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A MAXIMUM PRINCIPLE ON CLIFFORD TORUS AND
NON-EXISTENCE OF PROPER HOLOMORPHIC

MAP FROM THE BALL TO POLYDISC

B. WONG

A maximum principle which estimates the gradients on
the Clifford torus of plurisubharmonic functions defined in
the polydisc is derived. With this result we give a new
proof that there exists no proper holomorphic map from
the ball to polydisc in C\

1* Introduction* It is an old theorem of H. Poincare that the
b i d i s c 4 = {{zu z2): \zx\ < 1, \z2\ < 1} a n d t h e b a l l B 2 = {(zl9 z2): \z,\2 +
2 2 | 2<1} are holomorphically distinct. Around 1935, V. Rothstein

proved the remarkable fact that there exists no proper holomorphic
map from A2 to B2 ([6]). Much later, G. H. Henkin generalised this
result of Poincare to the care of analytic polyhedron and strictly
pseudo-convex domain ([3]). His proof was based on the comparison
of Caratheodory metrics on these two different domains. He also
indicated that it is possible to yield a generalization of Rothstein's
theorem to polyhedron and strictly pseudo-convex domain by using
the techniques employed in his paper (i.e. there exists no proper
holomorphic map from polyhedron to strictly pseudo-convex domain).
But his method can only be applied to the case of proper holomor-
phic map from polyhedron to strictly pseudo-convex domain. Despite
all these old and new developments, a proof the following statement
is unknown to the author.

"There exists no proper holomorphic map from B2 to Δ2\
The proofs of Poincare and Rothstein are rather easy; they used

the groups of biholomorphisms, Caratheodory metrics as well as the
continuity principle to gain contradiction. In order to obtain a proof
of the above statement a deeper investigation is in demand. In this
paper we give a proof of this fact along the line of the theory of
intrinsic measures (Caratheodory measures, Eisenman-Kobayashi
measures) ([4], [5], [7]). The proof involves a boundary estimate
of Eisenman-Kobayashi measure in Δ2 — W, where W is a complex
analytic variety.

For simplicity of notations we shall restrict all our statements
in C2, but our proof can equally be applied to Cn without difficulty.
One can also generalize our result to strictly pseudo-convex domain
by passing through a localization process. It is also important to
point out that, throughout this paper, the intrinsic measures are
defined with respect to polydisc ([5]). They are different, in an
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essential way, from those measures defined with respect to the ball
([7]). For the basic theory of intrinsic measures one should consult
[4] and [5]. They will be used frequently in the sequel of this
paper.

After the completion of our work we were informed by professors
Yum-Tong Siu and Karl Stein that our result had already been
proved by H. Rischel (Math. Scand. 15 (1964), 49-63). Our proof is
entirely different from his, and the method of invariant measures
can be used to prove further interesting results on proper holomor-
phic maps between strongly pseudo-convex domains in Cn. Although
there are difficulties for us to understand the proof due to Rischel,
it should be stressed that his paper has been available for fifteen
years and our proof was obtained independently.

1* Maximum principle on Clifford torus* The distinguished
boundary of Δ2, namely

T={(*i,^)l|Sil = l and 1̂ 1 = 1},

can be regarded as a regularly embedded torus in

which is a three dimensional sphere. In the terms of classical dif-
ferential geometry, T is called a Clifford torus. The Clifford torus
plays an important role in the complex function theory of polydisc.
On the other hand, it is an interesting submanifold of S3 from a
geometric viewpoint.

Let x be a point of Γ c S3. We shall use the following notations
throughout;

(1) nx is the line pointing from the origin of S3 to x (i.e.,
radial direction).

(2) If z 6 nx (x e T) we denote by d(z, T) the euclidean distance
from z to T.

(3) Nε = {z e Δ2 I z e nu t e T, d(z, T) < ε}, were ε is a sufficiently
small positive number.

We are going to derive the following maximum principle in this
paragraph.

THEOREM 1.1. Let U be a function in Δ2 which is continuous
up to the boundary of Δ2. We assume that

(1) U Ξ= 0 on dΔ2 and U < 0 in Δ%.
( 2 ) U is plurisubharmonic in Δ2.
Then there exists a small ε > 0 and a positive constant C such
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that for all zeNε, - U(z)/d(z, T) ^ C > 0.

