ON THE STABLE SPLITTING OF $b o \wedge b o$ AND TORSION OPERATIONS IN CONNECTIVE K-THEORY

Gunnar Carlsson

The real connective K-theory spectrum, bo, has been shown to be a useful spectrum in homotopy theory. In particular, the bo-homology Adams Spectral Sequence, based on the cofiber sequence
(A)

has been used extensively by Mahowald in his work on the image of the J-homomorphism. One of the problems encountered with the $b o$-spectrum is that, unlike the mod 2 Eilenberg-Maclane spectrum, $b o \wedge b o$ does not split as a wedge of suspensions of bo itself. However, Mahowald and Milgram have obtained a splitting

$$
\begin{equation*}
b o \wedge b o \simeq X \vee G \tag{B}
\end{equation*}
$$

where X is a wedge of spaces intimately related with bo itself, and G is a wedge of mod 2 Eilenberg-MacLane spectra. In this paper, we determine the structure of G, i.e., we calculate the number of Eilenberg-Maclane summands occuring in each dimension.

This should moreover permit the complete analysis of the iterated smash products bo $\wedge \bar{b} o \wedge \cdots \wedge \bar{b} o$, which occur in (A).

A second consequence is obtained using the results of [3], namely that the mod 2 cohomology Adams Spectral Sequence converging to $[b o, b o]_{*}$ collapses. This means, in view of the change of rings arguments in [3] and [4], that we have in fact obtained a basis for the vector space $[b o, b o]_{*} / I$, where I denotes the ideal of self-maps of bo which lie in Adams filtration higher than 0 . Since I is well understood, this is a significant improvement in the understanding of the ring of operations in bo-theory. It should be pointed out, though, that we only give a basis, without discussion of the multiplicative structure, which seems more difficult.

The method of calculation can be summarized as follows: Mahowald has obtained a splitting of $H^{*}(b o, Z / 2)$ as an \mathscr{A}_{1}-module (. $\left.\mathscr{A}_{1}=Z / 2\left(S q^{1}, S q^{2}\right)\right)$

$$
H^{*}(b o, Z / 2) \cong \bigoplus_{i} M_{i} \oplus F
$$

where M is a direct sum of indecomposable \mathscr{A}_{1}-modules, and F is a
free \mathscr{A}_{1}-module. Since $H^{*}(b o, Z / 2) \cong \mathscr{A}(2) / \mathscr{A}(2)\left\{S q^{1}, S q^{2}\right\}$, this gives a splitting

$$
\begin{aligned}
H^{*}(b o \wedge b o, Z / 2) & \cong H^{*}(b o, Z / 2) \otimes H^{*}(b o ; Z / 2) \\
& \cong \mathscr{A}(2) \bigotimes_{w_{1}} H^{*}(b o, Z / 2) \\
& \cong \mathscr{A}(2) \bigotimes_{\mathscr{N}_{1}}\left(\bigoplus_{i} M_{i}\right) \oplus \mathscr{A}(2) \bigotimes_{\otimes_{1}} F
\end{aligned}
$$

of $\mathscr{A}(2)$-modules, which Mahowald and Milgram showed, using Adams operations in bo-theory, corresponds to the splitting of spectra bo $\wedge b o \simeq X \vee G$. The first step in our calculation of the structure of G is the calculation of

$$
Z / 2 \bigotimes_{\otimes(2)} H^{*}(b o \wedge b o, Z / 2)=Z / 2{\underset{刃 N}{\aleph_{1}}} H^{*}(b o, Z / 2)
$$

It turns out that it is more convenient to study the dual situation, and the main steps (Theorems III. 8 and III. 10) describe

$$
\begin{aligned}
Y & =\left\{x \in H_{*}(b o, Z / 2) \mid S q^{1} x=S q^{2} x=0\right\} \\
& =\left(Z / 2 \bigotimes_{\varkappa_{1}} H^{*}(b o, Z / 2)\right)^{*}
\end{aligned}
$$

as a graded $Z / 2$-vector space, where $S q^{1}$ and $S q^{2}$ are dual Steenrod operations. To solve for $Z / 2 \boldsymbol{\otimes}_{\Omega_{1}} F$, it will be sufficient to identify the image of $\oplus_{i} M_{i}$ in $Z / 2 \boldsymbol{\otimes}_{\varkappa_{1}} H^{*}(b o, Z / 2)$, since $Z / 2 \boldsymbol{\otimes}_{\varkappa_{1}} F$ can then be identified with the quotient of $Z / 2 \boldsymbol{\otimes}_{\Omega_{1}} H^{*}(b o, Z / 2)$ by that image. Finally $Z / 2 \boldsymbol{\otimes}_{\varkappa_{1}} F$ determines F, since F is free.

