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NORMAL STRUCTURE COEFFICIENTS
FOR BANACH SPACES

W. L. BYNUM

This paper introduces several geometric concepts in
Banach spaces related to normal structure and uses these
ideas to generalize a recent theorem of Baillon for fixed
points of nonexpansive mappings.

1* Definitions. The concepts introduced in this paper are
phrased in terms of reflexive Banach spaces. This is not a serious
restriction, but rather one of technical convenience. All of the
concepts discussed here deal with closed bounded convex subsets of
a reflexive Banach space, so one could replace "closed bounded and
convex" with "weakly compact and convex", if desired.

For the following definitions, X will denote a reflexive Banach
space and C will denote a closed bounded convex subset of X.

For each x in C, let r(x, C) = sup{||ίc — y\\: y in C) and let R(C)
denote the Cebysev radius of C [11, p. 178]:

R(C) = min {r(x, C): x in C} .

This minimum is achieved because of the weak compactness of C.
Let D(C) denote the diameter of C, D(C) = sup{| |x — y\\: x, y in C}.

A space X has normal structure [2] provided that for each
closed bounded convex subset C of X with more than one member,
R(C) < D(C).

The three Banach space coefficients defined in the following
paragraphs are the principal objects of study in this paper.

The normal structure coefficient of X, denoted by N(X), is the
infimum of the set of number D(C)/R(C) taken over all closed con-
vex subsets C of X with more than one member.

The asymptotic diameter of a bounded sequence {xn} in X is
defined to be lim,, sup{||#m — xk\\: m ^ n, k ^ n}. The bounded

sequence coefficient of X, denoted BS(X), is the supremum of the
set of all numbers M with the property that for each bounded
sequence \xn} with asymptotic diameter A, there is some y in the
closed convex hull of the sequence such that ikf lim supj|α?w — y\\ ̂  A.

The weakly convergent sequence coefficient of X, denoted by
WCS(X), is defined similarly, replacing "bounded" with "weakly
convergent".

These three coefficients are related to normal structure in that
if any one of the three is greater than 1 (all are between 1 and 2),
the space has normal structure; this result is established in § 2. An
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example is given at the end of § 2 of a space with normal structure
for which all three coefficients are 1, so the converse of the pre-
vious statement is false.

The primary focus of this paper is on the coefficient WCS(X)
for two reasons. First, because of Theorem 1 below, it appears to
be the "weakest" of the three coefficients, and second, it seems to
be the easiest of the three to evaluate, at least for the lp spaces
(1 < p < oo) and some of their isomorphs. Intuitively, it seems
that the three coefficients should be equal, at least for some limited
class of spaces. However, J.-B. Baillon has constructed an example
of a reflexive Banach space X such that N(X) = 1 and WCS(X) = 21/2

(see §2).
The paper is organized as follows. Section 2 contains basic

theorems and several examples, § 3 contains a theorem relating the
coefficients to the Banach-Mazur distance coefficient, and § 4 contains
a fixed point theorem for nonexpansive mappings.

2* Examples and basic results* The three coefficients are re-
lated by the following theorem.

THEOREM 1. For a reflexive Banach space X,

1 ^ N(X) ^ BS(X) ^ WCS(X) ^ 2 .

Proof. The inequalities 1 ^ N(X) and BS(X) ^ WCS(X) follow
from the definitions, and it is obvious from the triangle inquality
that WCS(X) ^ 2.

We shall show that N(X) ^ BS(X). Take a bounded sequence
{xn} in X with asymptotic diameter A, and for each n let Cn be
the closed convex hull of {xn, xn+1, •}.

If there is an n such that Cn has only one member, then the
sequence {xn} is constant from that point on, and if u is that con-
stant, we have N(X) limsupw \\xn — u\\ = A = 0.

So suppose that each Cn has more than one member. The de-
finition of N(X) implies that for each n N(X) R(Cn) ^ D(CJ. For
each y in C19 let β(y) = limsupj|x% — y\\. Since β is continuous and
convex and since Cx is weakly compact, there is some yQ in Cγ at
which β achieves its minimum value.

