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FINITE GROUPS HAVING AN INVOLUTION
CENTRALIZER WITH A 2-COMPONENT

OF TYPE PSL (3, 3)

MORTON E. HARRIS

A finite group L is said to be quasisimple if L—V
and L/Z(L) is simple and is said to be 2-quasisimple if L—
ΊJ and L/O(L) is quasisimple. Let G denote a finite group.
Then E(G) is the subgroup of G generated by all subnormal
quasisimple subgroups of G and F*(G)—E(G)F(G) where
F(G) is the Fitting subgroup of G. Also a subnormal
quasisimple subgroup of G is called a component of G and
a subnormal 2-quasisimple subgroup of G is called a 2-com-
ponent of G.

We can now state the main result of this paper:

THEOREM A. Let G be a finite group with F*(G) simple.
Assume that G contains an involution t such that H=CG{t) possesses
a ^-component L with L/O(L) = PSL (3, 3) and such that CH(L/O(L))
has cyclic Sylow 2-subgroups. Then \F*(G)\2 ^ 210.

In order to state an important consequence of Theorem A, we
require two more definitions. A subgroup K of a finite group G
is said to be tightly embedded (in G) if \K\ is even and \K(\Kg\
is odd for every g eG — NG(K). A quasisimple subgroup L of a
finite group G is said to be standard (in G) if [L, L9] Φ 1 for all
geG, CG{L) is tightly embedded in G and NG(L) = NG(CG(L)).

THEOREM B. Let G be a finite group with O(G) = 1 and contain-
ing a standard subgroup L with L = PSL(3, 3). Then either L^QG
or L Φ (LGy = JP*(G) and one of the following five conditions hold:

(a) F*(G) ~ PSL (3, 9);
(b) F*{G) = PSL (4, 3);
(c) F*(G) = PSL (5, 3);
(d) i^*(G)^PSp(6,3);
(e) F*(G) - H,x H2 with H^H^L and CG(L) = (t) where

t is an involution such that HI — H2 and L = (hjn\ \ ΛX6 flj).

Note that Theorem B is a step toward the verification of Hypo-
thesis θ* of [13] and is therefore of import for completing a proof
of the Unbalanced Group Conjecture and the J?((τ)-Conjecture and
for completing an inductive characterization of all Chevalley groups
over finite fields of characteristic 3 (cf. [13, § 1]). Also by applying
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[13, Lemma 2.9], [3, Theorem], [1, Corollary II], [8, Theorem 5.4.10
(ii)|, [3, Table 1] and [6, Tables 3 and 4], it suffices, in proving
Theorem B, to assume, in addition to O(G) = 1, that L Φ F*(G) =
(LG), F*(G) is simple and that CG(L) has cyclic Sylow 2-subgroups.
But then Theorem A and the classification of all finite simple groups
whose Sylow 2-subgroups have order dividing 210 (cf. [4] and [7])
yield Theorem B. Consequently Theorem B is a consequence of
Theorem A.

The remainder of this paper is devoted to demonstrating that
the analysis of [12] and [14] can be applied to prove Theorem A.

All groups in this paper are finite. Our notation is standard
and tends to follow the notation of [8], [12] and [14]. In particular,
if X is a (finite) group, then S(X) denotes the solvable radical of
X, O2(X) is the subgroup of X generated by all elements of X of
odd order and is consequently the intersection of all normal sub-
groups 7 of I such that X/Y is a 2-group and &(X) denotes the
set of elementary abelian 2-subgroups of X. Also, if n is a positive
integer, then gfw(X) denotes the set of elementary abelian 2-sub-
groups of order n of X. Finally m2(X) denotes the maximal rank
of the elements of g'(X), r2(X) denotes the minimal integer k such
that every 2-subgroup of X can be generated by k elements and if
Y £ X, then J"'( Y) denotes the set of involutions contained in Y.

