |M,

where εk = 0 or 1. Set an = ΣίU ε&2* for all n = 0, 1, 2, , and let
a be the 2-adic integer ΣS=oεfe2

fc.
Let V be a 2-dimensional vector space over Q, with basis {xlf x2}.

Set z0 — x2, set

(1) zn = (x2 - a^xJ/2*

for n — 1,2, , and for all w let Aα,Λ be the sub^rowp of F generated
by a?! and «». Observing that

2z
+1

we see that Aatn £ Ar,«+i Thus Aa = U«=o Aa,n is a subgroup of V,
and we claim that Aa ~ G.

Since Aα,w is a free abelian group with basis {xu zn}, there is a

group isomorphism #M: Gn —> Aa>n given by the rule gn (?J = αα̂  + &#„.

Note, using (2), that the following diagram commutes:

00 01 02

As the direct limits of the top and bottom rows are G and Aa, we
obtain G = Aa, as claimed.

There is a projection V-+Q mapping x±h^0 and x2\->l. The
image of Aa under this projection is the group of all rational numbers
of the form a/2n (where a, neZ and n^ 0), which is not finitely
generated. Therefore Aa is not finitely generated.

D\ Isomorphic groups* The question now is, for what values
of a are the groups Aa isomorphic? Consider another group Aβ,
where β = Σ?=o Sk2

k in Zf, and each dk = 0 or 1. Set βn = ΣLo δ,2fc

for all n. Set w0 ~ x2, set
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for n = 1, 2, , and for all n let Aβ>n be the subgroup of V generated
by x1 and wn. Then

( 4 ) wn = δnx1 + 2wn+1

for all n, so that Aβ>n Q Aβt%+lf and we set Aβ = U?=o Aβt%.
We claim that if Aa ~ Aβ, then

( 5 ) (αr12 — r22)/3 = r21 — α r n

for some integers riS.
Thus assume that there is a group isomorphism Aa-+Aβ. Observ-

ing that we may identify Aa ® z Q and Aβ ® z Q with V, we see that
the group isomorphism Aa —> Aβ induces a vector space automorphism
g:V-*V such that g(Aa) = Aβ. There exist integers r n , r12, r21, r22, s
(with s Φ 0) such that

( 6 ) #(&<) = (ril/s)x1 + (ri2/s)x2 ,

and we shall prove (5) using these riό. Note, from combining (6)
and (1), that g(z0) = (τ2js)x1 + (rjs)x2 and

for Λ = 1,2, -•-.

E* The computation. As g(Aa) = Aβ, there is a nonnegative
integer t such that (̂aji) e Aβtt. For all w = 0, 1, 2, , let k(n) be
the least integer such that k(ri)*zt and g(zn)eAβMn). In view of
(2), we see that g(zn) lies in Aβfk{n+1), whence k(n) ^ k(n + 1). Thus
fc(0) ^ fc(l) ^ is an increasing sequence of nonnegative integers,
and we claim this sequence is unbounded.

If there is an integer k with all k(n) ^ k, then g(xλ) e Aβik and
all g(zn)eAβtk, whence g(Aa) £ Aβtk. Since Aβ>k is finitely generated,
this would imply that Aa is finitely generated, which is false. Thus
the k(n) are unbounded, as claimed.

In particular, there exists a positive integer N such that k(n) > t
for all n ^ N.

As g(zn)eAβMn), we must have

( 8 ) g{zn) = α ^ + bnwk{n)

for some α%, bneZ. If jfc(w) > t and 6% = 2c for some c e Z , then we
see using (4) that

( 9 ) g(zn) = α ^

and so g(zn) eAβΛ{n)_l9 which contradicts the minimality of k(n). Thus
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bn must be odd whenever k(n) > t. In particular, bn is odd for all
n ^ N.

Comparing (7) and (8), with the help of (3), we obtain

(10) (2k^an - βklΛ)-J>n)l2k™ = (r 2 1 - a.__1r11)/2*8

(11) bJ2k™ = (r22 - a^r^/Ps

for all n ^ 1. Cross-multiplying (10) and (11) yields

(12) (r21 - a^r^K = (r22 - an^r12)(2kin)an - βk{n)-J>J .

When n^ N, we have bn odd and so can divide by it, yielding

(13) r21 - a^τλl = (r22 - α._1

We intend to take the limit of (13) in Q2* as n —• oo.
As 6Λ is odd, >̂2(6%) = 0 and so | bn |2 = 1. As an is an integer,

Ξ> 0 and so |α Λ j 2 ^ 1. Consequently,

(14) |2fc( ) (α./6J | 2 ^|2 f c ( >|2 = 2 - t w .

Since the k(ή) form an unbounded increasing sequence, 2~h{n) -> 0,
hence 2k{n)(ajbn) -> 0 in Q*.

Thus we can now compute the limit of (13) as n —> oo f obtaining

(14) r21 - α r u = (r22 - ar12)(-β) ,

which is equivalent to (5).

F* Uncountably many groups* Put an equivalence relation ~
on Z2*, defined by a — β if and only if Aa = A .̂ If α ί Z and α ~ β,
then (5) shows that

(15) β = (r21 - ατn)/(r22 - αr12)

for some integers riά, hence there are only countably many possibilities
for β. Thus if aiZ, then the equivalence class of a is countable.
For aeZ, either the equivalence class of a is contained in Z, or it
coincides with the equivalence class of some β $ Z; in either case, the
equivalence class of a is again countable.

Thus all the equivalence classes with respect to ~ are countable.
As Z* is uncountable, there must be uncountably many equivalence
classes. Therefore there are uncountably many isomorphism classes
of the groups Aa.
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