FINITE GROUPS HAVING AN INVOLUTION CENTRALIZER WITH A 2-COMPONENT OF TYPE PSL (3, 3)

MORTON E. HARRIS

A finite group L is said to be quasisimple if L=L'and L/Z(L) is simple and is said to be 2-quasisimple if L=L'and L/O(L) is quasisimple. Let G denote a finite group. Then E(G) is the subgroup of G generated by all subnormal quasisimple subgroups of G and $F^*(G)=E(G)F(G)$ where F(G) is the Fitting subgroup of G. Also a subnormal quasisimple subgroup of G is called a component of G and a subnormal 2-quasisimple subgroup of G is called a 2-component of G.

We can now state the main result of this paper:

THEOREM A. Let G be a finite group with $F^*(G)$ simple. Assume that G contains an involution t such that $H=C_G(t)$ possesses a 2-component L with $L/O(L) \cong PSL(3,3)$ and such that $C_H(L/O(L))$ has cyclic Sylow 2-subgroups. Then $|F^*(G)|_2 \leq 2^{10}$.

In order to state an important consequence of Theorem A, we require two more definitions. A subgroup K of a finite group G is said to be tightly embedded (in G) if |K| is even and $|K \cap K^{g}|$ is odd for every $g \in G - N_{G}(K)$. A quasisimple subgroup L of a finite group G is said to be standard (in G) if $[L, L^{g}] \neq 1$ for all $g \in G$, $C_{G}(L)$ is tightly embedded in G and $N_{G}(L) = N_{G}(C_{G}(L))$.

THEOREM B. Let G be a finite group with O(G) = 1 and containing a standard subgroup L with $L \cong PSL(3, 3)$. Then either $L \trianglelefteq G$ or $L \neq \langle L^G \rangle = F^*(G)$ and one of the following five conditions hold: (a) $F^*(G) \cong PSL(3, 9)$;

- (b) $F^*(G) \cong PSL(4, 3);$
- (b) $F'(G) \cong PSL(4, 3),$ (c) $F^*(G) \cong PSL(5, 3);$
- $(C) \quad I' \quad (C) \equiv I \, SL \, (\mathbf{3}, \mathbf{3}),$
- (d) $F^*(G) \cong PSp(6, 3);$

(e) $F^*(G) = H_1 \times H_2$ with $H_1 \cong H_2 \cong L$ and $C_G(L) = \langle t \rangle$ where t is an involution such that $H_1^t = H_2$ and $L = \langle h_1 h_1^t | h_1 \in H_1 \rangle$.

Note that Theorem B is a step toward the verification of Hypothesis θ^* of [13] and is therefore of import for completing a proof of the Unbalanced Group Conjecture and the B(G)-Conjecture and for completing an inductive characterization of all Chevalley groups over finite fields of characteristic 3 (cf. [13, §1]). Also by applying [13, Lemma 2.9], [3, Theorem], [1, Corollary II], [8, Theorem 5.4.10 (ii)], [3, Table 1] and [6, Tables 3 and 4], it suffices, in proving Theorem B, to assume, in addition to O(G) = 1, that $L \neq F^*(G) = \langle L^{G} \rangle$, $F^*(G)$ is simple and that $C_{G}(L)$ has cyclic Sylow 2-subgroups. But then Theorem A and the classification of all finite simple groups whose Sylow 2-subgroups have order dividing 2^{10} (cf. [4] and [7]) yield Theorem B. Consequently Theorem B is a consequence of Theorem A.

The remainder of this paper is devoted to demonstrating that the analysis of [12] and [14] can be applied to prove Theorem A.

All groups in this paper are finite. Our notation is standard and tends to follow the notation of [8], [12] and [14]. In particular, if X is a (finite) group, then S(X) denotes the solvable radical of X, $O^2(X)$ is the subgroup of X generated by all elements of X of odd order and is consequently the intersection of all normal subgroups Y of X such that X/Y is a 2-group and $\mathscr{C}(X)$ denotes the set of elementary abelian 2-subgroups of X. Also, if n is a positive integer, then $\mathscr{C}_n(X)$ denotes the set of elementary abelian 2-subgroups of order n of X. Finally $m_2(X)$ denotes the maximal rank of the elements of $\mathscr{C}(X)$, $r_2(X)$ denotes the minimal integer k such that every 2-subgroup of X can be generated by k elements and if $Y \subseteq X$, then $\mathscr{I}(Y)$ denotes the set of involutions contained in Y.

