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GENERALIZED INVERSES IN REGULAR RINGS

THOMAS R. SAVAGE

Motivated by I. Eaplansky's theorem on one-sided
inverses in rings, we consider, for a given nonzero element
a in a regular ring, the number of solutions x to (i) a—axa,
(ii) a=axa and x—xax, and (iii) a—axa with x invertible.
Our main result: If a prime regular ring R contains an
element a for which the number of solutions to (i), (ii), or
(iii) is finite and greater than one, then R is a matrix ring
over a finite field. Complete descriptions are given of those
regular rings for which the number of solutions to (i), (ii),
or (iii) is always one and those for which the number is
always finite.

1* Introduction* The theorem of Kaplansky mentioned above
asserts that in any ring with identity an element with a one-sided
inverse either is invertible or has infinitely many one-sided inverses.
Elegant, elementary proofs of this theorem have been given by
N. Jacobson [8] and by C. W. Bitzer [2]. This paper proceeds in
the spirit of Bitzer's method of proof, which is a counting argu-
ment: if a has a right inverse then ax = 1 has either exactly one
solution or infinitely many solutions. Analogously, we present con-
ditions which guarantee that, for a nonzero element a in a regular
ring, the number of solutions to (i) a — axa, (ii) a — axa, x = xax,
or (iii) a = axa with x invertible, is either exactly one or infinite.
For example, if the ring has no integral torsion or if the ring is
prime, regular, and infinite, then (i), (ii), or (iii) always has either
exactly one solution or infinitely many solutions. (For (iii), we
need to require that there is at least one solution.) Subsequently,
we characterize those regular rings for which the number of solu-
tions to (i), (ii), or (iii) is always finite. For example, if the number
of solutions to (iii) is finite and larger than one for each nonzero a
in R, then R is a division ring, a Boolean ring, a matrix ring over
a finite field, or a direct sum of two rings of the latter two types.

Portions of this paper appear in the author's doctoral disserta-
tion written at the Claremont Graduate School under the supervision
of Professor Melvin Henriksen. The author extends his warm
thanks to Professor Henriksen for his generous help and encourage-
ment throughout the preparation of this paper.

2* Preliminaries. We begin with some terminology relating
to regular rings. Throughout R denotes an associative ring. An
element a in R is (von Neumann) regular if a = axa has a solution
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in R and any such solution x is called a generalized inverse of α.
Following G. Ehrlich in [4], the element a in R is called unit regular
if R has an identity and a has an invertible generalized inverse.
A reflexive inverse of a is a ring element x such that a = αxα and
x — xax. Every regular element possesses a reflexive inverse, for
if α — axa then y — xax is a reflexive inverse of a. The ring R is
regular (resp. imi£ regular) if each of its elements is regular (resp.
unit regular). Finally, R is strongly regular (see Arens and
Kaplansky [1]) if for each a in R there is an x in R such that a =
a2x. Strong regularity always implies regularity and, in the pres-
ence of an identity element, strong regularity implies unit regularity
which implies regularity. See [13], [1], [11], [4], [7] for greater
detail.

3* Main results* The first results of this section characterize
those ring elements which possess a unique generalized inverse,
reflexive inverse, or invertible generalized inverse. Some of these
results are certainly known and are included here for easy reference.

LEMMA 3.1. For a nonzero regular element a of a ring R, the
following statements are equivalent:

( i ) a has a unique generalized inverse.
(ii) a is neither a right nor a left divisor of zero.
(iii) R has an identity and a is a unit.

Proof, (i) implies (ii). If x is the unique generalized inverse
of a and if az = 0 or za — 0, then a(x + z)a = a. By uniqueness,
x = x + zr whence z = 0.

(ii) implies (iii). Suppose a is neither a right nor a left divisor
of zero. Choose an x with a = axa. For any y in R we have
a(y — xay) = 0 = (y — yax)a and therefore, xay — y — yax. Thus
xa is a left identity and ax is a right identity for R. Hence, e =
ax = xa is the identity for R and a is clearly a unit.