For each n, there is some zn in Cn such that r(zn, Cn) = R(Cn),
and for such a point it is clear that

β(Vo) £ /30O ^ r(zn9 CJ £ D(CJ/N(X) .

But it is easy to show that D{Cn) = sup{||#m — xk\\: m, k ^ n}9 so
that the sequence {D(Cn)} decreases to A. Consequently,
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A/N(X), and N(X) ^ BS(X), as desired.
For a separable reflexive space X, every closed bounded convex

subset contains a dense sequence, so in this case, N(X) == BS{X).
J.-B. Baillon has noted that if X is taken to be the indirect sum
of the spaces Rl, n^l, where 22* is the space 22* with the maxi-
mum norm, then X is separable and reflexive and N(X) = BS(X) —
1 < WCS(X) = 21/2, which shows that the coefficients need not be
equal.

If any one of these coefficients for a space X is greater than
one, then X has normal structure. First, it is obvious from the
definitions that X has normal structure if N(X) > 1. As far as
the other two coefficients are concerned, if X lacks normal structure,
then by [9, Proposition 3] there is a diametral sequence in the unit
ball of X converging weakly to zero with asymptotic diameter one;
that is, there is a sequence {xn} in the unit ball of X such that
\\xn\\ —> 1, xn —̂  0, and the distance from xn+1 to the convex hull of
\xl9 •••,#„} tends to 1 as n —» °°. This last condition implies that
for each y in the convex hull of the sequence, limΛ||ccΛ — y\\ = 1,
so that WCS(X) = BS(X) = N(X) = 1. Therefore, if either BS(X)
or WCS(X) is greater than 1, then X has normal structure also.

The fixed point theorem of § 4 is phrased in terms of WCS(X),
and fortunately this coefficient seems relatively easy to evaluate for
the lp spaces (1 < p < oo).

THEOREM 2. For 1 < p < oo, WCS(lp) = 21/p.

Proof. Let {xn} be a sequence in lp with asymptotic diameter
A converging weakly to a point z, and let B = limsup% \\xn — z\\.
By choosing a subsequence {xnj) = {wfc} such that lim^ \\wk — ^|| = J5,
w e o b t a i n t h a t f o r e a c h y i n l p l i m k \\wk — y \ \ p = B p + \\y — z \ \ p . I f
we denote this last quantity by β(y)p, then lim sup% β(xn) ^ A, and
β(wky = Bp + \\wk- z\\p, so that lim sup% /S(α?J ^ 21/?)β and A ^ 21/J)β.
Consequently, WCS(lp) ^ 21/J).

For the opposite inequality, the usual Schauder basis {en} of lP

has asymptotic diameter 21/p and limw ||βΛ - 0|| = 1, so WCS(lp) = 2Vί).
Theorem 2.6 of [6, p. 112] shows that N(l2) = 21/2, so that

Theorems 1 and 2 above imply that all three constants coincide in
the case of i2.

Unfortunately, the normal structure coefficients for L^O, 1] = Lp

seem to be difficult to determine, and no precise values have been
obtained. By considering various sequences in Lp, it is relatively
easy to show that WCS(LP) ^ min{21"1/p, 21/p}, so that when 1 < p < 2,
WCS(LP) and WCS(l9) must differ. The bound given above is a
likely candidate for the actual value of WCS(LP), but so far noth-
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ing definite has been obtained.
The question of how these coefficients relate to the modulus of

convexity of a space is a natural one to ask, and the following
theorem gives a partial answer.

THEOREM 3. If X is a reflexive Banach space with modulus of
convexity δ, then N(X) ̂  (1 - δ(l))"1.

Proof. Let C be a closed bounded convex subset of X with
more than one member, and let ε > 0.

Choose x and y in C such that \\x — y\\ ^ D{C) — ε, let w =
(x + y)/2, and choose z in C such that \\z — w\\ ̂  r(w, C) — ε. Then
by the definition of δ

| |s - n;|| ̂  D(C)(1 - δ((D(C) -

and by the definition of R(C)

R(C) ^r(w,C) ^ \\z- w\\ + ε .