Clearly, if X is a group, then $m_2(X) \leq r_2(X)$ and $r_2(X) \leq r_2(Y) + r_2(X/Y)$ for every normal subgroup Y of X.

2. A proof of Theorem A. Throughout the remainder of this paper, we shall let G, t, H and L be as in the hypotheses of Theorem A and we shall assume that $|F^*(G)|_2 > 2^{10}$.

Then [9, Main Theorem], [15, Four Generator Theorem], [3, Table 1], [6, Tables 3 and 4] and [2] imply that $4 < r_2(F^*(G)) \leq r_2(G)$ and that Sylow 2-subgroups of G and $F^*(G)$ contain normal elementary abelian subgroups of order 8.

Clearly $C_{H}(L/O(L))$ has a normal 2-complement by [8, Theorem 7.6.1], every 2-component K of H with $K \neq L$ lies in $C_{H}(L/O(L))$ and $O(H) \leq C_{H}(L/O(L))$ (cf. [10, §2]). Thus L is the unique 2-component of H, L char H, $S(H) \cap L = O(L)$ and $S(H) = C_{H}(L/O(L))$ by [10, Lemma 2.3].

Since H/S(H) is isomorphic to a subgroup of Aut (PSL (3, 3)) with (LS(H))/S(H) corresponding to $\mathscr{Inn}(\operatorname{PSL}(3,3))$ and since $|\operatorname{Aut}(\operatorname{PSL}(3,3))/\mathscr{Inn}(\operatorname{PSL}(3,3))| = 2$, we have $|H/(S(H)L)| \leq 2$ and $H^{(\infty)} = L$.

Let $S \in \operatorname{Syl}_2(H)$ and $T = S \cap L$. Then $T \triangleleft S$, $T \in \operatorname{Syl}_2(L)$, $|T| = 2^4$, T is semidihedral and $T = \langle \lambda, y | |y| = 8$, |y| = 2 and $\lambda^y = \lambda^s \rangle$ for suitable elements λ , y of T. Also $\Phi(T) = T' = \langle \lambda^2 \rangle \cong Z_4$ and $\Omega_1(T') =$

 $Z(T) = \langle z \rangle$ for an involution z of T. Also $D = \langle \lambda^2, y \rangle \cong D_8$, $Q = \langle \lambda^2, \lambda y \rangle \cong Q_8$ and $\langle \lambda \rangle \cong Z_8$ are the three distinct maximal subgroups of T. Let $P = S \cap S(H)$. Then $P \trianglelefteq S$, P is cyclic, $P \cap T = 1$ and $\Omega_1(P) = \langle t \rangle$. Also $\mathscr{I}(L) = z^L$, $C_{L/O(L)}(z) \cong \operatorname{GL}(2, 3)$ and S(H) = O(H)P. Since $r_2(S) \le 1 + r_2(S/P) \le 2 + r_2(T) = 4$, we have $S \notin \operatorname{Syl}_2(G)$.

LEMMA 2.1. The following four conditions hold:

(a) |H/(S(H)L)| = 2 and $H/S(H) \cong Aut (PSL (3, 3));$

(b) there is an involution $u \in S - (P \times T)$ such that $D = C_T(u) \in$ $\operatorname{Syl}_2(C_L(u)), \quad L\langle u \rangle / O(L) \cong \operatorname{Aut}(\operatorname{PSL}(3, 3)), \quad \mathscr{I}(uL) = u^L, \quad C_{L/O(L)}(u) =$ $(O(L)C_L(u)) / O(L), \quad O(C_L(u)) = O(L) \cap C_L(u), \quad C_L(u) / O(C_L(u)) \cong \operatorname{PGL}(2, 3),$ $O^2(C_G(\langle t, u \rangle)) / O(C_G(\langle t, u \rangle)) \cong \operatorname{PSL}(2, 3), \quad S = (P \times T) \langle u \rangle, \quad \lambda^u = \lambda z \quad and$ $C_{T\langle u \rangle}(\langle z, y, u \rangle) = \langle z, y, u \rangle;$

