SIMILARITY ORBITS OF APPROXIMATELY FINITE C^{*}-ALGEBRAS

Steve Wright

Abstract

Let H denote a Hilbert space, and let $B(H)$ denote the algebra of all bounded linear operators on H. In this note, an intrinsic characterization of those Banach subalgebras of $B(H)$ which are similar to approximately finite C^{*}-subalgebras of $B(H)$ is obtained.

This can be viewed as a noncommutative analog of theorems of Mackey ([9], p. 131) and Wermer ([10], Theorem 1). These authors gave conditions on certain families of idempotents $\left\{E_{\alpha}\right\}_{\alpha_{A}}$ in $B(H)$ which insured the existence of an invertible T in $B(H)$ such that $T E_{\alpha} T^{-1}$ is a projection for all α in A. The main idea of the present paper involves finding conditions on certain families of matrix units $\{e(i, j)\}$ in $B(H)$ which guarantee the existence of an invertible T in $B(H)$ for which $\left\{T e(i, j) T^{-1}\right\}$ spans a C^{*}-algebra. This technique also has interesting applications to the orthogonalization of continuous representations of C^{*}-algebras (cf. [11]).
2. Preliminary definitions and lemmas. We begin by recalling the definition of an approximately finite C^{*}-algebra. A C^{*}-algebra \mathscr{C} is approximately finite if there is an increasing sequence of finite dimensional C^{*}-subalgebras of \mathscr{C} whose union is norm dense in \mathscr{C}. These algebras were defined and studied by Ola Bratteli in 1972 ([1]) as a generalization of the UHF algebras of Glimm ([7]), and have become popular objects of study among C^{*}-algebra enthusiasts (cf. [2], [3], [4], [5], and [8]).

The definition of approximate finiteness can be extended slightly to the context of Banach algebras as follows:

Definition 2.1. A Banach algebra \mathscr{A} is approximately finite if there is an increasing sequence $\left\{\mathscr{A}_{n}\right\}_{n=1}^{\infty}$ of finite dimensional, semisimple subalgebras such that $\mathscr{A}=\left(\mathbf{U}_{n} \cdot \mathscr{A}_{n}\right)^{-}$, where ${ }^{-}$denotes norm closure.

Note that the most natural definition of approximate finiteness for Banach algebras would not include the hypothesis of semisimplicity on the \mathscr{A}_{n} 's. It is included here primarily to simplify the statement of Theorem 3.1 below.

Consider then an approximately finite Banach algebra $. \mathscr{A}=$ $\left(\mathbf{U}_{n} \mathscr{A}_{n}\right)^{-}$. Since each \mathscr{A}_{n} is by definition finite dimensional and semisimple, it has a Wedderburn decomposition

$$
\mathscr{A}_{n}=\dot{+}\left\{\mathscr{A}_{k}^{(n)}: k=1, \cdots, r_{n}\right\},
$$

where $\mathscr{A}_{k}^{(n)}$ is isomorphic to the full complex matrix algebra $M_{[n, k]}$ of order $[n, k]$. (This notation is the same as [1].) One may hence select matrix units $\left\{e_{k}^{(n)}(i, j): i, j=1, \cdots,[n, k]\right\}$ for each $\mathscr{A}_{k}^{(n)}$ for which

$$
\mathscr{A}_{k}^{(n)}=\text { linear span of }\left\{e_{k}^{(n)}(i, j): i, j=1, \cdots,[n, k]\right\} .
$$

Now $\mathscr{A}_{n} \subseteq \mathscr{A}_{n+1}$, and the selection of matrix units $\left\{e_{k}^{(n)}(i, j)\right\}$ can be made to reflect this inclusion. This is accomplished in the following proposition, whose proof, left to the reader, is a straightforward modification of the proof of Proposition 1.7 of [1].