(iii) implies (i). If R has the identity 1 and a is a unit, then
a — axa implies ax — 1 = xa, so x — α~Λ

PROPOSITION 3.2. [12, Exercise 26, p. 10] A nonzero ring R is
a division ring if and only if each nonzero element of R has a
unique generalized inverse.

Proof. This is evident from Lemma 3.1.

LEMMA 3.3. If a is a regular element of the ring R, then the
following statements are equivalent:
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( i ) a has a unique reflexive inverse.
(ii) There is an x in R such that a — axa and both ax and

xa are central idempotents.
(iii) If a — aya, then ay = ya.
(iv) If a — aya — aza, then ay — az — za = ya.

Proof, (i) implies (ii). Let x be the unique element of R for
which a — axa and x = xax. For any y in R the elements x + y —
xay and x + y — #α# are generalized inverses of a and hence,

x ~ (x + y — xay)a(x + y — xay) = x + yax — xayax

= (x + y — yax)a(x + y — yax) — x Λ- xay — xayax .

Therefore, yax = #αΐ/ for every # in it!. Letting y be α# and #α
successively, we obtain ax = #α2α? — ccα. So (ii) holds.

(ii) implies (iii). Choose an x with α = axa and both α# and
xa in the center. Then

ax = α(#α)# = (αcc)(ccα) = (#α)(α#) = #(α#)α = xa .

Hence, if α = aya, then

as/ = (ax)(ay) = (aya)x — ax = xa = x(aya) — (ya)(xa) = ya.

(iii) implies (iv). If α = α^α = α^α, then by (iii),

ay = ya = y(aza) = (ya)(za) = (ay){az) = (α?/α)2J = az = za.

(iv) implies (i). If 3/ and z are reflexive inverses of α,

then 7/ = 7/αi/ — ?/α̂  = zαz = «.

It is known that a ring iϋ is strongly regular if and only if R
is regular and every idempotent of R is central, see [1]. Therefore,
the next result is an immediate consequence of Lemma 3.3.

PROPOSITION 3.4. A ring R is strongly regular if and only
if each element of R has a unique reflexive inverse.

To obtain the corresponding results for unit regularity, we
employ the following characterization of unit regularity which is
due to Kaplansky and which appears in Henriksen [7, Prop. 8]: If
R is regular with identity and a is in R, then a is unit regular if
and only if whenever aR + bR = R there is a t in R such that a +
bt is a unit. By applying this result to the opposite ring of R, it
is clear that a being unit regular is equivalent to: Ra + Rb = R
implies there is an s such that a + sb is a unit.

LEMMA 3.5. Suppose R is a regular ring with identity and a
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is a unit regular element of R. If x is any reflexive inverse of a,
then there are invertible generalized inverses p and q of a such
that x = paq.

Proof. Suppose a = axa and x — xax. Then aR + (1 — ax)R =
R, so the result quoted above guarantees a t in R such that a +
(1 — ax)t — q~λ is a unit. Left multiplication by ax and right
multiplication by q in this equation yield aq = ax. A similar argu-
ment using Ra + R(l — xa) = R shows there is a unit p in R such
that pa = xa. Clearly, p and q are generalized inverses of a and
x = xax — xaq = paq.

LEMMA 3.6. Suppose R is a regular ring with identity and a
in R has a unique invertible generalized inverse u. Then a has a
unique reflexive inverse and 2au = 2. In particular, if 2~1ei2 then
a is a unit.

Proof. If u is the unique invertible generalized inverse of α,
then Lemma 3.5 implies that uau is the unique reflexive inverse of
a. By Lemma 3.3, we have au = ua is in the center of R. It
follows easily that 1 — au + uau and au — 1 + uau are units with
inverses 1 — au + a and au — 1 + a, respectively. Since each of
these units is a generalized inverse of α, we deduce that 1 — au +
uau — au — 1 + uau. Thus, 2au — 2, and the proof is complete.

The next result was obtained independently by R. Hartwig and
J. Luh in [6].

PROPOSITION 3.7. A ring R with identity is a division ring
or a Boolean ring if and only if each nonzero element of R has a
unique invertible generalized inverse.