The paper is organized as follows: § I consists of preliminary material on the Steenrod algebra. $\mathscr{A}(2)$ and its dual. § II contains a description of $\mathscr{A}(2) / \mathscr{A}(2) S q^{1}=H^{*}\left(K\left(Z_{(2)}, 0\right), Z / 2\right)$ as a $S q^{1}$-module, which will be needed in §III. $\left(K\left(\boldsymbol{Z}_{(2)}, 0\right)\right)$ denotes the EilenbergMaclane spectrum for $Z_{(2)}$, the integers localized at 2). § III calculates the graded $Z / 2$-vector space Y described above. The main theorems are III. 8 and III. 10. §IV is a brief section which states the result describing the image of $\oplus_{i} M_{i}$ in $Z / 2 \boldsymbol{\otimes}_{\aleph_{1}} H^{*}(b o, Z / 2)$, which by the above discussion gives F. IV. 2 states the algebraic result, and IV. 3 and IV. 4 are the obvious interpretations in terms of the geometric splitting of bo $\wedge b o$ and cohomology operations in bo-theory.
I. Preliminaries. Let $\mathscr{A}(2)$ denote the mod 2 Steenrod algebra. It is a Hopf algebra with comultiplication given by the Cartan formula

$$
\Delta\left(S q^{i}\right)=\sum_{k=0}^{i} S q^{i-k} \otimes S q^{k}
$$

Milnor [5] proves that as an algebra, the dual Hopf algebra to $\mathscr{A}(2), \mathscr{A}(2)^{*}$, is given by

$$
\mathscr{A}(2)^{*} \cong P\left(\xi_{1}, \xi_{2}, \cdots\right)
$$

the $Z / 2$-polynomial algebra on $2^{i}-1$ dimensional generators ξ_{i}. (Henceforth, the symbol P will denote the $Z / 2$-polynomial algebra on stated generators.) The Steenrod algebra admits a canonical anti-automorphism χ, which identifies it with its opposite algebra. According to Milnor, the comultiplication in $\mathscr{A}(2)^{*}$ is given by

$$
\Delta\left(\xi_{i}\right)=\sum_{j=0}^{i} \xi_{j}^{2^{i-j}} \otimes \xi_{i-j}
$$

Since $\mathscr{A}(2)$ is isomorphic to its opposite algebra, we may instead use the "reversed" diagonal

$$
\Delta\left(\xi_{i}\right)=\sum_{j=0}^{i} \xi_{i-j} \otimes \xi_{j}^{2 i-j}
$$

Since $\mathscr{A}(2)$ is acted on both on the right and on the left by the operations $S q^{1}$ and $S q^{2}$, increasing degree, $\mathscr{A}(2)^{*}$ is also acted on by $S q^{1}$ and $S q^{2}$, lowering degree. The action is determined by
(i) $S q^{1}\left(\xi_{i}\right)=\xi_{i-1}^{2} \forall i$

$$
\left(\xi_{i}\right) S q^{1}=0 \text { unless } i=1, \xi_{1} S q^{1}=1
$$

(ii) $\quad S q^{1}(x y)=\left(S q^{1} x\right) y+x S q^{1} y$

$$
(x y) S q^{1}=\left(x S q^{1}\right) y+x\left(y S q^{1}\right)
$$

(iii) $S q^{2}\left(\xi_{k}\right)=0 \forall i, S q^{2}\left(\xi_{i}^{2}\right)=\xi_{i-1}^{4} \forall i$.

$$
\begin{aligned}
& \left(\xi_{2}\right) S q^{2}=\xi_{1}, \xi_{1}^{2} S q^{2}=1, \xi_{i} S q^{2}=0 \forall i \neq 2, \\
& \left(\xi_{i}^{2}\right) S q^{2}=0 \forall i \neq 1
\end{aligned}
$$

(iv) $\quad S q^{2}(x y)=\left(S q^{2} x\right) y+\left(S q^{1} x\right)\left(S q^{1} y\right)+x\left(S q^{2} y\right)$

$$
(x y) S q^{2}=\left(x S q^{2}\right) y+\left(x S q^{1}\right)\left(y S q^{1}\right)+x\left(y S q^{2}\right)
$$

Define a $\operatorname{map} \sigma ; P\left(\xi_{1}, \xi_{2}, \cdots\right) \rightarrow P\left(\xi_{1}, \xi_{2}, \cdots\right)$ by

$$
\begin{aligned}
& \sigma\left(\xi_{1}^{\alpha_{1}} \cdots \xi_{n}^{\alpha_{n}}\right)=\xi_{2}^{\alpha_{1}} \cdots \xi_{n+1}^{\alpha_{n}} \\
& \sigma(1)=1 .
\end{aligned}
$$

This is a nongraded vector space endomorphism. Let $A=$ $\mathscr{A}(2) / \mathscr{A}(2) S q^{1}, B=\mathscr{A}(2) / \mathscr{A}(2)\left\{S q^{1}, S q^{2}\right\} . \quad A$ and B are left $\mathscr{A}(2)-$ modules, hence their duals are left sub-comodules of $P\left(\xi_{1}, \xi_{2}, \cdots\right)$. Let $A^{*}=V, B^{*}=W$, and $. \mathscr{A}(2)^{*}=U$. We quote from [2].

Proposition 1.
(a) $\quad V=P\left(\xi_{1}^{2}, \xi_{2}, \cdots\right)$.
(b) $W=P\left(\xi_{1}^{4}, \xi_{2}^{2}, \xi_{3}, \cdots\right)$.

Note that V and W are closed under the action of $S q^{1}$ and $S q^{2}$, and are therefore left \mathscr{A}_{1}-modules, where \mathscr{A}_{1} is the subalgebra of . $\mathscr{O}(2)$ generated by $S q^{1}$ and $S q^{2}$. The following lemma is immediate.