Proof. Let us write

g(z) = e~ar2 - e-'2a ,

where z = (zlf z2) e C2, a is a constant to be determined, r = ] s | =

τ/|*il2 + I z21
2.

A direct computation would show that g satisfies the following
conditions

(1) Vz e 4 , <7(z) > 0
(2) VzeT, g(z)^0
(3) There exists a positive constant K such that dg/dnt(t) =

-Zi/Ίϊa e~2a < — fc for all teT.
Let rx be a positive number which is slightly less that V~2.

Then 3J3P = {fo, ^ 2 ) | | ^ | 2 + |# 2 | 2 - rx

2}. We also denote by D1 the
region between dBiτ and dBζ1 and JD = A n Λ Let A = ΰf l
(Uxer^J, where nx = {λcc|λ is a complex number |λ | < 1, xe T).

The following is a result subject to only straightforward com-
putation.

(4) If a is a sufficiently large positive constant, then Vz e A,
Δg{z) > 0, where Δ is the Laplacian operator on nx which contains z
with x e T.

Now we can proceed with our proof.
Let V = U + s - g, where s is a positive constant such that

V(z)<0 for all s belonging to dAf]dBζκ It should be noticed that the
sets T and 3A Π dBζ1 constitute the boundary of A constructed above.

Claim. If we regard F a s a function defined on A, then it is
impossible for V to attain its maximum in the interior of A.

Suppose w e A such that V(w) is the maximum. Let nx be the
complex disc as above which contains w (where xe T). However,
U is plurisubharmonic in Δ2 (therefore subharmonic on ήx) and g is
subharmonic on nx, one can easily see that V = U + s g is then
subharmonic on nx. Thus one obtains a contradiction to the assump-
tion that V attains a maximum at w. Furthermore V(z) < 0 for all
z 6 dA Π dBl1, hence it is led to the conclusion that V attains its
maximum on T; here we have used the fact that g = 0, U = 0 on
T and that both g and U are continuous up to the boundary.

By the compactness of T and the fact that the vector field nt

on T is smooth we can choose a sufficiently small e > 0 such that

d(z, dT) dnx

for all t G T, z e Ns.
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Since U(t) = 0V£ 6 T, together with condition (3) we obtain

s s κ > 0
d(z, T) ~ dnt ~~

for all 16 T, z e JVβ.
Letting C — s K we complete the proof.

2* A theorem on the proper holomorphic map from B2 to
Δ2. Suppose /: 2?2 —> J2 is a proper holomorphic map. By a theorem
of Remmert (i?2, /, J2) is a complex analytic branched covering. The
branching locus is given by s = {# e B21 det (df(z)) — 0} and /: J52 — s —>
Λ -" /( s) is a unramified finite complex analytic covering.

We define a complex analytic function L: Δ% — /(s) —> C as follows,

L(z) = Π det (d/fo)) , where a? e 4 - /(β) ,

/~x(^) = {̂ i, 2̂, , %m}> df(Xi) — Jacobian of / at xt. We make an
observation here that L is locally bounded around the complex sub-
variety f(s) c AZJ hence L extends holomorphically across f(s). The
following theorem will be proved in this section.

THEOREM 2.1. L is a bounded holomorphic function in Δ2.

Proof. Let r be a positive number slightly less than 1. It is
well-known fact that L | Δ\ assumes its maximum on the distinguished
boundary

o f Δr

2.
With some considerations it suffies to prove that VzeNε,

I det (df(x)) I ̂  Q, where x 6 ί/"1^)}, Q is a constant and ε is a suf-
ficiently small positive number.

