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THE APPROXIMATION OF UPPER SEMICONTINUOUS
MULTIFUNCTION BY STEP MULTIFUNCTION

GERALD BEER

Let P be a right rectangular parallelepiped in Rm and
let Y be a metric space. If Γ:P->Y is an upper semi-
continuous multifunction such that for each x in P the set
Γ(x) is nonempty and closed, then there exists a sequence
{Γk} of upper semicontinuous closed valued step multifunc-
tion^ convergent in terms of Hausdorff distance to Γ from
above. If Γ is compact valued and increasing and P is a
closed interval, then the convergence can be made uniform.
As a consequence of a Dini-type theorem for mutif unctions,
the convergence can also be made uniform if Γ is compact
valued and continuous.

l Introduction* Let X and Y be topological spaces. A multi-
function Γ: X -»2 r assigns to each a i n l a subset Γ(x) of Y, pos-
sibly empty. A multifunction Γ is called upper semicontinuous
(u.s.c.) at z in X if whenever F i s an open subset of Y that contains
Γ(z) then the set {x: Γ(x) c V] contains a neighborhood of z. It is
called lower semicontinuous (l.s.c.) at z if whenever an open subset
V of Y satisfies Vΐ\F{z)Φ 0 , then {x:Γ(x)f]Vφ 0} contains a
neighborhood of z. It is called continuous at z if Γ is both u.s.c.
and l.s.c. at z, and Γ is continuous (resp. u.s.c, l.s.c.) in X if Γ is
continuous (resp. u.s.c, l.s.c) at each point of X.

The basic theory of semicontinuous multifunctions is presented
in Berge [3], Kuratowski [6], and Smithson [9]. We now list a few
tangible semicontinuous multifunctions, the first of which is mention-
ed in [6].

EXAMPLE 1. If/: Γ - ^ X i s onto, then f~1:X->2Y is an u.s.c
(resp. l.s.c.) multifunction if and only if / is a closed (resp. open)
single valued function.

EXAMPLE 2. If C is a closed convex set in m-dimensional
Euclidean space Rm, then Γ: C -> 2Rm defined by

Γ(z) = {y: \\y\\ ̂  1 and y (x - z) ^ 0 for each x in C}

is an u.s.c multifunction.

EXAMPLE 3. If C is an arbitrary set in Rm, then Σ: C -> 2R7n

defined by
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Σ(z) = {y: Xz + (1 - X)y e C for each λ in [0, 1]}

is called the star multifunction of C. Intuitively, the star of z
consists of the subset of C that is visible from z. If C is a compact
(resp. open) set, then Σ is an u.s.c. (resp. l.s.c.) multifunction.

The relationship between semicontinuous multifunctions and
ordinary real valued semicontinuous functions is as follows: f:X-*R
is u.s.c. (resp. l.s.c.) if and only if θf:X-^2R defined by θf{x) —
(—°°, χ\ is u.s.c. (resp. l.s.c). If / is a nonnegative function, then
/ i s u.s.c. (resp. l.s.c.) if and only if Γf:X->2R defined by Γf{x) —
[0, f(x)] is u.s.c. (resp. l.s.c). In the sequel we call Γf the canoni-
cal multifunction associated with the nonnegative function /.

If Y is a metric space and the values of Γ: X —> 2Y are nonempty
closed subsets of Y, then there is a different way to view semi-
continuity. First, some terminology is required. Let Bε[y] denote
the closed ε-ball about a point y in Y. If C is a nonempty closed
subset of Y, define the ε-parallel body Bε[C] as the union of balls:
Uyec Bε[y], If C and K are nonempty closed subsets of Y, then the
Hausdorff distance of C from K is

δ[C, K] = inf {ε: Bε[C] Z) K and Bt[K] => C} .

This is not a metric only because the distance between two closed
sets may be infinite. If we restrict our distance function to the
closed and bounded subsets of Y, then we do obtain a metric, called
the Hausdorff metric. In this context we say that a closed valued
multifunction is Hausdorff upper semicontinuous (resp. l.s.c.) at a
point z in X if for each positive ε, the set {x: Γ{x) c Bε[Γ(z)]} (resp.
{x: Γiz) c Bε[Γ(x)]}) contains a neighborbood of z. If Γ is compact
valued, then semicontinuity in the ordinary sense coincides with
semicontinuity in this special sense [3]. In general, Housdorff upper
semicontinuity is implied by ordinary upper semicontinuity whereas
Hausdorff lower semicontinuity implies ordinary lower semicontinuity.