Lemma 2.
(a) $\sigma^{j} V$ is closed under the action of $S q^{1}$.
(b) $\sigma^{j} W$ is closed under $S q^{1}$ and $S q^{2}$.
(c) $\quad S q^{1} \sigma^{j} U \cong \sigma^{j-1} U$
$S q^{2} \sigma^{j} U \subseteq \sigma^{j-1} U$.
Throughout this paper, we will be discussing graded vector spaces. All bases will be required to be graded, i.e., they should respect the grading. Consequently, the bases will be "graded sets", i.e., sets X together with a function d from X to the nonnegative integers. Of course, the isomorphism type of a basis as a graded set determines the isomorphism type of the graded vector space. Also, define the suspension of a graded vector space $V, \Sigma V$, to be V as a vector space, with the grading of all elements increased by one.

We recall from [6] that $H^{*}(b o, Z / 2) \cong . \mathscr{A}(2) / . \Omega(2) . \mathscr{R}_{1}$ and

$$
H^{*}(K(Z(2), 0), Z / 2) \cong \mathscr{A}(2) / \mathscr{Q}(2) S q^{1}
$$

so

$$
H_{*}(b 0, Z / 2)=W, H_{*}\left(K\left(Z_{(2)}, 0\right), Z / 2\right)=V
$$

II. $S q^{1}$-calculations. By the results of $\S \mathrm{I}, V$ is isomorphic as a left \mathscr{A}_{1}-module to $P\left(\xi_{1}^{2}, \xi_{2}, \cdots\right)$.

Proposition 1. Let $X=\left\{x \in V \mid S q^{1} x=0\right\}$. Then a basis for X is given by the elements of the form

$$
\sigma_{j, k}(P)=\xi_{j}^{2 k} P+\xi_{j}^{2 k-2} \xi_{j+1} S q^{1} P
$$

where P is a monomial in $\sigma^{j} V=P\left(\xi_{j+1}^{2}, \xi_{j+2}, \xi_{j+3}, \cdots\right)$.
Proof. It is clear that $\sigma_{j, k}(P) \in X$, since $S q^{1}\left(\sigma_{j, k}(P)\right)=S q^{1}\left(\xi_{j}^{2 k} P+\right.$ $\left.\xi_{j}^{2 k-2} \xi_{j+1} S q^{1} P\right)=\xi_{j}^{2 k} S q^{1} P=0$. Also, the $\sigma_{j, k}$'s form an independent set, since each involves only one monomial in $\sigma^{j} V$, and all these monomials are distinct. It remains to show that every element of X may be written as a linear combination of the $\sigma_{j, k}$'s.

Claim. If $\varphi \in \sigma^{j-1} U=P\left(\xi_{j}, \xi_{j+1}, \cdots\right)$, and $S q^{1} \varphi=0$, then $\varphi \in$
$\sigma^{j-1} V \leqq \sigma^{j-1} U$. For, $\varphi=\sum_{s} \xi_{j}^{s} \varphi_{s}, \varphi_{s} \in \sigma^{j} U$, and $S q^{1} \varphi=\sum_{s} s \xi_{j-1}^{g} \xi_{j}^{s-1} \varphi_{s}+$ $\xi_{j}^{s} S q^{1} \varphi_{s}=\xi_{j-1}^{2}\left(\sum_{s} s \xi_{j}^{s_{j}^{-1}} \varphi_{s}\right)+\sum_{s} \xi_{j}^{s} S q^{1} \varphi_{s}$, and $S q^{1} \varphi_{s} \in \sigma^{j-1} U$, hence $\varphi_{s}=0$ for s odd.

The proof of the proposition will now be by induction. We will show that for $\varphi \in \sigma^{j-1} V$, with $S q^{1} \varphi=0$, there are polynomials $P_{k} \in \sigma^{j} U$ for which $\varphi+\sum_{k} \sigma_{j, k}\left(P_{k}\right) \in \sigma^{j} U$. By the claim, $\varphi+\sum_{k} \sigma_{j, k}\left(P_{k}\right) \in$ $\sigma^{j} V$, so we may iterate the procedure, eventually obtaining an expression for φ in terms of elements $\sigma_{j, k}\left(P_{k}\right)$. We now prove the inductive step. φ may be written uniquely as

$$
\varphi=\sum_{k=0}^{N} \xi_{j}^{2 k} \varphi_{k}, \varphi_{k} \in \sigma^{j} U,
$$

so

$$
S q^{1} \varphi=\sum_{k=0}^{N} \xi_{j}^{2 k} S q^{1} \varphi_{k} .
$$

We claim $\varphi_{N} \in \boldsymbol{\sigma}^{j} V$. For note that the power of ξ_{j} occurring in all the terms $\xi_{j}^{2 k} S q^{1} \varphi_{k}, k<N$, is less than or equal to $2 N$. Let

$$
\varphi_{N}=\sum_{s} \xi_{j+1}^{s} \psi_{s}, \psi_{s} \in \sigma^{j+1} U,
$$

so

$$
S q^{1} \varphi_{N}=\xi_{j}^{2}\left(\sum_{s} s \xi_{j+1}^{s-1} \psi_{s}\right)+\sum_{s} \xi_{j+1}^{s} S q^{1} \psi_{s} .
$$

$S q^{1} \psi_{s} \in \sigma^{j} U$, so the term in $S q^{1} \varphi$ involving monomials in which the power of ξ_{j} occurring is $2 N+2$ is precisely $\xi_{j}^{2 N+2}\left(\sum_{s} s \xi_{j+1}^{g_{j} \psi_{s}}\right)$.