Proposition 2.2. Let \mathscr{A}_{1} and \mathscr{A}_{2} be finite dimensional, semisimple algebras, with Wedderburn decompositions

$$
\begin{gathered}
\mathscr{A}_{i}=+\left\{\mathscr{A}_{k}^{(i)}, k=1, \cdots, n_{i}\right\}, \quad i=1,2, \\
\mathscr{A}_{k}^{(i)} \cong M_{[i, k]}, \quad i=1,2 .
\end{gathered}
$$

Let $\left\{e_{l}^{(1)}(i, j): i, j=1, \cdots,[1, l]\right\}, l=1, \cdots, n_{1}$, be matrix units for \mathscr{A}_{1}. If $\mathscr{A}_{1} \subseteq \mathscr{A}_{2}$, then there exists unique nonnegative integers $n_{k i}, k=1$, $\cdots, n_{2}, i=1, \cdots, n_{1}$, and matrix units $\left\{e_{k}^{(2)}(i, j): i, j=1, \cdots,[2, k]\right\}$, $k=1, \cdots, n_{2}$ for \mathscr{A}_{2} such that

$$
\sum_{p=1}^{n_{1}} n_{k p}[1, p] \leqq[2, k]
$$

and

$$
\begin{align*}
e_{l}^{(1)}(i, j)= & \sum_{q=1}^{n_{2}} \sum_{m=1}^{n_{q l}} e_{q}^{(2)}\left(\sum_{p=1}^{l-1} n_{q p}[1, p]+(m-1) n_{q l}+i,\right. \tag{2.1}\\
& \left.\sum_{p=1}^{l-1} n_{q p}[1, p]+(m-1) n_{q l}+j\right) .
\end{align*}
$$

The matrix units for \mathscr{A}_{n} are now chosen inductively by applying Proposition 2.2 at the nth inclusion, so that for each n the matrix units for \mathscr{A}_{n+1} satisfy (2.1) relative to the matrix units for \mathscr{A}_{n}. Such a selection of matrix units will be called an admissable selection of matrix units for \mathscr{A}.

We turn now to the problem of orthogonalization of matrix units in $B(H)$ for a fixed Hilbert space H. Recall that a set of bounded operators $\{e(i, j): i, j=1, \cdots, n\}$ on H is said to form a system of matrix units on H if
(i) $\sum_{i=1}^{n} e(i, i)=$ identity operator on H,
(ii) $e(i, j) e(k, l)=\delta_{j k} \cdot e(i, l), i, j, k, l=1, \cdots, n$,
where $\delta_{j k}$ denotes the Kronecker delta. $\{e(i, j): i, j=1, \cdots, n\}$ is said to form a C^{*}-system of matrix units if in addition to (i) and (ii), one has
(iii) $e(i, j)^{*}=e(j, i), i, j=1, \cdots, n$.

Definition 2.3. Let $\{e(i, j): i, j=1, \cdots, n\}$ be a system of matrix units on H. An invertible operator T on H is said to orthogonalize $\{e(i, j): i, j=1, \cdots, n\}$ if

$$
\left(T e(i, j) T^{-1}\right)^{*}=T e(j, i) T^{-1}, i, j=1, \cdots, n
$$

i.e., if $\left\{T e(i, j) T^{-1}: i, j=1, \cdots, n\right\}$ is a C^{*}-system of matrix units on H.

Lemma 2.4. Let $\{e(i, j): i, j=1, \cdots, n\}$ be a system of matrix units on H. Then there exists an invertible operator T on H which orthogonalizes $\{e(i, j): i, j=1, \cdots, n\}$.

Proof. Set

$$
T=\left(\sum_{1 \leq i, j \leqq n} e(i, j)^{*} e(i, j)\right)^{1 / 2}
$$

We claim that T is invertible. For x in H,

$$
\begin{aligned}
\|T x\|^{2} & =\sum_{1 \leqq i, j \leqq n}\|e(i, j) x\|^{2} \\
& \geqq \sum_{i=1}^{n}\|e(i, i) x\|^{2} \\
& \geqq n^{-2}\left(\sum_{i=1}^{n}\|e(i, i) x\|\right)^{2} \\
& \geqq n^{-2}\|x\|^{2},
\end{aligned}
$$

since $x=\sum_{i} e(i, i) x ; T$ is thus bounded below. By a theorem of T. Crimmins ([6], Theorem 2.2),

$$
\text { range of } \begin{align*}
T & =\text { range of }\left(\sum_{1 \leqq i, j \leq n} e(i, j)^{*} e(i, j)\right)^{1 / 2} \tag{2.2}\\
& =\sum_{1 \leqq i, j \leqq n} \text { range of } e(i, j)^{*}
\end{align*}
$$

Since $\sum_{i} e(i, i)^{*}=I, H=\sum_{i}$ range of $e(i, i)^{*}$, and therefore by (2.2), T is surjective. T is hence invertible.

