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THE STRONG APPROXIMATION THEOREM AND
LOCALLY BOUNDED TOPOLOGIES ON F(X)

JO-ANN COHEN

To within equivalence, the only valuations on the field
F(X) of rational functions over F that are improper on F
are the valuations vP9 where p is a prime polynomial of
F[X]9 and the valuation vco, defined by the prime polynomial
X-1 of F[X~1]. It is classic that if F is a finite field, the
set &*f defined by, ^f—{p\ p is a prime polynomial over
F) U {°o}, has the Strong Approximation Property, that is,
for any finite subset G of ^*', any qe<^'\G, any family
(dg)δeo of elements of F(X) indexed by G, and any M > 0,
there exists a nonzero element h in F(X) such that
vp(h — dp) > M for all p in G and vp(h) ̂  0 for all p in
&'\(GΌ{q}). We shall first prove that &' satisfies this
condition when F is infinite as well. We then apply this
result to obtain a characterization of all locally bounded
topologies on F(X) for which the subfield F is bounded.

1* The strong approximation theorem* Here, & is the set
of prime polynomials in F[X] and &*' is the set & U {°°}.

THEOREM 1 (The strong approximation theorem). For any finite
subset G of &*', any qeέ^'\G, any family (ag)geG of elements of
F(X) indexed by G, and any positive number M, there exists a
nonzero h in F(X) such that vp(h — ap)^M for all peG and vd(h)^0
for all de&»\(G\J{q}).

Proof. Let S = &'\{q). By [5, Theorem 2.2, p. 322], it suffices
to show that for distinct elements r and s in S and M > 0, there
exists an h in F(X) such that vr(h — 1) > M, vs(h) > M and vd(h) *> 0
for all deS\{r,s}.

Case 1. CXD g S. Then r and s are distinct prime polynomials
and so there exist polynomials / and g in F[X] such that / rM+1 +
gsM+1 = 1. Define h by, h = gsM+1. Then h - 1 = -frM+1 and so
vr(h -ΐ)^M+l>M. Furthermore, va(h) ^ M + 1 > M. As h is
a polynomial in F[X], vd(h) ^ 0 for all d 6 3P and so in particular
vd(h) ^ 0 for all d e S\{r, s}.

Case 2. r = oo. Then s and # are distinct prime polynomials
in F[X]. As v^ and i;, are independent valuations on F(X), there
exist polynomials / and g such that v^f/g — 1) > M and vs(f/g) > M
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[1, Theorem 1, p. 134]. Choose a positive integer t such that
t degg>(Λf + 1) degs + deg/ + Λf. By the division algorithm, there
exist polynomials w and z in F[X] such that q* = wsM+1g + z where
deg z < (Λf + 1) deg s + deg #. So /gf = fwsM+1g + /# and hence
fjg = fwsM+1/qϋ + /s/gfy. Let h be defined by h = fwsM+1/q\ Then
vβ(fe) ίg Λf + 1 > Λf and for all prime polynomials p which are distinct
from g, vp(h) ^ 0. So it suffices to show that vjji — 1) > Λf.

Observe that vj^f/g — h) = vJifz/gq*) = deg # + ί deg 9 — deg/ —
deg s > deg g + (M + ΐ) deg s + deg f+M— deg/ — (Λf + 1) deg s -
deg g = M. Therefore vjfr-l) = vJJι-fjg + flg-1) ^ min {v^h

- 1)} > M.

Case 3. s = 00. Then r and q are distinct prime polynomials.
Let / be a polynomial such that vr(f — 1) > M. Choose a positive
integer t such that t deg g > (M + 1) deg r Λ- M. By the division
algorithm, there exist polynomials w and z in -P[X] such that
q*f = wrM+1 + s where deg s < (Λf + 1) deg r. Then / = wr^/q* +
z/q*. Let h be defined by h = /̂«*. Then ι;r(/ - Λ) = vr{wrM+ιlqι) ^
Λf + 1 > AT and so vr(fc - 1) = vr(h - / + / - 1) ^ min {̂ r(fe - /) ,
vr(/ — 1)} > M. Furthermore,

v^h) = t deg g - deg z >(M + ΐ) deg r + Λf - (M + 1) deg r = Λf .

Finally for d e ̂ \{g}, vd(Λ) ^ 0.