Clearly, if X is a group, then m2(X)^r2(X) and r 2(X)^r 2(Γ) +
r2(X/Y) for every normal subgroup Y of X.

2* A proof of Theorem A* Throughout the remainder of this
paper, we shall let G, t, H and L be as in the hypotheses of Theorem
A and we shall assume that \F*(G)\2 > 210.

Then [9, Main Theorem], [15, Four Generator Theorem], [3,
Table 1], [6, Tables 3 and 4] and [2] imply that 4<r2(ί7*(G))^r2(G)
and that Sylow 2-subgroups of G and F*(G) contain normal ele-
mentary abelian subgroups of order 8.

Clearly CH(L/O(L)) has a normal 2-complement by [8, Theorem
7.6.1], every 2-component K of H with KΦL lies in CH{LjO{L))
and O(H) ^ CS(L/O(L)) (cf. [10, §2]). Thus L is the unique 2-com-
ponent of H, LcharH, S(H) n i = O(L) and S(H) = CH(L/0(L)) by
[10, Lemma 2.3].

Since H/S(H) is isomorphic to a subgroup of Aut (PSL (3, 3))
with (LS(H))/S(H) corresponding to ^nn(PSL (3,3)) and since
I Aut (PSL (3, 3))/,^^(PSL (3, 3))| - 2, we have \H/(S(H)L)\ ^ 2 and
iί(O0) - L.

Let S e Syl2(ίΓ) and T = S n L. Then T<\S,Te Syl2(L), | T\ = 2\
T is semidihedral and T = <λ, y \ \y\ = 8, \y\ = 2 and Xy = λ3> for
suitable elements λ, y of T. Also Φ(T) = T' = (X2} ^ Z, and Ωx{Tf) =
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Z(T) = <z> for an involution z of T. Also D = <λ2, #> ^ D8, Q =
<λ2, λτ/> = Q8 and <λ> ^ Z8 are the three distinct maximal subgroups
of T. Let P = S Π S(JEΓ). Then P^S,P is cyclic, P n T = 1 and
^ ( P ) - <ί>. Also ^ ( L ) = zL, CL/OiL)(z) 9ί GL(2, 3) and S(H) = O(H)P.

Since r2(S) £ 1 + r2(S/P) ^ 2 + r2(Γ) = 4, we have S$Syl2(G).

LEMMA 2.1. The following four conditions hold:
(a) \H/(S(H)L) I - 2 and H/S(H) = Aut (PSL (3, 3));
(b) there is an involution ueS—(P x T) such that D=Cτ(u)e

Sy\2(CL(u)), L(u)/O(L) = Aut (PSL(3, 3)), ^(uL)=uL

f CL/0{L)(u) =
(O(L)CL(u))/O(L), O(CL(u)) = O(L) Π CL(^), CL(u)/O(CL(u)) = PGL (2, 3),
O2(CG«ί, u)))/O(CG((t, u))) = PSL (2, 3), S = (P x Γ)<^>, λw = λz α^ώ
Cκ«>« ,̂ 2/, u)) = (z, y, u);

(c) Z(S) = (t, z), P(u) is dihedral or semidihedral and Se

Syl2(CG(ί, z)); and
(d) Q - <λ2, Xy)eSy\2(θχCG«t, z))\ C0{H){z) - O(α«ί, z») =

0(0%CG«t, z}))) and O\CG({t, z)))/O(CG((t, z})) = SL (2, 3).