Combining these two inequalities with the continuity of δ [10, p.
145], we obtain that R(C) ̂  (1 - δ(l))D(C), from which the desired
result follows.

This theorem shows that if δ(l) > 0, then N(X) > 1, and con-
sequently, X has normal structure. This implication was first noted
in [8] with essentially the same argument as above.

Note that by Theorem 1, δ(l) > 0 also implies that both WCS(X)
and BS(X) are greater than one. The space lp>1 (defined in [3]),
which is simply lp renormed with the norm described below, is an
interesting space to consider now, because it is not uniformly con-
vex (its modulus of convexity is zero on the interval [0, 21/3>]), yet
it has normal structure. Moreover, as we shall see in Theorem 4
below, WCS(lp>1) = 21'*.

The norm for lP)1 is defined as follows (see [3]): for x in lp and
for each n, let x+(n) = max{#(w), 0}, and let x~ = ( — x)+. If || ||
denotes the usual lp norm, then define the norm | | for lpΛ by |a?| =

THEOREM 4. For 1 < p < oo, WCS(lpΛ) = 21/p.

Proof. Without loss of generality, we can consider a sequence
{xn} converging weakly to 0. By choosing as many subsequences as
necessary, we can obtain a subsequence {xnje} = {zk} such that zk —̂  0,
\zk\ ->limsupw \xn\, \\zt\\ -+B, and | | ^ | | ->C as k^ oo.

We shall show that for each y in lpΛ,
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( 1 ) \\(zk-y)+\\p >B*+ \\y-\\>

and

( 2 ) \\{zk-y)-\Y—>C* + \\y+\\».

Let {en} denote the usual Schauder basis of lp, and for each x
in lPtί and each m, let Umx = x(£)eY+ +x(m)βm and Vmx — x — Z7mίtf.

We shall show that (1) holds. Fix m and note that \\Um(zk — ?/)+||-^
\\Um(~y+)\\ = \\Umy~\\ because z , - 0 as k^ oo.

For each &,

and

\\Vm(zk - »)+|| ^ | | F A + | | + H7.1ΓII ^ | | ^ + | | + | | ^ . » - | | .

Because zk-^0, it follows that limfc | |Z7m^|) = 0, and thus

lim inf 4 1 | Vm{zk - y y \ \ ^ B - \\ Vmy+\\

and

lim sup, || Vm(zk -y)+\\^B+\\ Vmy~\\ .

Consequently, for each m:

lim sup* || («* — 3/)+1|' ^ \\Umy-\\> + (B + \\Vmy~\\y

and

liminf* | | f e - y)+\\» ^ \\Umy-\\» + \B - \\Vmy+\\\» .

By taking limits as m -+ oo 9 we obtain the result sought, namely
statement (1) above. The proof of statement (2) is similar.

Consequently, for each fixed n,

\imk\zk - xn\ = (Bp + ||α?ί||')1/J> + (C* + \\x:\\ψp .

Setting n = nk in this expression and letting k —» oo 9 we obtain
finally that 2(BP + Cv)1/P does not exceed the asymptotic diameter
A of the sequence {xn}. On the other hand, lim supw | xn — 0| =
B + C, and by the Holder inequality, B + C ̂  21-1/*(£» + C^)1^.
Consequently, 21/ί? lim supw |a;w - 0| ^ A, and so WCS(lPtl) ^ 21/2>.

To obtain the reverse inequality, let xn — e2n — e2Λ+1. The asy-
mptotic diameter of this sequence is 21+1/p and limΛ |#M — 0| = 2, so
that WGS(lpΛ) ^ 21/p, and at last the proof is complete.

We conclude this section with another example: a space X with
normal structure such that N(X) = BS(X) = WCS(X) = 1.

Let X be the indirect sum of the sequence of spaces {l%}n^2; i.e.,
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let X be the collection of all sequences x = {xn}n>2 such that xn is
in ln for each n and \x\2 = ^n | |a?n | |2 < ©o. This space is reflexive and
is easily shown to be uniformly convex in every direction (cf. [7]),
so it has normal structure. On the other hand, WCS(X) £ WCS(ln) =
21/n for each n, so all three constants for this space are 1.