The following notations will be used in the rest of this paper:
EB2 = Eisenman-Kobayashi measure on B2

EB^
Ί = Eisenman-Kobayashi measure on BiΊ — {(zlf z2) 11 zt |

2 + | z21
2 < 2}

Ej2 — Eisenman-Kobayashi measure on Δ2

(For the definition of Eisenman-Kobayashi measure, consult [4]). The
following fact are immediate

(a) Since /: B2~+ Δ2(zBΪz is holomorphic map, by the measure-
decreasing property we have

where
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(b) From the explicit formulas of EB2 and EBf*9 we have

IEB(V)' ~ « i

where yeB2, weBiΊ> sufficiently close to the boundary, Clf C2, Kx

and K2 are constants.
(c) From the explicit formulas of Kobayashi metrics in B2 and

Δ29 and also the distance-decreasing property, we have

d(z, 34) ^ I d(x, dB2) ,

where x e {f~\z)} for all zeΔ2 sufficiently close to dJ2, I is a positive
constant.

With the above facts in mind we can prove the following con-
sequences.

with x e {f~\z)}9 z e Nef e is a sufficiently small number.
( 2 ) Suppose that U: Δ2 —> R is defined as follows;

U(z) = max {—d(xu dB2), —d(x2, dB2), ,

-d(xm, dB2)\f-\z) = {xu x2, , xm}, zeJ2}.

Obviously U is a bounded plurisubharmonic function on Δ2 —
{w\L(w) = 0}, it extends across {w\L(w) = 0} by a well-known lemma
of Grauert. By (c) it is easy to see that U is continuous up to the
boundary of Δz.

Finally we apply Theorem 1.1 to U defined above. We there-
fore obtain

1 ^ d{z dBt*) ( C i g t h e c o n s t a n t i n Theorem 1.1) ,

where x e {f~\z)}9 zeNε for a well-chosen small positive constant ε
(Note: if ze Nε, d{z, dB'J) = d(z9 T).)

Combining all above inequalities, we have

The proof is thereby completed.
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3* Boundary behavior of the complex analytic variety
{z 6 Δ2\L(z) = 0} in Δ2. Let P be a point belonging to dΔx. We denote
by ΓP the cone extending θ with vertex at P in Δλ (i.e., ΓP =
{«!« = (#,#)> « β Λι tan"1 (y/x) < θ, 0 ^ θ < ττ/2}), where we choose P
to be the origin of our coordinates, x — axis = normal of dΔt at P,
# — axis = tangent of dΔλ at P. Furthermore, Px: 4 x 4 ^ 4»
P2: 4 x 4 —» 4 are first and second projections in a natural way.

LEMMA 3.1. With the same notations as before, there exists a
point P 6 T(Δ2) such that it is not an accumulation point of
{z\L(z) = 0} n A$

P for all 0 ^ θ < π/2, where ΛP^=ΓPx Πc: Δ2.

Proof By Theorem 2.1. L is a bounded holomorphic function,
the radial limits L* of L approaching T(Δ2) exist almost everywhere.
It is well-known fact that L = P[L*} (see our remark below), where
P is the poisson kernel of Δ2 (for instance, see Rudin: Function
theory in poly discs P. 31 exercise). Furthermore one can model
from the proof of Fatou theorem to give the following assertion:
For almost every point yβT(Δz), the non-tangential limit

lim L(x)

exists, i.e.,

L*(y) = lim L(x)

for y 6 T(4j) a e. However, if every point y e T(Δ2) is an accumula-
tion of

{z\L(z) = 0}f)ΛP for some 0 ^ θ < — ,

it would imply immediately that L*(y) = 0 a.e., hence L == 0 by
poisson formula. It is a contradiction.

REMARK. TO be rigor us we should write L = Lx + iL2, where
Li and L2 are n-harmonic (see Rudin, p. 16), correspondingly L* =
Lf + iLΐ, and notation L = P[L*] means Lx = P[LX} and L2 = P[L2*].

The proof of our claim concerning the boundary values of
bounded holomorphic functions on T(Δ2) is rather long; it is a re-
production of a theorem of Fatou which is a folklore in the area of
boundary values of holomorphic functions, we therefore take the
liberty to skip the proof here. Proofs and references of relevant
results can be found in "A. Koranyi—E. M. Stein: Fatou's theorem
for generalized half planes". (Estratto dagli Annali della, Scuola
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Normale Superiore di Pisa classe di Science, Vol. XXII, Fasc. I,
(1968).)