(c) $Z(S) = \langle t, z \rangle$, $P\langle u \rangle$ is dihedral or semidihedral and $S \in Syl_2(C_d(t, z))$; and

(d) $Q = \langle \lambda^2, \lambda y \rangle \in \operatorname{Syl}_2(O^2(C_G(\langle t, z \rangle)), C_{O(H)}(z) = O(C_G(\langle t, z \rangle)) = O(O^2(C_G(\langle t, z \rangle))) \text{ and } O^2(C_G(\langle t, z \rangle))/O(C_G(\langle t, z \rangle)) \cong \operatorname{SL}(2, 3).$

Proof. Assume that H = S(H)L. Then $S = P \times T$ and Z(S) = $P \times \langle z \rangle$. Since $S \notin \operatorname{Syl}_2(G)$, we have $P = \langle t \rangle$. Then $\langle t, y, z \rangle \in$ $\operatorname{Syl}_2(C_G\langle t, y, z \rangle)$ and [11, Theorem 2] implies that $r_2(G) \leq 4$. This contradiction implies that (a) holds. For the proofs of (b) and (c) of this lemma, it clearly suffices to assume that O(H) = 1. Then $P = O_2(H) = C_H(L), H/P \cong \text{Aut}(\text{PSL}(3, 3))$ and there is an element $v \in S - (P \times T)$ such that $v^2 \in P$, $C_T(v) = D$ and $C_L(v) \cong \sum 4$ by [6, Table 4]. Thus $S = (P \times T) \langle v \rangle$. Suppose that $\Omega_1(S) \leq P \times T$. Then $\varOmega_{i}(S) = \langle t \rangle \times D \text{ char } S, C_{s}(\varOmega_{i}(S)) = (P \times \langle z \rangle) \langle v \rangle \text{ char } S \text{ and } \langle t \rangle \text{ char } S.$ Since this is impossible, there is an involution $w \in S - (P \times T)$. Then $L\langle w \rangle \cong$ Aut (PSL(3, 3)) since $(T\langle w \rangle) \cap P = 1$ and $T\langle w \rangle \in$ $\operatorname{Syl}_2(L\langle w \rangle)$. Then, as is well known $\mathscr{I}(wL) = w^L$ and there is an involution $u \in Tw$ such that $C_T(u) = D \in Syl_2(C_L(u)), C_L(u) \cong \sum 4, S =$ $(P \times T)\langle u
angle$ and $C_{T \langle u
angle} (\langle z, y, u
angle) = \langle z, y, u
angle$. Also $u \in N_G(\langle \lambda
angle)$ and $C_{\langle\lambda\rangle}(u) = \langle\lambda^2\rangle$. Thus $\lambda^u = \lambda z$ and (b) holds. Hence $Z(T\langle u\rangle) = \langle z\rangle$, $\langle t, z \rangle \leq Z(S) = C_P(u) \times \langle z \rangle$ and (c) holds since $\langle t \rangle$ is not characteristic in S. For (d) observe that $C_{\mathcal{G}}(\langle t, z \rangle) = C_{\mathcal{H}}(z)$ and set $\overline{H} = H/O(H)$. Then $C_{\overline{H}}(\overline{z}) = \overline{C_H(z)}$ and $\overline{z} \in O^{\circ}(\overline{H}) = \overline{L} \cong \mathrm{PSL}(3, 3)$. But $O^{\circ}(C_{\overline{H}}(\overline{z})) =$ $O^2(C_{\overline{L}}(\overline{z})) \cong \operatorname{SL}(2,3), \ Q \in \operatorname{Syl}_2(O^2(C_{\overline{H}}(\overline{z}))) \text{ and } O^2(C_{\overline{H}}(\overline{z})) = O^2(\overline{C_H(z)}) =$ $\overline{O^2(C_H(z))} \cong \mathrm{SL}(2,3).$ Hence $O(H)Q \leq O(H)O^2(C_H(z)),$

$$Q \leq C_{{\scriptscriptstyle O}({\scriptscriptstyle H})}({\it z}) O^{
m 2}(C_{{\scriptscriptstyle H}}({\it z})) = O^{
m 2}(C_{{\scriptscriptstyle H}}({\it z}))$$
 ,

(d) holds and we are done.