Let k and l be fixed positive integers between 1 and n. Then

$$
\begin{aligned}
T^{2} e(k, l) & =\sum_{i, j}\left(e(i, j)^{*} e(i, j)\right) e(k, l) \\
& =\sum_{j=1}^{n} e(j, k)^{*} e(j, l)
\end{aligned}
$$

so that if $f(k, l)=T e(k, l) T^{-1}$,

$$
\begin{equation*}
f(k, l)=T^{-1}\left(\sum_{j=1}^{n} e(j, k)^{*} e(j, l)\right) T^{-1} \tag{2.3}
\end{equation*}
$$

Since T is positive, (2.3) yields

$$
\begin{aligned}
f(k, l)^{*} & =\left(T e(k, l) T^{-1}\right)^{*} \\
& =T^{-1}\left(\sum_{j=1}^{n} e(j, l)^{*} e(j, k)\right) T^{-1} \\
& =f(l, k)
\end{aligned}
$$

The next lemma is the basic orthogonalization lemma of Mackey (see [9], p. 135).

Lemma 2.5. Let $\left\{E_{1}, \cdots, E_{n}\right\}$ be a pairwise independent set of idempotents in $B(H)$ (i.e., $E_{i}^{2}=E_{i}, E_{i} E_{j}=0, i \neq j$) such that $\sum_{i=1}^{n} E_{i}=$ I, and let $M>0$ be such that for every set $\left\{\varepsilon_{1}, \cdots, \varepsilon_{n}\right\}$ on zero's and one's,

$$
\left\|\sum_{i=1}^{n} \varepsilon_{i} E_{i}\right\| \leqq M
$$

Then for all x in H,

$$
\frac{\|x\|^{2}}{4 M^{2}} \leqq \sum_{i=1}^{n}\left\|E_{i} x\right\|^{2} \leqq 4 M^{2}\|x\|^{2}
$$

We now extend Lemma 2.5 to matrix units:
Lemma 2.6. Let $\{e(i, j): i, j=1, \cdots, n\}$ be a system of matrix units on H such that each $e(i, i)$ is a projection. Let $M>0$ be such that $\|e(i, j)\| \leqq M, i, j=1, \cdots, n$. Then for all x in H,

$$
\frac{n}{M^{2}}\|x\|^{2} \leqq \sum_{1 \leq i, j \leq n}\|e(i, j) x\|^{2} \leqq n M^{2}\|x\|^{2}
$$

Proof. $\{e(i, i): i=1, \cdots, n\}$ is a set of pairwise orthogonal projections with sum I, so if $\mathscr{M}_{i}=$ range of $e(i, i), i=1, \cdots, n$, then $H=\mathscr{M}_{1} \oplus \cdots \oplus \mathscr{N}_{n}$.

Since $e(i, j) e(k, k)=0, k \neq j, e(i, j) e(j, i)=e(i, i)$, and $e(i, j) e(i, j)=$ $e(i, j)$, we have

$$
\begin{gather*}
\text { kernel of } e(i, j) \supseteqq \underset{\substack{1 \leq k \leq n \\
k \neq j}}{\bigoplus} \mathscr{N}_{k} \tag{2.4}\\
\text { range of } e(i, j)=\mathscr{M}_{i} \tag{2.5}
\end{gather*}
$$

Suppose $e(i, j) x=0$, with $x=\bigoplus_{i=1}^{n} m_{i}, m_{i} \in \mathscr{M}_{i}$.
Then

$$
\begin{equation*}
m_{j}=e(j, j) x=e(j, i) e(i, j) x=0, i \neq j \tag{2.6}
\end{equation*}
$$

(2.4) and (2.6) imply

$$
\begin{equation*}
\text { kernel of } e(i, j)=\underset{\substack{\leq \leqslant \leq \leq n \\ k \neq j}}{\bigoplus} \mathscr{M}_{k} \tag{7}
\end{equation*}
$$

From (2.5) and (2.7), it follows that $e(i, j)$ maps \mathscr{M}_{j} bijectively onto \mathscr{M}_{i}. Therefore if $e(i, j)$ is represented as an operator matrix relative to the decomposition $H=\mathscr{M}_{1} \oplus \cdots \oplus \mathscr{M}_{n}$, then there exists an invertible linear transformation $T_{i j}: \mathscr{M}_{j} \rightarrow \mathscr{M}_{i}$ such that
(2.8) $e(i, j)$ has a matrix with $T_{i j}$ in the (i, j) th position and zeros elsewhere.