3* The normal structure coefficients and the Banach-Mazur
distance coefficient* For isomorphic Banach spaces X and Y, the
Banach-Mazur distance from X to Y, denoted d(X, Y), is defined
to be the infimum of ||C7|| WU^W taken over all bicontinuous linear
operators U from X onto Y.

When any one of the normal structure coefficients is greater
than one, this condition is contagious. More precisely, we have the
following theorem:

THEOREM 5. If X and Y are isomorphic Banach spaces, then
N(X) ^ d(X, Y)N(Y), BS(X) ^ d(X, Y)BS(Y), and WCS(X) ^ d(X, Y)
WCS(Y).

Proof. Each of these inequalities has a similar proof. We shall
show here that N(X) ^ d(X, Y)N(Y).

Let C be a closed bounded convex subset of Y with more than
one member. If U is an isomorphism of Y onto X, then U{C) is a
subset of X with the same properties as those of C. It follows
easily from the definitions that

RY{C) £ WU-'WR

Consequently, RY(C) ^ d{X, Y)DY(C)/N(X), from which the desired
result follows.

The following observation is a corollary of Theorem 5: if X is
a reflexive Banach space such that N(X) > 1 and if 7 is a Banach
space such that d(X, Y) < N(X), then N(Y) > 1 also. A combina-
tion of this observation with Theorems 2 and 3 subsumes the re-
sults announced in [5].

The space lPι00, defined in [3], is interesting with regard to the
previous paragraph. The space lPyOQ is simply lp renormed with the
norm |aj| = max{||cc+||, \\x~\\} (see §2). The space lp>co lacks normal
structure (see [3]) and d(lPtO09 lp) = 21/p, yet by the remark in the
previous paragraph if d(lp, Y) < 21/p, then Y has normal structure,
so that the space lp>oo is a sort of "limiting case" of spaces with
normal structure.

This space is also interesting with regard to the concept of
asymptotic normal structure introduced in [13]. A Banach space X



NORMAL STRUCTURE COEFFICIENTS FOR BANACH SPACES 433

has asymptotic normal structure provided that for each closed
bounded subset C of X with more than one member and each
sequence {xn} in C with the property that limft \\xn — a?n+1|| = 0, there
is some y in C such that liminf% \\xn — y\\ < D(C). The space ϊp>oo

lacks asymptotic normal structure also (see [4]), and since normal
structure implies asymptotic normal structure, the space lPfOO is a
sort of "limiting case" of spaces with asymptotic normal structure
as well.

4* A fixed point theorem for nonexpansive mappings* The
following theorem is a generalization of a recent fixed point theorem
of Baillon [1] (see the Corollary below).

THEOREM 6. If X is a uniformly convex Banach space and if
Y is a Banach space such that d(X, Y) <̂  WCS(X), then each non-
expansive selfmap of a closed bounded convex subset of Y has a
fixed point.

Proof. Let C be a closed bounded convex subset of Y and let
T be a fixed-point-free nonexpansive selfmap of C. Let K be a
minimal closed convex subset of C which is selfmapped by T. Let
11 11 denote the norm on X and | | the norm on Y.

By a result of Karlovitz [12] if {xn} is a sequence in K such
that limΛ | xn — Txn | = 0, then for each y in K, \xmn \ xn — y \ =
DY(K) = D. By replacing {xn} with one of its subsequences, we can
assume that {xn} converges weakly to some point of K.

Choose 0 < b < 1. By the definition of d(X, Y) there is an iso-
morphism U of Y onto X such that H^"1!! - l a n d b\\U\\ < d(X, Γ ) ^
WCS(X). If A is the asymptotic diameter of {Uxn}9 then since
{Uxn} converges weakly in X there is some w in K with the pro-
perty that Uw is in the closed hull of {Uxn) and β( Uw) = lim supn

| |Uxn - Uw\\ ^ A/WCS(X). But for each n,\xn-w\£\\Uxn - Uw||,

so by the previous paragraph,

(3) D^β(Uw) £A/WCS(X) <A/(b\\U\\) .