4* An estimate of Eisenman-Kobayashi measure* We start
with the definitions of Caratheodory and Eisenman-Kobayashi
measures. It is easy to check the measure U on Δ2 given below is
invariant under biholomorphisms;

(Note: We use the notation \U\ to stand for ΠK(4/1(1 -
Let D be a bounded domain in C2. The Caratheodory measure

CD is denned as follows:

CB(x) = sup (f*U)x,
f

where the supremun is taken over all holomorphic maps /: D —> Δ2.
The Eisenman-Kobayashi ED is defined as follows:

Where the infimun is taken over all holomorphic maps f: Δ2-^ D
which maps the origin " 0 " of Δ2 to x and is nondegenerate at "0".

In this section we shall derive an estimate of Eisenman-Kobayashi
measure (in the case of metric, such an estimate was first obtained
by R. L. Royden).

DEFINITION, z, weD, then dD(z, w) = inf {P(a, b)\f eHoi(4, D)
s.t. f(a) = z, f(b) = w, P is the Kobayashi metric in Δ2).

Let D1 be another domain in C2 such that D1 (Ί D is nonempty.

DEFINITION. For ^ A

AD-DS?) = inf {dD(z, w)\w belongs to D but not DJ -

THEOREM 4.1. Let D = D n Dx. Then for all zeD, we have

Proof. First of all let us fix a constant r as follows, r =
sup {ί I there exists / e H o l ( 4 , 5), /(O) = z, |det(d/(O))| = 16}.

Then we choose a number R slightly larger than r. From our
choice of r it is obvious that there is a / e Hoi (J2

β, D) s.t. /(O) = z,
I det (df(O)) I = 16, and it maps a boundary point of ΛJ to a point
belonging to D — D. One can see, if w is this point belonging to
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D — D, then dD_Dι(z) <: dD(z, w).

From the definition of dD(zf w) we observe that

dD(z, w)£—

Then it implies

It is easy to see that the above inequality together with the
definition of Eisenman-Kobayashi measure imply our theorem im-
mediately.

5* Some estimates of Kobayashi metric inside the cones*
Let D be a domain in Cn, we denote by dk

D the Kobayashi metric
on D. If D is the upper-half plane H — {x + iy \ y > 0}, dk

H is then
induced by (2Vd%2 + dy2 )/y. Suppose P is the origin of 2-planeΓand
Γp is a cone in H with vertex at P and extended angle θ, where
0 ^ θ < π/2

In the following theorem we assume that z — (0, y) is a point
on the 2/-axis.

THEOREM 5.1. dk

H(z, dΓθ

P) = 2 In (tan θ + sec θ) where dk

H(z, dΓθ

P) =

ίfoe distance from z to the boundary of ΓΘ

P (i.e., dΓ°P) with respect

to dk

H.

Proof It is well-known that the geodesic of the metric
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(2Vdx2 + dy2 )/y passing through z is a great circle (with radius | y \
and center at P). Let z' and z" be the points of intersection of
this circle with dΓθ

P. Then the length of the arc zz* is equal to

±- = 21n(tan0 + secθ) .
Jo (y COS ώ) Jo COSφ

We need the following known result in Riemannian geometry for
our proof.

THEOREM. Let M be a simply connected complete Riemannian
manifold of negative sectional curvature, then for an two points
in M there exists one and only one minimizing geodesic joining
them.

Now suppose that w' is a point on 3ΓΘ

P such that the length of
zw' = dk

H(z,dΓP). By the symmetric properties of Γ% and (2v/dx2 + dy2)/y
one easily observes that there exists a point w" on the other side of
Γp s.t. Pw" = Pw' (with respect to euclidean length). Let w be the
point of intersection of #-axis and the great circle of radius Pw' and
with center at P. Since the arc ww' is a minimizing geodesic joining
wandw', hencedk

H(w,w')£dk

H(z,w') dk

H(w,w') = dk

H(z,z') = 2ln(tanθ + secθ)
from the previous computation. Thus, one obtains

dk

H(z, z') S dk

H(zf w') = dh

H{z, dΓP) .

It is now easy to conclude that

dk

H(z, dPΓ) = 2 In (tan θ + sec θ) .