Set

$$
T=\sum_{1 \leqq i} e(i, j)^{*} e(i, j)
$$

From (2.8), we find that the operator matrix of $e(i, j)^{*} e(i, j)$ has $T_{i j}^{*} T_{i j}$ in the (j, j) th position and zeros elsewhere, so that T is the diagonal matrix

$$
T=\left(\begin{array}{c}
I_{\mathscr{M}_{1}}+A_{1} \tag{2.9}\\
\\
I_{\mathscr{M}_{2}}+A_{2} \\
\\
\\
\\
\\
\\
\\
I_{\mathscr{M}_{n}}+A_{n}
\end{array}\right)
$$

where

$$
A_{k}=\sum_{\substack{1 \leq i \leq n \\ i \neq k}} T_{i k}^{*} T_{i k}, \quad k=1, \cdots, n
$$

Let $x \in H, x=\bigoplus_{i=1}^{n} x_{i}, x_{i} \in \mathscr{M}_{i}$. By (2.9),

$$
\begin{align*}
\sum_{1 \leq i, j \leq n}\|e(i, j) x\|^{2} & =(T x, x) \\
& =\sum_{i=1}^{n}\left(\left\|x_{i}\right\|^{2}+\sum_{\substack{1 \leq j \leq n \\
j \neq i}}\left\|T_{j i} x_{i}\right\|^{2}\right) \tag{2.10}
\end{align*}
$$

Since $\|e(i, j)\| \leqq M, i, j=1, \cdots, n$,

$$
\begin{equation*}
\left\|T_{i j}\right\|=\|e(i, j)\| \leqq M, i, j=1, \cdots, n \tag{2.11}
\end{equation*}
$$

Also $e(i, j) e(j, i)=e(i, i)$ implies $T_{i j} T_{j i}=I_{\mathscr{M}_{i}}$, so that by (2.11), for x in \mathscr{M}_{j},

$$
\begin{align*}
\left\|T_{i j} x\right\|^{2} & =\left\|T_{j i}^{-1} x\right\|^{2} \\
& \geqq \frac{\|x\|^{2}}{\left\|T_{j i}\right\|^{2}} \tag{2.12}\\
& \geqq \frac{\|x\|^{2}}{M^{2}}
\end{align*}
$$

Therefore by (2.10) and (2.12),

$$
\begin{aligned}
\sum_{1 \leqq i, j \leqq n}\|e(i, j) x\|^{2} & \geqq \sum_{i=1}^{n}\left(\left\|x_{i}\right\|^{2}+\frac{1}{\left.M^{2} 1 \leq \sum_{\substack{j \leq n \\
i \neq i}}\left\|x_{i}\right\|^{2}\right)}\right. \\
& \geqq n M^{-2} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \\
& =n M^{-2}\|x\|^{2} .
\end{aligned}
$$

By (2.10) and (2.11),

$$
\begin{aligned}
\sum_{1 \leqq i, j \leqq n}\|e(i, j) x\|^{2} & \leqq \sum_{i=1}^{n}\left(\left\|x_{i}\right\|^{2}+M^{2} \sum_{\substack{1 \leq j \leq n \\
j \neq i}}\left\|x_{i}\right\|^{2}\right) \\
& \leqq n M^{2} \sum_{i=1}^{n}\left\|x_{i}\right\|^{2} \\
& =n M^{2}\|x\|^{2}
\end{aligned}
$$

Lemma 2.7. Let $\left\{E_{i}\right\}_{i=1}^{n}$ be a pairwise independent set of idempotents in $B(H)$ and $M>0$ a constant satisfying the hypotheses of Lemma 2.5. Then there exists an invertible T in $B(H)$ such that $T E_{i} T^{-1}$ is self-adjoint, $i=1, \cdots, n$, and $\|T\|^{ \pm 1} \leqq 2 M$.