Since it is easy to show that A <̂  ||Z7||A w e obtain the follow-
ing results from (3):

(4) bD\\U\\<A

( 5 ) β(Uw) <D/b .

For simplicity in what follows, let M = D| | ί7| | .
By the definition of A and by (4) above, there exist m and n

as large as desired such that
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(6) bM<\\Uxm- tfc.ll .

Note that \\Uxm — Uxn\\ <̂  ||I7|| \xm — xn\, so that inequality (6) im-
plies that \xm — xn\ > bD. Since lim% \xn — Txn\ = 0, it follows that
lim% \\Uxn — UTxn\\ = 0 also, and thus we can find m and n as large
as desired such that the inequalities \xm — Txm\ < 1 — b, \xn — Txn\<
1 - 6 , and bM< \\UTxm - UTxn\\ hold in addition to inequality (6).

Now if / = UTxm - U(T(xm + αO/2) and if g = U(T(xm + xJ/2)-
UTxn, then | |/ | | < Λf/2, ||#il < Λf/2, and by the previous sentence and
the uniform convexity of X we obtain:

bM < | | / + g\\ < M ( l - 3(2 \\f -

From this, the strict monotonicity of δ, and the choice of U, we
obtain finally that:

\xm + xn- 2T((xm + xn)/2)\ ^ \xm - Txm\ + \xn - Txn\ + | | / - g\\

< 2(1 - b) + (M/^δ-^l - 6)

< 2(1 - b) + (D/2b)d(X, Y)δ~\l - b) .

Since the right side of the last inequality approaches zero as 6 ap-
proaches one, it follows that there exist subsequences {xmjc} and
{x%k} with these two properties:

( 7 ) if zk = (xmk + xnk)/2, then lim, \zk-Tzk\ = 0.

(8) limk\xmk-xnk\ = D .

Now again choose some b in (0, 1), choose an isomorphism U as
before and obtain a w in K such that (5) holds; namely, lim supw

\\Ux%- Uw\\ <D/b.
By Karlovitz's result [12] again, we obtain from (7) that D—

lim^ \zk — w\ ̂  liminffc ||C/^ — E7w||. But for & sufficiently large,
we know that \\Uxmfc — Uw\\ and \\Uxn]c — Uw\\ are both less than
D/b because of (5). By the uniform convexity of X once more, we
find that

\\Uzk-Uw\\S (D/b)(l - 8(b \\Uxmk - Uxnk\\ID))

By letting k—>^m this inequality, we obtain from (8) and the
continuity of δ that D <; (D/b)(l — δ(b)). Since b is arbitrary in
(0, 1), we obtain the long-sought contradiction: D <: D(l — δ(l)).
Therefore, T has a fixed point.

The following result is a corollary of Theorems 2 and 6.

COROLLARY (Baillon [1]). Lei X be a Banach space having
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norms | |2 and l j ^ such that (X, | |2) is a Hίlbert space and | |«,^
| |2. / / || | | is the norm for X defined by | | = m a x { | |2, 2

1 / 2 | |OO},

then (X, ll'll) has the nonexpansίve fixed point property.

This corollary gives an alternate proof to the result of Kar-
lovitz [12] that the James space has the nonexpansive fixed point
property. In this connection, note that d(lPtCO, lp) = 21/3>, so that
Theorems 2 and 6 show that the space lp>oo described in § 3 has the
nonexpansive fixed point property as well. Since this space lacks
asymptotic normal structure, the fixed point theorem of [13] does
not apply in this case.

Although uniform convexity is used extensively in the proof of
Theorem 6, it is not clear whether uniform convexity can be drop-
ped from the hypothesis; that is, this question remains open: if
d(X, Y) ^ WCS(X) and WCS(X) > 1, does Y have the nonexpansive
fixed point property?

The author would like to thank R. E. Bruck for several con-
versations about some of the topics of this paper and J.-B. Baillon
for his helpful comments about the first draft. The author is
grateful to Prof. Baillon and the referee for noticing an error in
the proof of Theorem 6.
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