LEMMA 2.2. $P = \langle t \rangle$, t is not a square in $G, S = \langle t \rangle \times (T \langle u \rangle)$,

 $|S| = 2^6$, $S' = \langle \lambda^2 \rangle$, $\langle z \rangle \leq N_G(S)$ and $t \not\sim z$ in G.

Proof. Assume that $P \neq \langle t \rangle$ and let $w \in \mathscr{I}(S - Z(S))$. Suppose that $w \in P \times T$. Then w is conjugate in $P \times T$ to an element of $y\langle t \rangle$. Since $C_s(y) = C_s(yt) = (P \times \langle z, y \rangle) \langle u \rangle$, we have $\Omega_1(C_s(w)') = \langle t \rangle$. Suppose that $w \notin P \times T$. Then $C_P(w) = \langle t \rangle$, $C_s(w) = \langle t \rangle \times C_r(w) \times \langle w \rangle$ and $\Omega_1(C_s(w)') \leq \langle z \rangle$. Since $Z(S) = \langle t, z \rangle$, we have $Q \leq N_G(S)$ by Lemma 2.1 (d), $\langle z \rangle \leq N_G(S)$ and $t^{N_G(S)} = t\langle z \rangle$. However $\langle z \rangle \leq N_G(S)$ implies $\langle t \rangle \leq N_G(S)$ and we have a contradiction. Thus $P = \langle t \rangle$ and the lemma is clear.

Since $\mathscr{I}(uL) = u^L$, we immediately conclude:

COROLLARY 2.3. $\{t, z, tz, u, tu\}$ is a complete set of representatives for the H-conjugacy classes of involutions in H. Also $u\mathscr{I}(D) \subseteq u^{H}$.

Note that $T\langle u \rangle = \langle \lambda, yu, u | | yu | = | u | = 2$, [yu, u] = 1, $|\lambda| = 2^3$, $\lambda^{yu} = \lambda^{-1}$ and $\lambda^u = \lambda z$ where $z = \lambda^4 \rangle$ and hence [12, Lemma 2.1] lists various facts about $T\langle u \rangle$.

Let $x = \lambda^2 y$. Then $\mathscr{I}(T) = \mathscr{I}(D) = \{z\} \cup y \langle z \rangle \cup x \langle z \rangle$ and $y \langle z \rangle \cup x \langle z \rangle = y^T$. Also $C_s(y) = \langle t, u \rangle \times \langle z, y \rangle$, $C_s(x) = \langle t, u \rangle \times \langle z, x \rangle$, $m_2(\langle t \rangle \times T) = 3$ and $\mathscr{C}_s(\langle t \rangle \times T) = \{\langle t, z, y \rangle, \langle t, z, x \rangle\}$. Hence $m_2(S) = 4$ and $\mathscr{C}_{16}(S) = \{\langle t, u, z, y \rangle, \langle t, u, z, x \rangle\}$. Note also that $u^s = u^T = u \langle z \rangle$ and $\exp(S) = 8$.

Set $A = \langle t, u, z, y \rangle$ and $B = \langle t, u, z, x \rangle$. Then $\mathscr{C}_{16}(S) = \{A, B\}$, $A \sim B \text{ via } T, \langle A, B \rangle = \langle t, u \rangle \times D \text{ char } S, N_S(A) = N_S(B) = \langle t, u \rangle \times D,$ $C_G(A) = O(C_G(A)) \times A, C_G(B) = O(C_G(B)) \times B \text{ and } N_G(S) = S(N_G(S) \cap N_G(A) \cap N_G(B)).$

Let $X = \langle t, u, z \rangle$. Clearly $C_s(X) = \langle t, u \rangle \times D$.