Proof. The proof is similar to the proof of Lemma 2.4. Set

$$
T=\left(\sum_{i=1}^{n} E_{i}^{*} E_{i}\right)^{1 / 2}
$$

Then for x in H, Lemma 2.5 gives

$$
\frac{\|x\|^{2}}{4 M^{2}} \leqq\|T x\|^{2}=\sum_{i=1}^{n}\left\|E_{i} x\right\|^{2} \leqq 4 M^{2}\|x\|^{2},
$$

whence $\left\|T^{ \pm 1}\right\|<2 M$. One shows that $\left(T E_{i} T^{-1}\right)^{*}=T E_{i} T^{-1}, i=1$, \cdots, n, as before.
3. The theorem. The following theorem can now be stated and proved.

Theorem 3.1. Let \mathscr{A} be a Banach subalgebra of $B(H)$. Then \mathscr{A} is similar to an approximately finite C^{*}-subalgebra of $B(H)$ if and only if \mathscr{A} is approximately finite and the following condition holds: there is an admissable selection of matrix units $\left\{e_{k}^{(n)}(i, j): i, j=\right.$ $1, \cdots,[k, n]\}, k=1, \cdots, r_{n}$ for \mathscr{A} and a constant $M>0$ such that:
(i) for each fixed n and for all sets $\left\{\delta_{i}^{(k)}: i=1, \cdots,[n, k]\right\}$ of zero's and one's,

$$
\left\|\sum_{k=1}^{r_{n}} \sum_{i=1}^{[n, k]} \delta_{i}^{(k)} e_{k}^{(n)}(i, i)\right\| \leqq M,
$$

(ii) for each k and n,

$$
\left\|e_{k}^{(n)}(i, j)\right\| \leqq M, i, j=1, \cdots,[n, k]
$$

Moreover, if these conditions are met, an invertible operator implementing the similarity can be chosen in the von Neumann algebra generated by \mathscr{A}.

Proof. (\Rightarrow). Suppose $\mathscr{C}=T \mathscr{A} T^{-1}$ is an approximately finite C^{*}-algebra for some invertible T in $B(H)$. Thus, $\mathscr{C}=\left(\mathbf{U}_{n} \mathscr{C}_{n}\right)^{-}$, where $\left\{\mathscr{C}_{n}\right\}$ is an ascending sequence of finite dimensional C^{*} subalgebras. By Proposition 1.7 of [1], there is an admissable selection of C^{*}-matrix units $\left\{f_{k}^{(n)}(i, j): i, j=1, \cdots,[n, k]\right\}, k=1, \cdots, r_{n}$ for \mathscr{C} relative to $\left\{\mathscr{C}_{n}\right\}$. If $\mathscr{A}_{n}=T^{-1} \mathscr{C}_{n} T$, then $\left\{\mathscr{A}_{n}\right\}$ is an increasing sequence of finite dimensional, semisimple subalgebras of \mathscr{A} such that $\mathscr{A}=\left(\bigcup_{n} \mathscr{A}_{n}\right)^{-}$, so that \mathscr{A} is approximately finite, and if $e_{k}^{(n)}(i, j)=T^{-1} f_{k}^{(n)}(i, j) T$, then $\left\{e_{k}^{(n)}(i, j): i, j=1, \cdots,[n, k]\right\}, k=1, \cdots, r_{n}$ is an admissable selection of matrix units for \mathscr{A}.

For each positive integer n, let $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ denote the $n \times n$ diagonal matrix with main diagonal $\left\{\lambda_{1}, \cdots, \lambda_{n}\right\}$. Let $\left\{\delta_{i}^{(k)}: i=1, \cdots\right.$, $[n, k]\}, k=1, \cdots, r_{n}$ be sets of zero's and one's. Let

$$
A=\sum_{k=1}^{r_{n}} \sum_{i=1}^{[n, k]} \delta_{i}^{(k)} e_{k}^{(n)}(i, i)
$$