Proof. In a division ring each nonzero element is invertible,
and in a Boolean ring the identity is the only invertible element;
hence, the necessity is clear. Conversely, suppose the condition
holds and R is not a division ring. By Lemmas 3.6 and 3.3, R has
a nontrivial central idempotent, so R = S φ T where S and T are
nonzero rings with identities e and /, respectively. If u is any unit
in ϊ7, then (e, u) is an invertible generalized inverse of (e, 0) in R.
Hence, T has a unique invertible element. Similarly, S has a unique
invertible element. Thus, 1 is the unique invertible element of R.
Since each element of R is unit regular, each element is consequently
idempotent. Therefore R is Boolean.

Recall that a ring R has no integral torsion if whenever a is
in R and n is an integer then na — 0 implies n — 0 or a = 0.
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PROPOSITION 3.8. Suppose R is a ring with no integral torsion
and a is a regular element of R. Then each of the following
statements holds:

( i ) R has an identity and a is a unit or a has infinitely
many generalized inverses.

(ii) a has a unique reflexive inverses or infinitely many
reflexive inverses.

(Hi) If, in addition, R is regular with identity and a is unit
regular, then a is a unit or a has infinitely many invertible gener-
alized inverses.

Proof. ( i ) Let M denote the set of generalized inverses of
a and suppose z is an element of R for which az — 0 or za — 0.
Let N = {x + z: x e M). Then M contains N and the map sending
x to x + z is a bijection of M onto N. Hence, if M is finite, then
M — N. If we write M— {xί9 •••, xm), then there is a permutation
π of the indices 1, , m such that x€ = xiπ + z for 1 <̂  i <̂  m. If
n is the length of the orbit of 1 under π, then it follows that xt =
xγ + nz. Since n ^ 1 and R has no integral torsion, we deduce z —
0. Thus, a is neither a right nor a left divisor of zero, so is a
unit by Lemma 3.1.

(ii) If a does not have a unique reflexive inverse, then, by
Lemma 3.3, there is an x in R such that a = axa and α# ̂  &α. By
passing to the element xax if necessary, we can assume x is a
reflexive inverse of a. Now at least one of the elements ax — xa2x
and xa — xa2x is not zero, for otherwise ax = xα. Say αcc — xα2x =£
0. It is now routine to check that {x + n(ax — xa2x): n = 1, 2, •}
is an infinite set of reflexive inverses of a.

(iii) First note that for a nonzero integer n,n — n-\ is not a
zero divisor in R, so is a unit by Lemma 3.1. Now let U denote
the set of invertible generalized inverses of a and assume U is
finite. By Lemma 3.5, a has only finitely many reflexive inverses
and hence, by (ii) above, a has a unique reflexive inverse x. If u
is in U, then uau is a reflexive inverse of a and so x~uau. From
this relation follows xu~x — ua — xa and, consequently u + x is a
unit with inverse %-1 — 2-1a. Thus, w + x is a unit for all u in C7.
It follows that the map sending u to 2r\u + x) is a one-one map
of £7 into itself. Since U is finite, the map is onto. If we write
U — {ulf , wm}, then there is a permutation π of the indices such
that Ui = 2~1(wί?r + cc) for 1 <Ξ ΐ <; m. If % is the length of the orbit
of 1 under π, then ut = 2~1(̂ 1̂  + a?) = = 2~*|>1 + (2w — l)x].
Hence, x — (2n — ϊ)(2n — l ) " 1 ^ is a unit of R. Since cc = xαx, it
follows that a is a unit of R as well. This completes the proof.

In the sequel we follow the usual conventions concerning the
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formal use of 1 in a ring R without identity. For example, aR(l —
b) denotes the set of all elements of the form ar — arb. Further,
if R lacks an identity, then the phrase "α is a nonunit of R" means
"α is any element of R."

The next two results are preparatory to the theorem on prime
regular rings, mentioned in the introduction.

LEMMA 3.9. Suppose R is a prime ring with elements a and
x such that a = axa. If there is a nonzero b in R such that
bR(l — ax) = (0), then R has an identity and a has a right inverse
in R.