Since we assume $S q^{1} \varphi=0$, this term must be zero, so $\psi_{s}=0$ for s odd, showing that $\varphi_{N} \in \sigma^{j} U$. Now consider $\widetilde{\mathscr{P}}=\varphi+\sigma_{j, N}\left(\varphi_{N}\right)=$ $\varphi+\xi_{j}^{2 N} \varphi_{N}+\xi_{j}^{2 N-2} \xi_{j+1} S q^{1} \varphi_{N} . \quad S q^{1} \widetilde{\varphi}=0$, and $\widetilde{\mathscr{\varphi}}$ may be expressed as $\varphi=\sum_{k=0}^{N=1} \xi_{j}^{2 k} \widetilde{\mathscr{P}}_{k}$. After iterating this step $N-1$ times, we may write φ as $\alpha+\beta$, where $\alpha \in \sigma^{j} U$ and $\beta=\sum_{s} \sigma_{j, s}\left(P_{s}\right)$.

We finally observe that if φ involved only $\left\{\xi_{j} \mid j \leqq l\right\}$, then α and β could be chosen so that they also only involve only $\left\{\xi_{j} \mid j \leqq l\right\}$. Therefore, this procedure terminates, and we have proven the result (*).

We interpret this proposition as a description of the structure of X as a graded $Z / 2$-vector space. Note that $\left\{\sigma^{j} X\right\}_{j=1}^{\infty}$ provides a filtration of X, and that each $\sigma^{j} X$ is graded compatibly with the grading of X. The inductive step in the proof of 1 showed that

$$
i m(X \longrightarrow X / \sigma X)
$$

is isomorphic to $\oplus_{j=1}^{\infty} \xi_{1}^{23} \sigma V$. Since it is clear that the associated graded version of X is isomorphic to X as a graded $Z / 2$-vector space, we obtain

$$
X \cong \sigma X \oplus \bigoplus_{j=1}^{\infty} \xi_{1}^{2 j} \sigma V
$$

Since

$$
\begin{gathered}
\bigcap_{i=0}^{\infty} \sigma^{i} X=Z / 2(1), \\
X \cong \bigoplus_{k=1}^{\infty} \bigoplus_{j=1}^{\infty} \xi_{k_{k}^{2 j}} \sigma^{k} V \oplus Z / 2(1), \quad \text { or }
\end{gathered}
$$

Corollary 2. As a graded $Z / 2$-vector space, X is isomorphic to the subalgebra of V consisting of all monomials $\prod_{i=0}^{t} \xi_{s+i}^{\alpha_{i}}$, such that α_{0} and α_{1} are multiples of 2 , where α_{0} is the first nonzero exponent, and 1.
III. $\mathscr{A}(2) / \mathscr{A}(2) \underset{\mathscr{X _ { 1 }}}{\text {. }}$. In this section we will extend the techniques of \S II to obtain the structure of

$$
Y=\left\{x \in W \mid S q^{1} x=S q^{2} x=0\right\}
$$

as a graded $Z / 2$-vector space.
We first note that there is a splitting of $Z / 2$-vector spaces $W=$ $\oplus_{i} W_{i}$, where

$$
W_{i}=\xi_{1}^{4} \cdot \sigma V .
$$

Let $\Gamma_{j}=\oplus_{i=0}^{j} W_{i}$, so $\left\{\Gamma_{j}\right\}$ provides a filtration of W, with

$$
\Gamma_{j} / \Gamma_{j-1} \cong \xi_{1}^{4 j} \cdot \sigma V .
$$

Define an operator

$$
\phi: \sigma V \longrightarrow \sigma V
$$

on monomials by $\phi\left(\xi_{2}^{2 k} Q\right)=k \cdot \xi_{2}^{2 k-2} Q, Q \in \sigma^{2} U$, and extend by linearity.
Lemma 1.
(a) $S q^{1} W_{i} \cong W_{i}$.
(b) $S q^{2} \Gamma_{j} \subseteq \Gamma_{j+1}$, and if $x \in \Gamma_{j}$, say $x=\sum_{i=0}^{j} \xi_{1}^{4 i} P_{i}, P_{i} \in \sigma V$, then the projection of $S q^{2} x$ in $\Gamma_{j+1} / \Gamma_{j}$ is $\xi_{1}^{4+t^{4}} \phi\left(P_{j}\right)$.