Then

$$
\begin{aligned}
\left\|T A T^{-1}\right\| & =\left\|\bigoplus_{k=1}^{r_{n}} \bigoplus_{i=1}^{[n, k]} \delta_{i}^{(k)} f_{k}^{(n)}(i, i)\right\| \\
& =\max _{1 \leqq k \leq r_{n}}\left\|\operatorname{diag}\left(\delta_{1}^{(k)}, \cdots, \delta_{[n, k]}^{(k)}\right)\right\| \\
& \leqq 1
\end{aligned}
$$

It therefore follows that (i) obtains with $M=\|T\|\left\|T^{-1}\right\|$. (ii) follows on noticing that $\left\|f_{k}^{(n)}(i, j)\right\|=1$ for all i, j, k, and n.
(\Longleftarrow). It will first be shown that there exists an invertible T in the von Neumann algebra generated by \mathscr{A} such that $T e_{k}^{(n)}(i, i) T^{-1}$ is self-adjoint for all i, k, and n. Set

$$
F_{n}=\sum_{k=1}^{r_{n}} \sum_{i=1}^{[n, k]} e_{k}^{(n)}(i, i)
$$

Then if $E_{n}=I-F_{n}, \mathscr{E}_{n}=\left\{E_{n}\right\} \cup\left\{e_{k}^{(n)}(i, i): i=1, \cdots,[n, k], k=1, \cdots, r_{n}\right\}$ is a pairwise independent set of idempotents in $B(H)$ with sum I. It follows by (i) that \mathscr{E}_{n} satisfies the hypotheses of Lemma 2.7 with constant $2 M+1$. By that lemma, an invertible T_{n} in the C^{*}-algebra generated by \mathscr{A} and I may hence be chosen such that $T_{n} e_{k}^{(n)}(i, i) T_{n}^{-1}$ is self-adjoint for $i=1, \cdots,[n, k], k=1, \cdots, r_{n}$, and such that

$$
\begin{equation*}
\left\|T_{n}^{ \pm 1}\right\| \leqq 2(2 M+1), \quad n=1,2, \cdots \tag{3.1}
\end{equation*}
$$

Since the selection of matrix units is admissable, for each fixed i, k, and $n, e_{k}^{(n)}(i, i)$ is a sum of a subfamily of idempotents $e_{k}^{(n+1)}(j, j)$. It follows that

$$
\begin{equation*}
T_{m} e_{k}^{(n)}(i, i) T_{m}^{-1} \text { is self-adjoint, for all } m \geqq n \tag{3.2}
\end{equation*}
$$

Since closed balls are compact in the weak operator topology on $B(H)$, (3.1) implies the existence of a subsequence $\left\{n_{k}\right\}$ and an invertible T in the von Neumann algebra generated by \mathscr{A} for which

$$
\begin{equation*}
T_{n_{k}}^{2} \longrightarrow T^{2}(W O T), \quad k \longrightarrow \infty . \tag{3.3}
\end{equation*}
$$

Since each T_{n} is positive, we may assume T is positive.
Now fix i, k, and n. By (3.2), for x, y in H,

$$
\begin{equation*}
\left(T_{m} e_{k}^{(n)}(i, i) x, T_{m} y\right)=\left(T_{m} x, T_{m} e_{k}^{(n)}(i, i) y\right), \quad m \geqq n \tag{3.4}
\end{equation*}
$$

The self-adjointness of T and each T_{n} together with (3.3) and (3.4) hence yield

$$
\left(T e_{k}^{(n)}(i, i) x, T y\right)=\left(T x, T e_{k}^{(n)}(i, i) y\right)
$$

i.e., $T e_{k}^{(n)}(i, i) T^{-1}$ is self-adjoint. There is therefore no loss of generality in assuming that $e_{k}^{(n)}(i, i)$ is a projection for each i, k, and n.