Proof. With e — ax, the hypothesis implies bR(r — re) — (0) for
every r in R. Since R is prime and b Φ 0, it follows that e is a
right identity of R. But in a prime ring a right identity is also
a left identity, so e = ax is the identity of R, and the lemma is
proven.

LEMMA 3.10. Suppose R is a ring with identity and a, p, qeR
with p, q units in R. Then a and paq have the same number of
generalized inverses, of reflexive inverses, and of invertible gener-
alized inverses.

Proof. If X and Y denote the sets of inverses of one type for
a and paq, respectively, then the map sending x to q^xp'1 is a
Injection of X onto Y.

THEOREM 3.11. Suppose R is a prime regular ring which is
not a division ring. Then the following statements are equivalent:

( i ) R has infinitely many elements.
(ii) Every nonunit of R has infinitely many generalized in-

verses.
(iii) Every nonzero nonunit of R has infinitely many reflexive

inverses.
If, in addition, R has an identity, then each of these statements is
equivalent to

(iv) Every unit regular nonunit of R has infinitely many
invertible generalized inverses.

Proof. Since R is not a division ring, each of (ii) and (iv)
implies (i), and (iii) implies (ii). To see that (iii) implies (iv), note
that any nonzero, unit regular nonunit must have infinitely many
invertible generalized inverses by Lemma 3.5. Since R is not a
division ring, it follows that R has an infinite set of units, so (iv)
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holds for the zero element as well. To complete the proof of the
theorem, we need only show (i) implies (iii).

If (iii) does not hold, then R contains a nonzero nonunit a
which has only a finite number of reflexive inverses. Note that a
does not have a right inverse, for otherwise it would have infinitely
many right inverses by Kaplansky's theorem, and hence, infinitely
many reflexive inverses. Let x be any reflexive inverse of a.

Suppose {en} is an infinite sequence of orthogonal idempotents
in R, and assume enR Π xaR Φ (0) for infinitely many n. Since xa
is idempotent, this assumption means that there are yn in R such
that enyn — (xa)(enyn) Φ (0) for infinitely many n. By Lemma 3.9,
there are zn in R such that enynzn(l — ax) Φ 0 for infinitely many
n. Since the en'& are orthogonal, the set {enynzn(l — ax): n — 1,2, •••}
is infinite. Therefore, the set {x + enynzn(l — ax): n = 1, 2, •} is
infinite as well. But every element of the last set is easily seen
to be a reflexive inverse of a. This contradiction shows that
ejt Π xaR = (0) for all but finitely many n. Similarly, if enRf](l —
xa)R Φ (0) for infinitely many n, then there are wn in R such that
e%wnax Φ 0 and a(enwn) — 0 for infinitely many n. Hence, {x +
enwnax: n — 1, 2, •••} is an infinite set of reflexive inverses of α.
From this contradiction and the previous result obtained, we deduce

ejt = (enR Π xaR) © (enR Π (1 - xa)R) = (0)

for all but finitely many n. Thus, en — 0 for all but finitely many
n, and therefore R has no infinite sequence of nonzero orthogonal
idempotents. By Kaplansky's theorem [11, Theorem 2.1], it follows
that R is Artinian.

By the Wedderburn-Artin theorem, R is the mxm matrix ring
over some division ring D. If the matrix a has rank k, then the
fact that a is a nonzero nonunit guarantees that 1 :g k < m. There
are units p and q in R such that paq — diag(l, , 1, 0, , 0),
where 1 appears k times. By Lemma 3.10, a has the same number
of reflexive inverses as paq. But any mxm matrix of the form

IY γχ

where Ik is the k by k identity matrix, X is any k by (m — k)
matrix, and Y is any (m — k) by k matrix, is a reflexive inverse of
paq. Therefore D is finite and hence R is finite as well.

It is well-known that a finite regular ring is a direct sum of
finitely many full matrix rings over finite fields. This results
from the semisimplicity of a regular ring, the Wedderburn-Artin
theorem, and the Wedderburn theorem on finite division rings. (See
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J. Dyer-Bennet [3].) Thus, we can restate Theorem 3.11 in the
following form: If a prime regular ring contains an element for
which the number of generalized inverses (or reflexive inverses, or
invertible generalized inverses) is finite and greater than one, then
J? is a full matrix ring over a finite field.