THEOREM 5.2. Let P be a boundary point of the unit disc Δλ.
Suppose that ΓΘ

P is a cone in Δx with vertex at P and extended angle
θ, 0 S θ < π/2, z is a point of the normal of d/l1 at P. (See our
figure.) Then we have d\{z, dΓθ

P) ^ 2 In (tan θ + sec θ).

Proof. Since Hz>dίf by the distance-decreasing property of
Kobayashi metrics we have
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< ( s , dΓP) ̂  dk

H(z, dΓP) .

Our theorem follows immediately from Theorem 5.1.

THEOREM 5.3. Let Pbe a point on T{Δ2) and ΛP a product cone
as before, 0 <̂  θ < ττ/2. Then we have

d\(z, dΛθ

P) ̂  2 In (tan θ + sec θ) .

Proof. It is clear from Theorem 5.2 and the remark below.

REMARK. It is a well-known fact in the theory of intrinsic
metrics that

d\{zu z2) = sup {< W

It is now easy to observe the following.

THEOREM 5.4. With the assumptions in Theorem 5.3, we have
(1) Lim^/2 d%(z, dΛft

P) = oo
( 2 ) L i m ^ / 2 cot hd%(z, dΛθ

P) = 1.

Proof. Elementary.

6* Main part of the proof* We break our proof into several
steps:

(1) From Lemma 3.1 there exists a point, namely peT(A2),
which is not an accumulation point of f(s) Π ΛP in ΛΘ

P for all 0 <;
θ < τr/2. We choose a sequence [z%] —> P, where zt belongs to Δ2 — f(s)
and lies on the line R perpendicular to S3 at P. Let {xt) be another
sequence in B2, where xt e {f~\z^). One easily verifies that {xτ) -> q
(passing through a subsequence if necessary), where q is a boundary
point B2.

(2) /: B2 -> J2 is a proper holomorphic map. Then

and f(s) are complex analytic varieties in B2 and Δ2 respectively.
Furthermore, f: B2 — s-> Δ2 — f(s) is a finite complex analytic covering.
From the standard facts in theory of intrinsic measures ([4], [5]) we
have

(in) c2£s)Γ(cS
EB2 ^ f*(Ej2).

(Volume-decreasing property under holomorphic maps.)
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(IV) ED^CD, where D is any bounded domain

(note: (2?2 — s, /, 4 — /($)) is a covering).
(3) Making use of the above inequalities and equalities we

obtain

for all i.
(4) The following lemma was derived in ([7]).

LEMMA. Let D be a complete hyperbolic bounded domain in Cn.
Suppose that ED and CD are defined with respect to polydisc Δn. If
there exists x eD such that

\ED(x)\ _1

\CD(x)\

then D is bίholomorphic to An,

Since B2 is homogeneous we have

= C , for all i ,

where C is a constant which is not equal to 1. It is clear from (3)
that we would obtain a contradiction if the following identity holds

( 5) First of all we know that

#*-/(.) ^ Eh from (2) (II) .

Secondly, in the view of Theorem 4.1 we have the following ine-
quality

I E^f{s){z%) I S I cot hdD^Dι{zτ) | 4 | E,2(z{) \

where D — J2f D1 = Δ2 — /(s). Our proof would be completed if one
could show

Lim cot hdp^nXZi) = 1 .

We note that dD_Dι{z%) = dΔ2(ziy f(s)), where dAl was defined in §4. It
is trivial to observe dΔ2 = d\ from our definition. Thus it is enough
for us to prove
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Lim cot hdjXzt, /(*)) = 1

(i.e., limZ i_p d\{zu f(s)) = oo).

From our assumption P is not an accumulation point of f(s) Π A% in
ΛΘ

P for all 0 ^ θ < π/2, for a fixed θ between 0 and ττ/2 we have

dXiZt, f(s)) ^ d%(z, dΛ«P)

if i is sufficiently large. However, it follows from Theorem 5.4
that

dϊfa, dΛ»P) ^ 2 In (tan θ + sec 5) .

Now we can conclude

Lim d\{zu f(s)) ^ 2 In (tan θ + sec θ)

for a fixed θ.
Letting θ —> π/2, we thereby complete our proof (Theorem 5.4).
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