One direction of research in the study of multifunctions involves
proving theorems about them that are either analogues or extensions
of theorems about single valued functions. Kakutani's extension of
the Brouwer fixed point theorem [5] immediately comes to mind,
but many other results of interest have been obtained (see, e.g.,
Ceder [4] and Smithson [10]). In this article we consider the ap-
proximation of u.s.c closed valued multifunctions by u.s.c. step
multifunctions.

2* Step multifunctions• Let P = [α3, 6J X [α2, 62] X X [αm, bm]
be a right rectangular parallelepiped in m-dimensional Euclidean



STEP MULTIFUNCTIONS 13

space Rm. For j = 1, 2, , m, let {xtf\ x[ύ\ , α^} with α?^ = α, and
a?î  = bj be a partition of [ah bs]. The Cartesian product of these
m partitions is called a partition of P. A partition so described
divides P into ΠΓ=i&i subparallelepipeds which we shall call blocks
of the partition. For the purposes of integration theory, a step
function f: P—>R is a function that is constant on the interior of each
block. We find it convergent to use a more restrictive definition.
Given a partition of P, define an equivalence relation p on P as
follows: xpy if and only if x and y belong to the same set of blocks.
In this article a step function / associated with a particular parti-
tion will mean a function that is constant on each equivalence class
of p. Similarly, a step multifunction Γ: P —> 2F associated with this
partition is defined to be a multifunction that is constant on each
equivalence class of p. Here are some simple examples:

EXAMPLE 4. For each partition of a right rectangular parallele-
piped P in Rm, then Γp: P-+2Rm defined by Γp(x) = the closure of
x/p where x/p is the equivalence class of x is a compact valued l.s.c.
step multifunction.

EXAMPLE 5. If f:P—>R is a nonnegative step function, then
the canonical multifunction Γf corresponding to / is a step multi-
function.

EXAMPLE 6. Let P = [0,1] x [0, 1] and let P* = {(&, y, 0):

(cc, j/)eP}. Let S be the union of a finite collection of lines in R*
each of which is a translate of a coordinate axis. If Σ is the star
multifunction of S U P * and h: P-> P* is the natural injection, then
2Όjfe is an u.s.c. step multifunction.

THEOREM 1. Let P be a right rectangular parallelepiped in Rm

and let (Y, d} be a metric space. Let Γ: P—»2y be a closed valued
u.s.c. multifunction such that for each x, Γ(x) Φ 0 . Then there
exists a sequence {Γk} of closed valued u.s.c. step multifunctions
defined on P such that for each x in P we have

(1) Γ(x)czΓk+1(x)c:Γk(x).
(2)

Proof. Let P = [al9 &J x x [αm, bm]. Our step multifunction
Γk will be defined with respect to the partition of P associated with
the regular partition of each [ajf bά] into 2k subintervals of equal
length. For each block of the partition define ΘB: P —• 2F by
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' U Γ(x) if z is in B
θB(z) =

ί 0 otherwise .

Clearly, ΘB is u.s.c. We now show that ΘB is closed valued, which
is to say that \Jx<=BΓk(x) is a closed set. To this end let {yn} be a
sequence in \JX&BΓ{X) convergent to some point y in Y. If infinitely
many terms of the sequence belong to the closed set Γ(z) for some
fixed z, then y is in Γ(z). Otherwise by passing to a subsequence,
the compactness of B allows us to assume that there exists a con-
vergent sequence {xn} of distinct points in B such that yn is in Γ{xn).
Now {(x, y):xeB and y eΓ(x)} regarded as a subset of B x 7 is a
closed set [8] so that yeΓQimn^O0xΛ). This proves that \JxeBΓ(x)
is a closed set.