Proof.
(a) is clear since V is closed under the action of $S q^{1}$ by Lemma I.2.a, and $S q^{1} \xi_{1}^{4 j}=0$.
(b) We first calculate the action of $S q^{2}$ on σV. Let $y \in \sigma V$,

$$
\begin{gathered}
y=\sum_{s} \xi_{2}^{\xi_{2}^{s} \psi_{s}, \psi_{s} \in \sigma^{2} U .} \\
S q^{2} y=\sum_{s} s \xi_{1}^{4} \xi^{2 s-2} \psi_{s}+\sum_{s} \xi_{2}^{2 s} S q^{2} \psi_{s} .
\end{gathered}
$$

By Lemma I.2.c, $S q^{2} \psi_{s} \in \sigma V$, so we find that $S q^{2} y=\xi_{1}^{4} \phi(y)+\alpha$, where $\alpha \in \sigma V$. Now, if $x=\sum_{i=0}^{j} \xi_{1}^{4 i} P_{i}, P_{i} \in \sigma V, S q^{2} x=\xi_{1}^{4 j+4} \phi\left(P_{j}\right)+\beta$, where $\beta \in \Gamma_{j}$, and $\xi_{2}^{4 j+4} \phi\left(P_{j}\right) \in \Gamma_{j+1}$, which proves the result, (*).

Corollary 2. Let $x \in W$ be written uniquely as $x=\sum_{i=0}^{j} \xi_{1}^{\xi i} P_{i}$, $P_{i} \in \sigma V$, and suppose $S q^{1} x=S q^{2} x=0$. Then
(a) $S q^{1} P_{i}=0$.
(b) $P_{j} \in \sigma W$.

Proof.
(a) is again clear since the splitting $W=\bigoplus_{i} W_{i}$ is preserved under $S q^{1}$.
(b) x has been assumed to lie in Γ_{j}. Since $S q^{2} x=0$, we must in particular have that the projection of $S q^{2} x$ in $\Gamma_{j+1} / \Gamma_{j}$ is zero, so $\phi\left(P_{j}\right)=0$. But $\phi\left(P_{j}\right)=0 \Leftrightarrow P_{j} \in P\left(\xi_{2}^{4}, \xi_{3}, \xi_{4}, \cdots\right)$. We must show that $P_{j} \in \sigma W=P\left(\xi_{2}^{4}, \xi_{3}^{2}, \xi_{4}, \cdots\right)$. So, expand P_{j} as

$$
P_{j}=\sum_{k} \xi_{2}^{\xi k} Q_{k}, Q_{k} \in \sigma^{2} U
$$

Part (a) gives that $S q^{1} P_{j}=0$, which implies $S q^{1} Q_{k}=0 \forall k$. By the claim in the proof of Proposition II. 1, $Q_{k} \in \sigma^{2} V=P\left(\xi_{3}^{2}, \xi_{4}, \cdots\right)$, proving (b) $\cdot\left({ }^{*}\right)$.

Proposition 3. For any $x \in \sigma W$, with $S q^{1} x=0$, and any $j \geqq 2$, there is an element $\tilde{x} \in \Gamma_{j}$ with $S q^{1} \tilde{x}=S q^{2} \widetilde{x}=0$, and the projection of \tilde{x} in $\Gamma_{j} / \Gamma_{j-1}$ equal to $\xi_{1}^{4 j} x$.

Proof. Since $S q^{1} S q^{1}=0$, we may compute the homology of W under this differential. In [2], it is shown that

$$
H_{*}\left(W ; S q^{1}\right) \cong P\left(\xi_{1}^{4}\right)
$$

By Lemma I.2.b, σW and W are isomorphic as \mathscr{A}_{1}-modules (although the isomorphism does not preserve grading). Thus

$$
H_{*}\left(\sigma W ; S q^{1}\right) \cong P\left(\xi_{2}^{4}\right)
$$

For any $S q^{1}$-homology generator, say $x=\xi_{2}^{4 s}, \widetilde{x}=\xi_{1}^{4 j} \xi_{2}^{4 s}$ satisfies $S q^{1} \tilde{x}=S q^{2} \tilde{x}=0$, so we may suppose that x is a $S q^{1}$-boundary, $x=$ $S q^{1} y$. Now let

$$
\begin{aligned}
x=\xi_{1}^{4 j} S q^{1} y & +\xi_{1}^{4 j-4} \xi_{2}^{2} S q^{2} S q^{1} y+\xi_{1}^{4 j-4} \xi_{3} S q^{1} S q^{2} S q^{1} y \\
& +\xi_{1}^{4 j-8} \xi_{2}^{2} \xi_{3} S q^{1} S q^{2} S q^{1} S q^{2} y+\xi_{1}^{4 j-8} \xi_{2}^{4} S q^{2} S q^{1} S q^{2} y
\end{aligned}
$$

It is easy to check that $S q^{1} \widetilde{x}=S q^{2} \widetilde{x}=0$, and the projection of \widetilde{x} in $\Gamma_{j} / \Gamma_{j-1}$ is $\xi_{1}^{4 j} S q^{1} y=\xi_{1}^{4 j} x .\left({ }^{*}\right)$.

We must now examine the case $j=1$.

Proposition 4. Let $x \in \sigma W$, with $S q^{1} x=0$. Then there is $\widetilde{x} \in \Gamma_{1}$ with $S q^{1} \widetilde{x}=S q^{2} \widetilde{x}=0$, and the projection of \widetilde{x} in Γ_{1} / Γ_{0} equal to $\xi_{1}^{4} x$ if and only if $S q^{2} S q^{1} S q^{2} x=0$.