Our next aim is to characterize those regular rings for which
each element possesses only finitely many generalized inverses of
each type. The proof to the first result in this direction is ele-
mentary.

THEOREM 3.13. A nonzero regular ring R is a division ring
or a finite ring if and only if each nonzero element of R has only
finitely many generalized inverses.

Proof. The necessity is clear. Conversely, suppose the condition
holds and R is not a division ring. Let e be a nontrivial idempotent
in R and express R in the Peirce decomposition

R = eRe © (1 - e)R(l - e) φ eR(l - e) © (1 - e)Re .

Now if a is any nonzero element of R and if a — axa, then the set
{x + z: za — 0 or az = 0} is contained in the set of generalized
inverses of a and is therefore finite. Consequently, each nonzero
element of R has only finitely many left or right annihilators. Since
each summand in the above Peirce decomposition left or right anni-
hilates each other summand, it follows that each summand, and
hence R, is finite.

We now consider the case in which each element of a regular
ring has only finitely many reflexive inverses. Such a ring need
not have bounded index of nilpotency. For example, let Fn denote
the n x n matrix ring over a finite field F and let P denote the
direct product of the family {Fn}. Let R consist of all / in P for
which there is a positive integer N and a c in F such that fn = c ln

for all n ^ N, where ln is the identity in Fn. Each element of R
has only finitely many reflexive inverses because each coordinate in
the initial finite segment has only finitely many and the tail segment
has a unique one. Our next theorem says that this example is
essentially typical. We first record a version of McCoy's lemma
L1O, p. 111].

LEMMA 3.13. Let ψ: R > S be an epimorphism of regular rings
and let a be an element of R. Let X be the set of reflexive inverses
of a in R and Y the set of those of aψ in S. Then Xψ = Y.

Proof. Suppose zψ e Y. Then a — aza is in the kernel of ψ
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(which is a regular ring), so there is a keR such that a = a(z +
k)aa and kψ = 0. Let x = (z + k)a(z + k). Then x is a reflexive
inverse of a and xψ = 2ψ\ Thus, 3Γ £ Xψ and, as the reverse
inclusion is clear, the lemma is proven.

THEOREM 3.14. For a regular ring R the following statements
are equivalent:

( i ) Each element of R has only finitely many refiexive inver-
ses.

(ii) Every prime factor ring of R is a division ring or a
finite ring, and for each a in R the set of prime ideals P for
which a + P is a nonzero nonunit of R/P is finite.

Proof. Suppose (ii) holds and aeR. If a + P is zero or a unit
in R/P for all primes P, then a has a unique reflexive inverse in
R, by Lemma 3.3 and the fact that R is semiprime. Otherwise,
let Plf , Pn(n ^ 1 ) be a list of all distinct prime ideals P for
which a + P is a nonzero nonunit of R/Pf and let / be the inter-
section of the P/s. By the Chinese remainder theorem [10, p. 109],
R/I is the direct sum of the rings R/P^. Since a + Pi has only
finitely many reflexive inverses in R/Pif the element a + I has only
finitely many reflexive inverses in R/I. By Lemma 3.13, there are
reflexive inverses xlf , xm of a in R such that x1 + I, , xm + /
is a complete list of reflexive inverses of a + / in R/I. Since the
image of a in each other prime factor ring has a unique reflexive
inverse and since R is semiprime, it is clear that xί9 -—,xm is a
complete list of reflexive inverses of a in R.

Conversely, suppose condition (i) holds. By Lemma 3.13 and
Theorem 3.11, every prime factor ring of R is a division ring or a
finite ring. To prove the second part of (ii), let a be in R and
suppose Pl9 , Pn are distinct primes in R for which a + Pi is a
nonzero nonunit of R/P^. Let mt denote the number of reflexive
inverses of a + Pi in R/P^. By Lemma 3.3 and the fact that a
prime ring has no nontrivial central idempotents, each m{> 1. The
number of reflexive inverses of the image of a in R/Px 0 @R/Pn

is mιτn2' - -mn. By the Chinese remainder theorem and Lemma 3.13,
a has at least m^z mn reflexive inverses in R. The second
assertion in (ii) is now clear.