We now define Γk:P->2γ as follows: Γh{x) = \JBθB(x). Since
u.s.c. multifunctions are closed under finite unions, Γk is u.s.c. for
each positive integer k. For each x, Γk{x) is a finite union of closed
sets and is thus closed. Moreover, since x belongs to at least one
block Ba9 we have Γk{x) ZDθBχ(x) ZDΓ(X). Clearly, Γk is a step func-
tion, for Γk(X]) — Γk(x2) when the points xλ and x2 belong to the same
blocks of the kth partition. Also, for each integer k and each x in
P we have Γk+1(x)aΓk(x) because each block of the (fc+l)st partition
that contains x is a subset of a block of the kth partition that con-
tains x. Finally, let ε > 0 be arbitrary and z be a fixed point of P.
Since Γ is u.s.c. at z, there exists a positive λ such that

\J{Γ(x):\\x-z\\<\}<zBtlΓ(z)]

However, the diameters of the blocks of successive partitions go to
zero; so, there exists an integer n{z) such that whenever k > n(z)
the diameter of a block in the kth partition will be less than λ. In
particular, if x is a point in a block B of the kth partition that
contains z, then ||cc — z\\ < λ. Hence, if k > n(z), we have

Γk(z) = U θB{z) = U Γ(x) c Bs[Γ{x)] .
B xpz

We observe that the process described in the last theorem can
be used to approximate a compact valued u.s.c. multifunction by
compact valued u.s.c. step multifunctions, for the union of the values
of a compact valued u.s.c. multifunction when restricted to a com-
pact set is compact. Can we always approximate a l.s.c. closed
valued multifunction from below by a sequence of l.s.c. step multi-
functions? The answer is negative, for consider the compact valued
l.s.c. multifunction Γ: [0, l]->2 i ϊ defined by Γ{x) = {x}. Now if
θ: [0, 1] —> 2B is a step multifunction such that θ(x) c Γ(x) for each
xf then θ(x) — 0 for all but finitely many values of x. Hence if
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{Γk} is a sequence of step functions that is majorized by Γ, then

k=ί

for all but countably many x.
We note, however, that if the values of Γ are not merely com-

pact convex sets in Rn but are moreover compact convex bodies,
then a lower approximation can be obtained. As in Theorem 1 our
kth multifunction is defined with respect to the partition of P =
[au bλ] x [α2, 62] x x [αm, bm] associated with the regular partition
of each [ajf 6̂ ] into 2fc subintervals of equal length. For each block
B of the kth. partition define ΘB as follows:

rf| Γ(x) if z is in B
θB{z) = " *

\Rm otherwise.

As expected we set Γk(z) = Π θB{x). For each k the multifunction
Γk is compact convex valued, and for each x we have Γk(x) c Γk+1(x) c
Γ(x). Since l.s.c. multifunctions are closed under finite intersections,
each Γk is l.s.c. To establish the convergence fix z in P and let
ε > 0 be arbitrary. Without loss of generality we can assume that
0 is in the interior of Γ(z). Choose 0 < λ < 1 such that Bε[XΓ(x)] z>
Γ(z). Let p be the distance between XΓ(z) and the complement of
the interior of Γ(z) and choose δ so small that Bp[Γ(x)]z)Γ(z) when-
ever || 3 — 0511 < δ. There exists an integer n such that when k> n
the diameter of a block of the kth partition is less than δ. By the
separation theorem if Bp[y] cΓ(z), then \\x — z\\ < δ implies that y
is in Γ(x). It follows that if x is in a block of the Mh partition
that contains z, we have XΓ(z)c:Γ(x). Hence,

and we have shown that {Γk} converges to Γ from below in the
Hausdorff metric.

Returning to the u.s.c. case the next result shows that a uni-
form approximation can be obtained if the original multifunction is
u.s.c, defined on a closed interval in the line, compact valued, and
increasing.

THEOREM 2. Let (Y, d) be a metric space and let Γ: [a, b] ->2Y

be a compact valued u.s.c. multifunction such that for each x,
Γ(x) Φ 0 . Suppose that Γ is increasing: if xt <; x2, then Γζxjc:
Γ(x2). Then \there exists a sequence {Γk} of compact valued u.s.c.
step multifunctions convergent uniformly in the Hausdorff metric
to Γ such that for each integer k and each x in [a, b] we have



16 GERALD BEER

Γ(x)cΓk+1(x)aΓh(x).

Proof. Let c be in (α, b] and let {cn} be an increasing sequence
of numbers convergent to c. Since the set of all compact subsets
of Γ(c) is a compact metric space with respect to the Hausdorff
metric [7], a subsequence of {Γ(cn)} converges in the Hausdorff
metric to a compact subset K of Γ(c). Clearly, since Γ is increasing,

,- Γ(x) exists and equals K. Define g: (α, 6] —> R by

For each positive integer k we claim that {z: g(z) ^ 1/k} is a finite
set. If not, there exists a sequence {zn} of distinct numbers in (α, b]
and points yn in Γ(zn) for each n such that d[yn, l im^- Γ(x)] ^ 1/k.
It follows that d[yn, Γ(x)] ^ 1/& for each x < zn so that if nΦ m,
then ώ[τ/%, t/J ^ 1/&. Evidently, {?/„} does not have a convergent
subsequence, and this violates the compactness of Γ(b). Notice that
Γ can have only countably many points of discontinuity, for Γ is
right continuous at each point of [α, b].