Proof. Assume that H = S(ίΓ)L. Then S = P x Γ and Z(S) =
P x <z>. Since S i Syl2(G), we have P = <*>. Then <ί, y, z> e
Syl2(CG<ί, ?/, 2» and [11, Theorem 2] implies that r2(G) ^ 4. This
contradiction implies that (a) holds. For the proofs of (b) and (c)
of this lemma, it clearly suffices to assume that O(H) — 1. Then
P = O2(H) = CH(L), HjP = Aut (PSL (3, 3)) and there is an element
v e S - (P x T) such that v2 e P, Cτ{v) = D and CL{v) ^ Σ 4 by [6,
Table 4]. Thus S = (P x T)<y). Suppose that Ω^S) ^ P x T. Then
Ω^S) = ( ί > x ΰ charS, CsiΩ^S^^iP x <z»<i;>charS and <ί>charS.
Since this is impossible, there is an involution w eS — (P x T).
Then L(w) = Aut (PSL(3, 3)) since (T<w» n P = 1 and T<^> e
Syl2(L<w». Then, as is well known ^(wL) = wL and there is an
involution ueTw such that CΓ(w) = JD 6 Syl2(CL(u)), CL(u) = Σ 4, S =
(P x T)(u) and CΓ<ίt>«^ y, u)) = <«, j/, %>. Also % e NG((X}) and
Cω(w) = <λ2>. Thus λw = Xz and (b) holds. Hence Z(T(u}) = <^>,
<ί, s> ^ ^(S) = Cp(tc) x (z) and (c) holds since (t) is not characteristic
in S. For (d) observe that CG((t, z)) = CH(z) and set H = H/O(H).
Then C*(z) - C ^ ) and z e O9(JΪ) - L = PSL (3, 3). But
O2(Cr(z)) g SL (2, 3), Q 6 Syl2(O

2(C^(z))) and O2(C^(z)) =
O2(C*(z)) s SL (2, 3). Hence O(H)Q ^ O(H)O\CH(z)),

Q ^ CO{H)(z)O\CH{z)) = O\CH(z)) ,

(d) holds and we are done.

LEMMA 2.2. P = <ί>, t is not a square in G, S =
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| S I = 2β, S* = <λ2>, <z> ̂  NG(S) and t^z in G.

Proof. Assume that P φ (t) and let w e ̂ (S - Z(S)). Suppose
that weP x T. Then w is conjugate in P x T to an element of
y(t). Since C*(y) = Cs(yt) = (P x <z, y»<i*>, we have Ω^Csiw)') = <ί>.
Suppose that w<£P x T. Then C P ( » = <£>, Cs(w) = (t) x CΓ(w) x <w>
and Ω^CsiwY)^^}. Since Z(S) = <*,«>, we have Q^NG(S) by
Lemma 2.1 (d), <z> ̂ NG(S) and ^ ( 5 ) - £<s>. However <z> ̂  2SΓβ(S)
implies (t)<ίNG(S) and we have a contradiction. Thus P=(t) and
the lemma is clear.

Since ^(uL) = uL, we immediately conclude:

COROLLARY 2.3. {£, z, tz, u, tu} is a complete set of representatives
for the H-conjugacy classes of involutions in H. Also u^(D) C uH.

Note that T(u) = <λ, yu, u \ \yu\ = \u\ = 2, [yu, u] = 1, |λ | = 23,
\^w = Λ,"1 and Xu — Xz where z — λ4> and hence [12, Lemma 2.1] lists
various facts about T(u).

Let x = λ%. Then ^ ( 2 7 ) = ̂ r(JD) = {«} U y(z) U cc<̂ > and y<«> U
x(z) = ^/Γ. Also Cs(#) = <ί, ̂ > x (z, y), Cs(x) = <ί, ^> x <2J, «>, m2«ί> x
Γ) = 3 and ξ?8((t) x Γ) = {<«, «, ?/>, <ί, », x)}. Hence m2(S) - 4 and
^ίβ(S) = {<ί, u, «, τ/>, <ί, %, «,»>}. Note also that us = uτ = u{z) and

Set A = <ί, %, «, i/> and B = <ί, u, 2, α>. Then ^ 1 6(S) = {A, B),
A - J? via Γ, <A, J5> = <ί, u) x D char S, iNΓs(A) = NS(B) = <ί, ^> x D,
Cβ(A) = 0(0^^)) x A, CG(B) = 0(CG(B)) x B and NG(S) = S(NG(S)Π
NG(A) Π NG(B)).