4. c>o G S\{r, «}. Then r, s and g are distinct prime poly-
nomials in F[X], By Case 1, there exists a polynomial / in F[X]
such that vr(f — 1) > Λf and vβ(/) > Λf. Choose t so large such that
t deg q > (Λf + l)(deg r + deg s) and let w and ^ be polynomials in
F[X] such that /g* = wrM+1sM+1 + « where deg z < (Λf + l)(deg r +
degs). Then / = wrM+18M+1/q* + z/q*. Define h by h = z/q*. Then

V r ( / - h) = vAwr^s^/q*) ^ Λί + 1 > Λf and similarly v8(f - ft) > Λf.
Hence r̂(fc — 1) > Λf and i;β(ft) > Λf. Furthermore for all polynomials
p in ^\{g}, vp(fe) ^ 0. So it suffices to show that vj)ι) ^ 0. As
ôo(ft) = ί degg — deg^>(Λf+l)(degr + degs) — (Λf+l)(degr + degs) = 0,

vΛK) ^ 0.

2* Locally bounded topologies on F(X). Let i? be a ring
and let ^ " be a ring topology on R (that is, J 7 " is a topology on
i? making (x, y) -+ x — y and (a?, 2/) -* xy continuous from R x R to
if). A subset S of J? is bounded for ^ " if given any neighborhood
F of 0, there exists a neighborhood U of 0 such that SU QV and
Z7S £ V. S" is a locally bounded topology on R if there is a
bounded neighborhood of 0 for J^7
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A norm || || on a field K is a function from K to the nonnega-
tive reals satisfying \\x\\ — 0 if and only if x = 0, \\x — y\\ ^ l|$|| +
||?/|| and ||»2/||^||fl5||||i/|| for all x, y in If. Observe that a subset of
iΓ is bounded in norm if and only if it is bounded for the topology
defined by the norm; in particular the topology defined by a norm
is a locally bounded topology.

A subset 7 of a field K is an almost order of K if (1) 0, 16 7,
(2) —IQ 7, (3) 77S 7, (4) there exists a nonzero element h in 7 such
that h(I + 7) £ 7, and (5) for each xeK*, there exist y, z in 7*
such that x = yz~\

LEMMA 1 [6, Theorems 5 and 6]. If J7~ is a nondiscrete, locally
bounded ring topology on a field K, then there is an almost order
I of K that is a bounded neighborhood of zero. Conversely, if I is
an almost order of K, then there exists a unique nondiscrete, locally
bounded ring topology J7~ on K for which I is a bounded neighbor-
hood of zero. Furthermore, the topology J7~ defined by I is Haus-
dorff if and only if I Φ K.

In [7] we investigated locally bounded topologies on the quotient
fields of certain Dedekind domains. We recall the results of that
paper.

Let K be the quotient field of a Dedekind domain R that is not
a field, & the set of nonzero prime ideals of R and ^ L a set
{| |i> •'*> I U} of n mutually inequivalent proper absolute values on
K such that for each i 6 [1, n] and each pe^, the topology J7~t

defined by | |* i s distinct from the topology ^ defined by the
valuation vp. Let &" be defined by &*' = 0* (J ̂ L,. For each subset
S of &', we define O(S) by O(S) = {x e K: vp(x) ^ 0 for all p e SΓ\ &
and I x U ^ 1 for all | |, e S Π ^ U .

We placed the following conditions on K, R and &':

I. Class Number Condition (CC). The class number of K over
R is finite.

II. Approximation Condition (AC). For any finite subset G of
&*', any γ e ^ ' \ G , any family (ag)geG of elements of K indexed by
G, and any positive numbers M and e, there exists a nonzero element
h i n K s u c h t h a t vp(h - ap) ^ M f o r a l l p eG Π ̂ , \h - a{..[jc\2 ^ e
for all I |2 6 G n ^ L and h e O{0*\G U {τ}))

III. Discreteness Condition (DC). The only ring topology on K
for which O(&') is a neighborhood of zero is the discrete topology.
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IV. Euclidean Condition (EC). There exist positive numbers
βu '' '9 βn s u c h that if a,beR with b Φ 0, then there exist q, r in
R satisfying a = bq + r, |r|< 5* \b\& for all i in [1, n\.