Proof. Notice that if $S q^{2} S q^{1} S q^{2} x=0$, then the expression

$$
\widetilde{x}=\xi_{1}^{4} x+\xi_{2}^{2} S q^{2} x+\xi_{3} S q^{1} S q^{2} x
$$

satisfies the conditions on \widetilde{x}.
Conversely, suppose \tilde{x} exists. Thus $x=\xi_{1}^{4} x+\omega_{0}, \omega_{0} \in \Gamma_{0}$, with $\omega_{0}=\nu_{0}+\xi_{2}^{2} \nu_{1}+\xi_{3} \nu_{2}+\xi_{2}^{2} \xi_{3} \nu_{3}$, where $\nu_{j} \in \sigma W$, and $S q^{1} \omega_{0}=0, S q^{2} \omega_{0}=$ $\xi_{1}^{4} S q^{2} x$. But,

$$
\begin{aligned}
S q^{2} \omega_{0} & =S q^{2} \nu_{0}+\xi_{1}^{4} \nu_{1}+\xi_{2}^{2} S q^{2} \nu_{1}+\xi_{2}^{2} S q^{1} \nu_{2} \\
& +\xi_{3} S q^{2} \nu_{2}+\xi_{1}^{4} \xi_{3} \nu_{3}+\xi_{2}^{4} S q^{1} \nu_{3}+\xi_{2}^{2} \xi_{3} S q^{2} \nu_{3}
\end{aligned}
$$

so $\nu_{1}=S q^{2} x$. Secondly,

$$
\begin{aligned}
0= & S q^{1} \omega_{0}=S q^{1} \nu_{0}+\xi_{2}^{2} S q^{1} \nu_{1}+\xi_{2}^{2} \nu_{2} \\
& +\xi_{3} S q^{1} \nu_{2}+\xi_{2}^{4} \nu_{3}+\xi_{2}^{2} \xi_{3} S q^{1} \nu_{3}, \text { so } \nu_{2}=S q^{1} \nu_{1}
\end{aligned}
$$

and we have

$$
\omega_{0}=\nu_{0}+\xi_{2}^{2} S q^{2} x+\xi_{3} S q^{1} S q^{2} x+\xi_{2}^{2} \xi_{3} \nu_{3} .
$$

Using this reduction, we again calculate

$$
\begin{gathered}
S q^{2} \omega_{0}=S q^{2} \nu_{0}+\xi_{2}^{4} S q^{2} x+\xi_{3} S q^{2} S q^{1} S q^{2} x+\xi_{1}^{4} \xi_{3} \nu_{3}+\xi_{2}^{4} S q^{1} \nu_{3}+\xi_{2}^{2} \xi_{3} S q^{2} \nu_{3} \\
\left(S q^{1} x=0, \text { so } S q^{2} S q^{2} x=S q^{1} S q^{2} S q^{1} x=0 .\right)
\end{gathered}
$$

Thus, $\nu_{3}=0, S q^{1} \nu_{0}=S q^{2} \nu_{0}=0$, and we must have

$$
\hat{\xi}_{3} S q^{2} S q^{1} S q^{2} x=0 \Longrightarrow S q^{2} S q^{1} S q^{2} x=0
$$

We will now construct various subspaces of W. Let

$$
\begin{aligned}
& W_{1}=\left\{w \in W \mid S q^{1} w=S q^{2} S q^{1} S q^{2} w=0\right\} \\
& W_{2}=\left\{w \in W \mid S q^{1} S q^{2} w=0\right\} \\
& W_{3}=\left\{w \in W \mid S q^{2} w=0\right\}
\end{aligned}
$$

Let $\pi_{j}: \Gamma_{j} \rightarrow \Gamma_{j} / \Gamma_{j-1}$ denote the projection.
Proposition 5. Let $j \geqq 1$, and let $x \in \sigma V$, so x has a unique expression as

$$
x=\nu_{0}+\xi_{2}^{2} \nu_{1}+\xi_{3} \nu_{2}+\xi_{2}^{2} \xi_{3} \nu_{3}
$$

with $\nu_{i} \in \sigma W$. Then
(a) $\exists \tilde{x} \in W_{1} \cap \Gamma_{j}$ with $\pi_{j}(\tilde{x})=\xi_{1}^{4 j} x \Leftrightarrow \nu_{3}=0$ and $S q^{1} x=0$.
(b) $\exists \tilde{x} \in W_{2} \cap \Gamma_{j}$ with $\pi_{j}(\widetilde{x})=\xi_{1}^{4 j} x \Leftrightarrow \nu_{3}=0$ and $S q^{1} \nu_{1}=0$.
(c) $\exists \tilde{x} \in W_{3} \cap \Gamma_{j}$ with $\pi_{j}(\widetilde{x})=\xi_{1}^{4 j} x \Leftrightarrow \nu_{1}, \nu_{3}=0$ and $S q^{1} \nu_{2}=0$.