We have $\mathscr{A}=\left(\mathrm{U}_{n} \mathscr{A}_{n}\right)^{-}$, where

$$
\begin{aligned}
\mathscr{A}_{n} & =\bigoplus\left\{\mathscr{A}_{k}^{(n)}: k=1, \cdots, r_{n}\right\}, \\
\mathscr{A}_{k}^{(n)} & =\vee\left\{e_{k}^{(n)}(i, j): i, j=1, \cdots,[n, k]\right\} .
\end{aligned}
$$

Set

$$
\begin{aligned}
P_{k}^{(n)} & =\bigoplus\left\{e_{k}^{(n)}(i, i): i=1, \cdots,[n, k]\right\}, \\
P_{n} & =\bigoplus\left\{P_{k}^{(n)}: k=1, \cdots, r_{n}\right\}, \\
M_{k}^{(n)} & =\text { range of } P_{k}^{(n)} .
\end{aligned}
$$

For each k and $n,\left\{e_{k}^{(n)}(i, j): i, j=1, \cdots,[n, k]\right\}$ can be considered as a system of matrix units in $B\left(M_{k}^{(n)}\right)$. By (ii), $\left\{e_{k}^{(n)}(i, j)\right\}$ satisfies the hypotheses of Lemma 2.6, so if

$$
\left.T_{k}^{(n)}=\frac{1}{[k, n]^{1 / 2}}\left(\sum_{1 \leq i, j \leq[n, k]} e_{k}^{(n)}(i, j)^{*} e_{k}^{(n)}(i, j)\right)^{1 / 2}\right)
$$

then by that lemma,

$$
\begin{equation*}
\frac{\|x\|^{2}}{M^{2}} \leqq\left\|T_{k}^{(n)} x\right\|^{2} \leqq M^{2}\|x\|^{2}, \quad x \in M_{k}^{(n)} \tag{3.5}
\end{equation*}
$$

Now $H=\left(\text { range of } P_{n}\right)^{\perp} \oplus\left(\bigoplus\left\{M_{k}^{(n)}: k=1, \cdots, r_{n}\right\}\right)$, and therefore if

$$
T_{n}=\left(I-P_{n}\right) \oplus\left(\oplus\left\{T_{k}^{(n)}: k=1, \cdots, r_{n}\right\}\right),
$$

then by (3.5)

$$
\begin{equation*}
\frac{\|x\|^{2}}{M^{2}} \leqq\left\|T_{n} x\right\|^{2} \leqq M^{2}\|x\|^{2}, x \in H, n=1,2, \cdots \tag{3.6}
\end{equation*}
$$

The proof of Lemma 2.4 shows that T_{n} orthogonalizes $\left\{e_{k}^{(n)}(i, j)\right.$: $\left.i, j=1, \cdots,[n, k], k=1, \cdots, r_{n}\right\}$. Since the selection of matrix units is admissable, each $e_{k}^{(n)}(i, j)$ is a sum of the form (2.1) of a subfamily of matrix units of \mathscr{A}_{n+1}. (3.6) hence allows one to use the previous compactness argument to find a invertible operator T in the von Neumann algebra generated by \mathscr{A} which orthogonalizes $e_{k}^{(n)}(i, j)$ for all i, j, k, and n. It follows that $T \mathscr{A} T^{-1}$ is an approximately finite C^{*}-subalgebra of $B(H)$.

References

1. O. Bratteli, Inductive limits of finite dimensional C^{*}-algebras, Trans. Amer. Math. Soc., 171 (1972), 195-234.
2. J. B. Conway, On the Calkin algebra and the covering homotopy property, II, to appear.
3. A. H. Dooley, The spectral theory of posets and its applications to C^{*}-algebras, Trans. Amer. Math. Soc., 224 (1976), 143-156.
4. G. A. Elliott, On lifting and extending derivations of approximately finite dimensional C^{*}-algebras, preprint, Mathematical Institute, University of Copenhagen, 1973.
5. ——, On the classification of inductive limits of sequences of finite dimensional, semisimple algebras, J. Algebra, 38 (1976), 8-28.
6. P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math., 7 (1971), 254-281.
7. J. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc., 95 (1960), 318-340.
8. K. H. Hofmann and F. Javier Thayer, On the spectrum of approximately finite dimensional C^{*}-algbras, Notices Amer. Math. Soc., 24 (1977), A-114.
9. G. W. Mackey, Commutative Banach algebras, Harvard University mimeographed lecture notes, 1952.
10. J. Wermer, Commuting spectral measures on Hilbert space, Pacific J. Math., 4 (1954), 335-361.
11. S. Wright, On orthogonalization of C*-algebras, Indiana Univ. Math. J., 27 (1978), 383-399.

Received December 12, 1977 and in revised form November 13, 1978.
Oakland Univesity
Rochester, MI 48063