Let X = (t, u, z). Clearly CS(X) = <ί, ̂ > x 2λ

LEMMA 2.4. X is the unique element Y of S?(S)
YΊ > 4 .

Proof. Let 7 e ^(S) satisfy Y^ S and | Y\ > 4. Then we may
assume that Z(S) = <«, ̂ > ̂  Γ and | Γ |-2 3 . Then E, ̂  YΠ (T(u)) =
(z, T) where τ e ^(T(u)) and [<λ>, τ]^(z). This forces Γ n (T(u)) =
{z, u) and we are done.

Set M - NG(A) and M - M/0(M). Clearly CG(A) - 0(M) x A
and, interchanging w and uz if necessary, there is a 3-element ^ e
Cff(%) Π NL(A) such that a? inverts p, CA(ρ) = <ί, w>, [A, |θ] = <«, y)

and ^36O(Λf). Also C*(ί) = ^ ( ί ) = A<ft ^> = <ί, ̂ > x (y, z, p, x)
with (y, z, p, x) s Σ 4, C5(A) - A and M/A — Aut (A)^GL (4, 2) = A8.
Moreover, it is clear that O2(CG((t, u))) = O(CG((t, u)))(y, z, p), <», z) e
SyW%CG«t, u)))) and O\CG((t, u)))/O(CG((t, u))) s PSL (2, 3).
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LEMMA 2.5. M — NG{A) controls the G-fusion of elements in
tGnA.

Proof. Assume that t9eA for geG. Let A < S1eSyl2(Cσ(tβ)).
Since S9 e Sy\2(CG(t9)), we may assume that S9 = S,. If A9 = A, then
geM. Suppose that A9 Φ A. Then g^OSί) = {A, A9} and there is
an element h e Sx such that AffΛ = A. Then gh eM, tg = tgh and the
lemma holds.

Let S ^ Ss eSyl2(G). Then S Φ S?, \S"\>210 and S < N^S).
Since Z(S)^NG(S) and <z> ̂  iSΓG(S), we have \NAS)/S\=2f tN^S)^=
t{z) and Z(NAS)) = <z> = Z{S?).

Clearly O(CG(S)) = O(NG(S)) x <t, a;> and if π is an element of
odd order of NG(S)f then π 6 CG«ί, «>), π e CG(X), π 6 CG«ίf u> x D)
and hence πeO(NG(S)). Thus iSΓG(S) - O(NG(S))NAS).

As in [12, § 4], we have SCNδ(S^) = φ and there is an element
Eeϊ?B(^) such that E^S". Clearly «6 j&, | C^ί) | ^ 4 and ze
CE(t) ^ S = C^(ί). Suppose that τetGf)E. Then | £f \ = | τ^ | | C^ (τ)| ^
22 I S| = 28. Thus tGf}E = φ,tZ CE(t\ \ CE(t) \ = 4, <ί, C,(i)> = X =
<«, 2/, «>, [ S , ί ? ] ^ £ / n S = (?,(«), iV^(S) = SE and ί* = t(z). Inter-
changing % and tu if necessary, it follows that we may assume that
CEit) = < ,̂ «>.

Set F = <y, «>. Then A = ί7 U ί ί 7 U uF U toi77, tF^tG Π A, tG n
(ί7 U wJF) = 0 and ί F £ tG Π A £ ί F U tuF. Consequently:

COROLLARY 2.6. Either tM_= tG f) A = tF and \M/A\ = 24 or
tM =:tGΓ)A = tFΌtuF and \M/A\ = 48.

Now the analyses of [12, § 5-11], with the obvious slight
changes, shows that |O2(G)|2 ^ 210. Since F*(G) ^O2(G), our proof
of Theorem A is complete.
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