Proof.
(a) First, observe that $S q^{2} S q^{1} S q^{2} \Gamma_{j} \subseteq \Gamma_{j+2}$, since $S q^{1} \Gamma_{j} \subseteq \Gamma_{j}$, $S q^{2} \Gamma_{j} \subseteq \Gamma_{j+1}$. Secondly, expanding $S q^{2} S q^{1} S q^{2}\left(\xi_{1}^{4 j} x\right)$ gives $S q^{2} S q^{1} S q^{2}\left(\xi_{1}^{4 j} x\right)=$ $\xi_{1}^{4 j+8} \nu_{3}+\omega, \omega \in \Gamma_{j+1}$, implying that $\nu_{3}=0$. For the converse, suppose that $x=\nu_{0}+\xi_{2}^{2} \nu_{1}+\xi_{3} \nu_{2}, S q^{1} x=0$. Since $S q^{1} x=0$, we obtain $S q^{1} \nu_{0}=$ $0, \nu_{2}=S q^{1} \nu_{1}$. If ν_{0} is a $S q^{1}$-homology generator, $\xi_{2}^{4 s}$, then $\xi_{1}^{4 j} \nu_{0}=$ $\xi_{1}^{4 j} \xi_{2}^{t^{8}} \in W_{1}$. Thus, we may assume $\nu_{0}=S q^{1} y$. On the other hand, $\xi_{2}^{2} \nu_{1}+\xi_{3} S q^{1} \nu_{1}=S q^{1}\left(\xi_{3} \nu_{1}\right)$, so $x=S q^{1} z, z=y+\xi_{3} \nu_{1}$.

Now let $\tilde{x}=\xi_{1}^{4 j} x+\xi_{1}^{4 j-4} \xi_{2}^{2} S q^{1} S q^{2} z$.
It is easily verified that $\tilde{x} \in W_{1}$.
(b) Observe that $S q^{1} S q^{2} \Gamma_{j} \subseteq \Gamma_{j+1}$. We obtain

$$
S q^{1} S q^{2} \xi_{1}^{4 j} x=\xi_{1}^{4+4}\left(S q^{1} \nu_{1}+\xi_{2}^{2} \nu_{3}+\xi_{3} S q^{1} \nu_{3}\right)+\omega,
$$

where $\omega \in \Gamma_{j}$, so $S q^{1} \nu_{1}=0=\nu_{3}$. Conversely, suppose $S q^{1} \nu_{1}=0=\nu_{3}$. If ν_{1} is a $S q^{1}$-homology generator, ξ_{2}^{48}, then $\xi_{1}^{4 j} \xi_{2}^{2} \xi_{2}^{4 s} \in W_{2}$, so we may assume that ν_{1} is a $S q^{1}$-boundary, say $\nu_{1}=S q^{1} y$, hence $x=\nu_{0}+\xi_{2} S q^{1} y+$ $\xi_{3} \nu_{2}$. Then if $\eta=\xi_{1}^{4 j-4}\left(\xi_{2}^{2} S q^{2} \nu_{0}+\xi_{2}^{2} \xi_{3} S q^{1} S q^{2} S q^{1} y+\xi_{2}^{4} S q^{1} S q^{2} y+\xi_{2}^{2} \xi_{3} S q^{2} \nu_{2}+\right.$ $\left.\xi_{2}^{4} S q^{1} \nu_{2}\right), \xi_{1}^{4 j} x+\eta \in W_{2}$, and $\pi_{j}\left(\xi_{1}^{4 j} x+\eta\right)=\xi_{1}^{4 j} x$.
(c) $S q^{2} \Gamma_{j} \subseteq \Gamma_{j+1}, \quad$ and $\quad S q^{2}\left(\xi_{1}^{4 j} x\right)=\xi_{1}^{4 j+4}\left(\nu_{1}+\xi_{3} \nu_{3}\right)+\omega, \omega \in \Gamma_{j}, \quad$ so $\nu_{1}=\nu_{3}=0$. If $\exists \tilde{x} \in \Gamma_{j} \cap W_{3}$, with $\pi_{j}(\widetilde{x})=\xi_{1}^{4 j} x$, then there is an element

$$
y=\mu_{0}+\xi_{2}^{2} \mu_{1}+\xi_{3} \mu_{2}+\xi_{2}^{2} \xi_{3} \mu_{3}
$$

with $\mu_{i} \in \sigma W$, so that $\pi_{j}\left(S q^{2} y\right)=\pi_{j}\left(\xi_{1}^{4} S q^{2} x\right)$. Now,

$$
S q^{2} x=S q^{2} \nu_{0}+\xi_{3} S q^{2} \nu_{2}+\xi_{2}^{2} S q^{1} \nu_{2}
$$

and

$$
\begin{aligned}
S q^{2} y= & S q^{2} \mu_{0}+\xi_{1}^{4} \mu_{1}+\xi_{2}^{2} S q^{2} \mu_{1} \\
& +\xi_{2}^{2} S q^{1} \mu_{2}+\xi_{3} S q^{2} \mu_{2}+\xi_{1}^{4} \xi_{3} \mu_{3}+\xi_{2}^{4} S q^{1} \mu_{3}+\xi_{2}^{2} \xi_{3} S q^{2} \mu_{3}
\end{aligned}
$$

$S q^{2} y$ thus contains no coefficient of $\xi_{1}^{4} \xi_{2}^{2}$, hence $S q^{1} \nu_{2}=0$. As usual, if ν_{2} is a $S q^{1}$-homology generator, ξ_{2}^{48}, then $\xi_{1}^{4 j} \xi_{3} \xi_{2}^{48} \in W_{3}$, so we may assume $\nu_{2}=S q^{1} y$, and $x=\nu_{0}+\xi_{3} S q^{1} y$. Now if $\lambda=\xi_{3} S q^{2} S q^{1} \nu_{0}+$ $\xi_{2}^{4} S q^{2} y+\xi_{2}^{2} S q^{2} \nu_{0}+\xi_{2}^{2} \xi_{3} S q^{2} S q^{1} y$, one may check that $\xi_{1}^{4 j} x+\xi_{1}^{4 j-4} \lambda \in W_{3}$, proving the proposition. (*).