Let ε be a fixed positive number. We first construct an u.s.c.
compact valued step multifunction Θε on [a, b] such that Γ(x) c θε(x) c
Bε[Γ(x)] for all x. By the above argument we can find a strictly
increasing sequence of numbers au α2, , aN^ in (α, b) such that if
a < x <b and ccg {αx, , α^_J then gr(αj) < ε. Set a0 equal to α and
aN equal to 6, and define Γf on [α^i, αj by

Γ = jΓ(α?) if a,_x ^ a? < a,

(lim^a rΓ (x) if a? = aέ .

We now claim that [at^u at] cannot contain a nested sequence of sub-
intervals {[cjf dj]} such that d5 — cs converges to zero and for each
j δ[ΓT(cj), Γf(dj)] ^ ε. For suppose that such a nested sequence did
exist. Let p be the unique point in each subinterval. Clearly, p
can be neither α ^ nor ai9 for Γf is right continuous at α<_χ and left
continuous at a^ Hence, p must be between at^ and at. If p = c3-
for some index j , then p — ck for all Λ; > i and again Γf would fail
to be right continuous at p. The remaining possibility is that
p > cό for all j . A simple argument shows that g(p) ^ ε which
contradicts pί{aOf au -—9aN}. The nonexistence of the nested se-
quence of subintervals is now verified.

We can now say that for mt sufficiently large, [at-lf αj can be
partitioned into 2mi subintervals of equal length such that the values
of Γ* at adjacent endpoints differ in Hausdorff distance by less than
ε. For each i = 1, , JV, on each of the 2mf half-open on the right
subintervals of [a^u at) define θε to be identically equal to the value
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of Γf at its right endpoint. Finally, set θε(b) equal to Γ(ί>).
Using the procedure outlined above we can define compact valued

u.s.c. step multifunctions Al9 Λ2, , that satisfy Γ(x) c Λn(x) a
B1/n\Γ(x)] for each x in [α, 6]. For each positive integer k, let
Γk(x) = Πi=i AJtx). We see that

(1) for each x Γk(x) is compact.
( 2 ) for each x Γ(x) c Γfc+1(α) c Γk(x) c J31/fc[Γ(a0].
( 3) Γk is a step multifunction with respect to the partition that

is the common refinement of the partitions associated with Λu , Λk.
The upper semicontinuity of Γk holds because the intersection of

an arbitrary family of compact valued u.s.c. multifunctions is u.s.c.
This completes the proof.

We now present two counterexamples relevant to the last
theorem. The first shows that if Γ: [α, b] —> 2F is a closed valued
increasing u.s.c. multifunction, then it is not always possible to find
a uniform approximation even if Γ is continuous. Define Γ:
[-1,0] ->2R by

([0, -I/a] if - l r g x< 0
Γ(x) =

([0, oo) if x = 0
If θ is a step multifunction that majorizes Γ, then 0 is constant on
an interval of the form [ — ε, 0), and the constant value of θ on this
interval contains [0, n] for each positive integer n. Thus, the value
of θ on such an interval includes [0, <*>), and if x is in the interval
we have 8[θ(x)9 Γ(x)] = °o.