LEMMA 2 [7, Lemma 2]. If S is a nonempty, proper subset of
0>', then O(S) is an almost order for a unique, Hausdorff, non-
discrete, locally bounded ring topology ^ s on K.

LEMMA 3 [7, Theorem 3, Statement 3]. Let ^ be a Hausdorff,
nondiscrete, locally bounded ring topology on K with the following
property.

V. Boundedness Condition (BC). For any M > 0, the set
O(^) n{yeK:\y\i£M for all | - |< e &*„} is a bounded set for jTT

If 0*^ has exactly one element, then S~ = J7~8 for some non-
empty, proper subset S of 0".

THEOREM 2. Let F be a field and X an indeterminate over F.
Let & be the set of all prime polynomials over F, v^ the valuation
on F(X) defined by vJJIg) = deg g — deg/ and let ^^ = {| [„} where
I y !„ = 2r*~™ for all y in F{X). Then F{X), F[X] and 0" = & U ^ l
satisfy (CC), (AC), (DC) and (EC). Moreover, if ^7~ is a Hausdorff,
nondiscrete, locally bounded ring topology on F(X) for which the
subfield F is bounded, then J^~ satisfies (BC) and hence ά?~ — af~s

for some nonempty, proper subset S of &'.

Proof. As F[X] is a principal ideal domain, (CC) holds. By
Theorem 1, (AC) holds. Furthermore, (DC) holds. Indeed, as
O(^*') = F, if ^ is a ring topology on F(X) for which 0(0*') is a
neighborhood of zero, then the set F Π FX = {0} is a neighborhood
of zero for ^T Thus ^7~ is discrete. By the division algorithm,
(EC) holds with βx = 1. So it suffices to prove that (BC) holds when
J?~ is a locally bounded topology on F(X) for which the subfield F
is bounded.

Notice that for M > 0, O(^) n {2/ e F(X): \y\00^M} = {ye F[X]:
deg y ^ N} where N = lnM/ln2. Consequently, if S~ is a locally
bounded topology on F(X) for which the subfield F is bounded, then
^ satisfies (BC) and therefore by Lemma 3, ^ = ^ for some
nonempty, proper subset S of &'.

COROLLARY [7, Corollary 4]. If F is a finite field and J7~ is a
Hausdorff, nondiscrete, locally bounded topology on F(X), then there
exists a nonempty, proper subset S of ^ ' such that
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The following theorem is a generalization of Theorem 2 of [3].

THEOREM 3. Let ^~ be a Hausdorff, nondiscrete, locally bounded
ring topology on F(X) for which the subfield F is bounded. The
following statements are equivalent.

1° J7~ is a field topology.
2° Jf~ is the supremum of finitely many valuation topologies
where pe&*'.
3° There exists a nonzero element a in F{X) such that

^ an = 0.
4° ^~ is defined by a norm.

Proof. Let S be a nonempty, proper subset of &*' such that

To show that 1° implies 2°, it suffices to show that S is finite.
As Jf is a field topology and O(S) + 1 is a neighborhood of 1 in
j r ; there exists a y in O(S)\{0} such that (yO(S) + I)"1 £ O(S) + 1.
If S is infinite, pick peSΠ^ such that vp{y) = 0. By Theorem 1,
there exists a z in F(X) such that vp(z + y1) > 0 and zeO(S\{p}).
Then vp(z) = vp(z + y"1 — y'1) ^ min {vp(z + y~λ)y v^y"1)} ^ 0 and so
z6O(S). Hence yz + leyO(S) + 1 and vv{yz + 1) = ^O/O + ẑ"1)) =
Vp(2/) + t;p(l/ + z~x) > 0. Therefore, vp((i/jδ + I)"1) < 0. But (yz + I)"1 e
O(S) + 1 and vp(w) ^ 0 for all weO(S) + 1. Contradiction! There-
fore S is finite.

To prove that 2° implies 3°, we note that if S is any nonempty,
finite subset of &" and a is any nonzero element of F(X) such that
JαJ 0 0 <l when | U e S and vp(a) > 0 for all p in S ( Ί ^ , then
lim^^^ α% = 0 in J7~s. The existence of such an element is guaranteed
by Theorem 1. The statement 3° implies 4° is a special case of
Cohn's theorem [4, Theorem 6.1]. Finally the proof that 4° implies
1° is the same as that for normed algebras found on p. 77 of [2].
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