LEMMA 2.4. X is the unique element Y of $\mathscr{C}(S)$ such that $Y \leq S$ and |Y| > 4.

Proof. Let $Y \in \mathscr{C}(S)$ satisfy $Y \leq S$ and |Y| > 4. Then we may assume that $Z(S) = \langle t, z \rangle \leq Y$ and $|Y| = 2^3$. Then $E_4 \simeq Y \cap (T\langle u \rangle) = \langle z, \tau \rangle$ where $\tau \in \mathscr{I}(T\langle u \rangle)$ and $[\langle \lambda \rangle, \tau] \leq \langle z \rangle$. This forces $Y \cap (T\langle u \rangle) = \langle z, u \rangle$ and we are done.

Set $M = N_{d}(A)$ and $\overline{M} = M/O(M)$. Clearly $C_{d}(A) = O(M) \times A$ and, interchanging u and uz if necessary, there is a 3-element $\rho \in C_{H}(u) \cap N_{L}(A)$ such that x inverts $\rho, C_{A}(\rho) = \langle t, u \rangle, [A, \rho] = \langle z, y \rangle$ and $\rho^{3} \in O(M)$. Also $C_{\overline{u}}(\overline{t}) = \overline{C_{M}(t)} = \overline{A} \langle \overline{\rho}, \overline{x} \rangle = \langle \overline{t}, \overline{u} \rangle \times \langle \overline{y}, \overline{z}, \overline{\rho}, \overline{x} \rangle$ with $\langle \overline{y}, \overline{z}, \overline{\rho}, \overline{x} \rangle \cong \sum 4, C_{\overline{u}}(\overline{A}) = \overline{A}$ and $\overline{M}/\overline{A} \hookrightarrow \operatorname{Aut}(A) \cong \operatorname{GL}(4, 2) \cong A_{s}$. Moreover, it is clear that $O^{2}(C_{d}(\langle t, u \rangle)) = O(C_{d}(\langle t, u \rangle)) \langle y, z, \rho \rangle, \langle y, z \rangle \in$ $\operatorname{Syl}_{2}(O^{2}(C_{d}(\langle t, u \rangle)))$ and $O^{2}(C_{d}(\langle t, u \rangle))/O(C_{d}(\langle t, u \rangle))) \cong \operatorname{PSL}(2, 3)$. LEMMA 2.5. $M = N_G(A)$ controls the G-fusion of elements in $t^{g} \cap A$.

Proof. Assume that $t^g \in A$ for $g \in G$. Let $A < S_1 \in \operatorname{Syl}_2(C_G(t^g))$. Since $S^g \in \operatorname{Syl}_2(C_g(t^g))$, we may assume that $S^g = S_1$. If $A^g = A$, then $g \in M$. Suppose that $A^g \neq A$. Then $\mathscr{C}_{16}(S_1) = \{A, A^g\}$ and there is an element $h \in S_1$ such that $A^{gh} = A$. Then $gh \in M$, $t^g = t^{gh}$ and the lemma holds.

Let $S \leq \mathscr{S} \in \operatorname{Syl}_2(G)$. Then $S \neq \mathscr{S}$, $|\mathscr{S}| > 2^{10}$ and $S < N_{\mathscr{S}}(S)$. Since $Z(S) \leq N_G(S)$ and $\langle z \rangle \leq N_G(S)$, we have $|N_{\mathscr{S}}(S)/S| = 2$, $t^{N_{\mathscr{S}}(S)} = t\langle z \rangle$ and $Z(N_{\mathscr{S}}(S)) = \langle z \rangle = Z(\mathscr{S})$.

Clearly $O(C_{d}(S)) = O(N_{d}(S)) \times \langle t, z \rangle$ and if π is an element of odd order of $N_{d}(S)$, then $\pi \in C_{d}(\langle t, z \rangle), \pi \in C_{d}(X), \pi \in C_{d}(\langle t, u \rangle \times D)$ and hence $\pi \in O(N_{d}(S))$. Thus $N_{d}(S) = O(N_{d}(S))N_{\mathscr{S}}(S)$.