The next example shows that the theorem fails if Γ is an in-
creasing u.s.c. compact valued multifunction defined on a rectangle
rather than on an interval. In this context Γ is called increasing
if whenever xx <; x2 and y1 ^ y2 then Γ(xl9 y^)cΓ{xz, y2). We construct
a nonnegative real valued u.s.c. function / on [0,1] x [0, 1] for
which Γf9 the canonical multifunction associated with /, serves as
a counterexample. Let / be the characteristic function of the closed
set {(x, y): x + y^l} restricted to [0, 1]x[0,1]. Since / is increasing
and u.s.c, so is Γf: [0, 1] x [0,1] ->2R defined by Γf(x9 y) = [0, f(x, y)].
We now show that if θ is any step multifunction whatsoever that
majorizes Γff then there exists (x, y) in the unit square such that
δ[Γf(x9 y), θ(x, y)] ^ 1. Consider the block of the partition associated
with θ that lies in the upper left-hand corner of the unit square.
Since the interior of the block will contain points of the form
(x, 1 — x) for sufficiently small positive x9 and θ is constant on the
interior, we conclude that θ(x, #)z)[0, 1] for each (ce, y) in the interior.
However, the interior of the block contains points {x, y) that satisfy
x + y < 1. This finishes the argument.
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3* Two consequences of Dini's theorem for multif unctions*
If / is a continuous real valued function defined on a right
rectangular parallelepiped, then a decreasing sequence of upper semi-
continuous step functions that converge to / from above must
actually converge uniformly. This follows from Dini's Theorem:
Let {fk} be a sequence of u.s.c. real valued functions defined on a
compact topological space X. Suppose that / is a l.s.c. function
defined on X and that {fk(x)} converges monotonically to f(x) from
above at each point x in X. Then {fk} converges uniformly to /.
It is easy to extend Dini's Theorem to compact valued multifunctions.

THEOREM 3. Let X be a compact topological space and let Y be
a metric space. Suppose that Γ:X—>2r is a l.s.c. compact valued
multifunction such that for each x in X, Γ(x) Φ 0. For k —
1, 2, 3, let Γk: X—>2Y be an u.s.c. compact valued multifunction
such that for each x in X and each integer k we have Γk(x) z>
Γk+1(x)Z) Γ(x). If Γ\V=iΓk(x) = Γ{x) for each x, then {Γk} converges
to Γ uniformly in the Hausdorjf metric.

Proof. The compactness of Γk{x) and Γ(x) for each k and x
imply that {Γk(x)} converges to Γ(x) in the Hausdorff metric. Let
ε > 0 be arbitrary. For each 2 in I there exists a neighborhood
Uz of z such that if x is in Uz, then Γ(z) dBε/B[Γ(x)]. Let n(z) be
an integer so large that Γn{z)(z) cz Bε/z[Γ(z)]. Pick Vz to be a neigh-
borhood of z such that if x is in Vz then Γn{z)(x) c Bε/Ά[Γn{z)(z)]. Now
let Wz = Uz Π Vz. Since {Wz: z e X} is an open cover of the compact
space X, we can extract a finite subcover {Wzv , Wtq}. If we set
M equal to the maximum of {n(Zχ)f •• ,n(zq)}, then k>M implies
that Γk(x) c Bε[Γ(x)] for each x in X.

Combining Theorem 1 and Theorem 3 we see that if Γ is a
compact valued continuous multifunction on a right rectangular
parallelepiped, then there exists a sequence of compact valued u.s.c.
step multifunctions that converge uniformly to Γ from above in the
Hausdorff metric. As another application it is easy to show that if
the star multifunction Σ for a compact set C in Rm is continuous,
then the sequence of star multifunctions {Σk} for the parallel bodies
{B1/k[C]\ when restricted to C converge uniformly to Σ. Actually,
the converse is true. To see this, suppose that Σ is not continuous
at some point z in C. Since Σ is u.s.c. at z, there exists ε > 0 and
points zn in C such t h a t \\zn — z\\ < 1/n b u t Bε[Σ(zn)] ~p Σ(z). Now

if k is a positive integer and n > k, we see that Σ{z) c Σk(zn). Thus,
δ[Σ(zn), Σk(zn)] >̂ ε, and {Σk} when restricted to C does not converge
uniformly to Σ. The measure theoretic consequences of this result
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are discussed in [1].
We finally remark that this version of Dini's Theorem does not

extend to closed valued multifunctions, even if the approximating
multifunctions and limit multifunction are all continuous. What
goes wrong, of course, is that the limit multifunction can be l.s.c.
without being Hausdorff l.s.c. Again consider the continuous multi-
function

[0, oo) if X = 0 .

Let E be the closed set {(x, y): — 1 <; x <; 0 and y eΓ(x)}. We define
our sequence {Γk} of continuous closed valued multifunctions that
converges to Γ (in the sense that lim*.^ δ[Γk(x), Γ(x)] — 0 for all x)
from above in terms of the 1/k parallel bodies of E:

Γk(x) = {y: {x, y) e Bι/k[E}} ( - 1 ^ x £ 0) .

We leave it to the reader to check that {Γk{x)} converges to Γ(x)
for each x, but that the convergence is not uniform.
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