COROLLARY 3.15. For a regular ring R the following state-
ments are equivalent:

( i ) There is a positive integer N such that every element of
R has at most N reflexive inverses.

(ii) R is the direct sum of a strongly regular ring and a
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finite ring.

Proof. By Proposition 3.4, statement (ii) clearly implies state-
ment (i). Conversely, if (i) holds then every prime factor ring of
R is a division ring or a finite ring by Theorem 3.14. Arguing as
in the proof to the sufficiency of Theorem 3.14, it follows that
R/P is a division ring for all but finitely many primes P. Let /
be the intersection of those P for which R/P is a division ring and
J the intersection of the finitely many remaining P. Then R/I is
strongly regular, R/J is finite, and R = R/Iζ&R/J by another appli-
cation of the Chinese remainder theorem.

Next we characterize those unit regular rings for which each
nonzero element has only finitely many invertible generalized in-
verses. For this purpose we note

LEMMA 3.16. // ψ: i? —> S is an epimorphism of unit regular
rings, then ψ takes the group of units of R onto the group of units
of S.

Proof. If aψ is a unit of S and a = aua where u is a unit of
R, then aψ = vrιψ.

THEOREM 3.17. For a regular ring R with identity, the follow-
ing statements are equivalent:

( i ) Each nonzero element of R has at least one and at most
finitely many invertible generalized inverse (s).

(ii) R is a division ring or the group of units of R is finite.
(iii) R is a division ring, a Boolean ring, a finite ring, or

the direct sum of a Boolean ring and a finite ring.

Proof. That (iii) implies (ii) is clear.
(ii) implies (i). Assume (ii) is true. Then every unit regular

element of R has only finitely many invertible generalized inverses.
So, to establish (i), we need only show that R is unit regular.
Suppose P is a prime ideal of R and R/P is not a division ring.
Then there is an idempotent e in R such that e + P is a nonzero
nonunit of R/P and, hence, the number of reflexive inverses of
e + P in R/P is larger than one. Since e + P is unit regular in
R/P, the number of reflexive inverses of e + P in R/P is finite, by
Lemmas 3.16 and 3.5. By Theorem 3.11, the prime ring R/P is
finite. Thus, every prime factor ring of R is Artinian, so R is
unit regular by Fisher-Snyder [5, Theorem 1.1].

(i) implies (iii). Suppose (i) is true. By Lemma 3.5, each ele-
ment of R has only finitely many reflexive inverses. By Theorem



GENERALIZED INVERSES IN REGULAR RINGS 465

3.14, every prime factor ring of R is a division ring or a finite
ring. If the center of R is a field, then R is simple by [9, Theorem
3, p. 239], in which case R is a division ring or a finite ring, and
so (iii) holds. If the center of R is not a field, then R has a non-
trivial central idempotent by Lemma 3.3. Hence, we can write
R = £ 0 T, where S and T are nonzero rings with identities. If e
is the identity for S and u is any unit of T, then (e, 0) = (e, 0)(e,
u)(e, 0) and (e, w) is a unit of R. Since (β, 0) has only finitely many
invertible generalized inverses in R, it follows that T has only
finitely many units. By the same token, S has only finitely many
units. Hence, the group of units of R is finite. By Lemma 3.16,
the group of units in each prime factor ring of R is -finite. Since
each prime factor ring of R is a division ring or a finite ring, it
follows that each prime factor ring of R is finite. If {PJ is an
infinite sequence of prime ideals of R for which R/P€ is not the
two-element field, then the number of units in R/P1 0 0 B/P*
increases as n increases, since each E/Pt is a full matrix ring over
a field. By the Chinese remainder theorem and Lemma 3.16, this
implies R has an infinite set of units. This contradiction shows
that RjP is the two-element field for all but finitely many primes P.

There are now three cases to consider. If every prime factor
ring of R is the two-element field, then R is Boolean. If no prime
factor ring of R is the two-element field, then R is a finite ring.
In the final case, R is the direct sum of a Boolean ring and a finite
ring by another application of the Chinese remainder theorem.
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