As in [12, § 4], we have $SCN_{5}(\mathscr{S}) = \phi$ and there is an element $E \in \mathscr{C}_{8}(\mathscr{S})$ such that $E \leq \mathscr{S}$. Clearly $z \in E$, $|C_{E}(t)| \geq 4$ and $z \in C_{E}(t) \leq S = C_{\mathscr{S}}(t)$. Suppose that $\tau \in t^{g} \cap E$. Then $|\mathscr{S}| = |\tau^{\mathscr{S}}| |C_{\mathscr{S}}(\tau)| \leq 2^{2} \cdot |S| = 2^{8}$. Thus $t^{g} \cap E = \phi$, $t \notin C_{E}(t)$, $|C_{E}(t)| = 4$, $\langle t, C_{E}(t) \rangle = X = \langle t, y, z \rangle$, $[S, E] \leq E \cap S = C_{E}(t)$, $N_{\mathscr{S}}(S) = SE$ and $t^{E} = t \langle z \rangle$. Interchanging u and tu if necessary, it follows that we may assume that $C_{E}(t) = \langle u, z \rangle$.

Set $F = \langle y, z \rangle$. Then $A = F \cup tF \cup uF \cup tuF$, $tF \subseteq t^{c} \cap A$, $t^{c} \cap (F \cup uF) = \phi$ and $tF \subseteq t^{c} \cap A \subseteq tF \cup tuF$. Consequently:

COROLLARY 2.6. Either $t^{\scriptscriptstyle M} = t^{\scriptscriptstyle G} \cap A = tF$ and $|\bar{M}/\bar{A}| = 24$ or $t^{\scriptscriptstyle M} = t^{\scriptscriptstyle G} \cap A = tF \cup tuF$ and $|\bar{M}/\bar{A}| = 48$.

Now the analyses of [12, §5-11], with the obvious slight changes, shows that $|O^2(G)|_2 \leq 2^{10}$. Since $F^*(G) \leq O^2(G)$, our proof of Theorem A is complete.

References

1. M. Aschbacher, A characterization of Chevalley groups over fields of odd order, Ann. of Math., 106 (1977), 353-398.

^{2.} M. Aschbacher and G. M. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J., 63 (1976), 1-91.

^{3.} _____, On groups with a standard component of known type, Osaka J. Math., 13 (1976), 439-482.

^{4.} B. Beisiegel, Über einfache gruppen mit Sylow 2-gruppen der ordnung höchstens 2^{10} , Comm. in Alg., 5 (1977), 113–170.

^{5.} H. Bender, On groups with Abelian Sylow 2-subgroups, Math. Z., 117 (1970), 164-176.

^{6.} N. Burgoyne and C. Williamson, Centralizers of involutions in Chevalley groups of odd characteristic, unpublished dittoed notes.

^{7.} F. J. Fritz, On centralizers of involutions with components of 2-rank two, I, II, J. Alg., 47 (1977), 323-399.

MORTON E. HARRIS

8. D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.

9. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4-elements, Mem. Amer. Math. Soc. No. 147, Amer, Math. Soc., Providence, R. I., 1974.

10. D. Gorenstein and J. H. Walter, Balance and generation in finite groups, J. Alg., 33 (1975), 224-287.

11. K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Alg., **33** (1975), 144-160.

12. M. E. Harris, Finite groups having on involution centralizer with a 2-component of dihedral type, II, Illinois J. Math., 21 (1977), 621-647.

13. M. E. Harris, On PSL (2, q)-type 2-components and the unbalanced group conjecture, to appear.

14. M. E. Harris and R. Solomon, Finite groups having an involution centralizer with a 2-component of dihedral type, I, Illinois J. Math., 21 (1977), 575-620.

15. A. MacWilliams, On 2-groups with no normal abelian subgroups of rank 3, and their occurrence as Sylow 2-subgroups of finite simple groups, Trans. Amer. Math. Soc., 150 (1970), 345-408.

Received June 21, 1978. This research was partially supported by a National Science Foundation Grant.

UNIVERSITY OF MINNESOTA MINNEAPOLIS, MN 55455