Proposition 6. Let $x \in \sigma V=\Gamma_{0}$, with the ν_{j} 's as in Proposition 5.
(a) $x \in W_{1} \Leftrightarrow \nu_{3}=0, S q^{1} S q^{2} \nu_{1}=0, \nu_{2}=S q^{1} \nu_{1}, \nu_{0} \in \sigma W_{1}$.
(b) $x \in W_{3} \Leftrightarrow \nu_{1}, \nu_{3}=0, S q^{1} \nu_{2}=S q^{2} \nu_{2}=0$, and $\nu_{0} \in \sigma W_{3}$.

Proof.

(a) The proof of Proposition 5.a shows that $\nu_{3}=0$, so

$$
x=\nu_{0}+\xi_{2}^{2} \nu_{1}+\xi_{\xi_{3}} \nu_{2},
$$

and

$$
S q^{1} x=S q^{1} \nu_{0}+\xi_{2}^{2} S q^{1} \nu_{1}+\xi_{2}^{2} \nu_{2}+\xi_{3} S q^{1} \nu_{2} .
$$

Thus, $S q^{1} \nu_{0}=0, S q^{1} \nu_{1}=\nu_{2}$. Now,

$$
S q^{2} S q^{1} S q^{2} x=S q^{2} S q^{1} S q^{2} \nu_{0}+\xi_{1}^{3} S q^{1} S q^{2} \nu_{0}+\xi_{3} S q^{1} S q^{2} S q^{1} S q^{2} \nu_{1}
$$

so $S q^{2} S q^{1} S q^{2} \nu_{0}=0, S q^{1} S q^{2} \nu_{1}=0$. That these conditions imply $x \in W_{1}$ is clear.
(b) Expanding $S q^{2} x$, the coefficients of ξ_{1}^{t} and $\xi_{1}^{4} \xi_{3}$ are ν_{1} and ν_{3} respectively, so $\nu_{1}=\nu_{3}=0$, and

$$
\begin{gathered}
x=\nu_{0}+\xi_{\xi} \nu_{2} \\
S q^{2} x=S q^{2} \nu_{0}+\xi_{2}^{2} S q^{1} \nu_{2}+\xi_{3} S q^{2} \nu_{2},
\end{gathered}
$$

so

$$
S q^{2} \nu_{0}=0, S q^{1} \nu_{2}=0, S q^{2} \nu_{2}=0 .
$$

Again, the converse is clear. (*).
Lemma 7. Define a subspace B of $\sigma V=\Gamma_{0}=\sigma W+\xi_{2}^{2} \sigma W+$ $\xi_{3} \sigma W+\xi_{2}^{2} \xi_{3} \sigma W$ by $B=\xi_{3} \sigma W+\xi_{2}^{2} \sigma \sigma$, so $\sigma V / B \cong \sigma W+\xi_{2}^{2} \sigma W$. Let $\pi: \sigma V \rightarrow \sigma V / B$ be the projection. Then $\nu_{0}+\xi_{2}^{2} \nu_{1} \in \pi\left(\sigma V \cap W_{2}\right) \leftrightarrow \nu_{0} \in$ $\sigma W_{2}, S q^{1} \nu_{1}=0$. Secondly, $\xi_{3} \nu_{2}+\xi_{2}^{2} \xi_{3} \nu_{3} \in W_{2} \mapsto \nu_{3}=0, S q^{2} \nu_{2}=0$.

Proof. Let $x \in \sigma V, x=\nu_{0}+\xi_{2}^{2} \nu_{1}+\xi_{3} \nu_{2}+\xi_{2}^{2} \xi_{3} \nu_{3}$. Then

$$
\begin{aligned}
& S q^{1} S q^{2} x=S q^{1} S q^{2} \nu_{0}+\xi_{1}^{4} S q^{1} \nu_{1} \\
& \quad+\xi_{2}^{2} 2 q^{1} S q^{2} \nu_{1}+\xi_{2}^{2} S q^{2} \nu_{2}+\xi_{3} S q^{1} S q^{2} \nu_{2}+\xi_{1}^{4} \xi_{2}^{2} \nu_{3} \\
& \quad+\xi_{1}^{4} S S q^{2} \nu_{3}+\xi_{2}^{4} S q^{2} \nu_{3}+\xi_{2}^{2} \xi_{3} S q^{1} S q^{2} \nu_{3} .
\end{aligned}
$$

Thus, $S q^{1} \nu_{1}=0, \nu_{3}=0, S q^{1} S q^{2} \nu_{0}=0$. Suppose $S q^{1} S q^{2} \nu_{0}=0, S q^{1} \nu_{1}=0$. If ν_{1} is a $S q^{1}$-homology generator, $\xi_{2}^{4 s}$, then $\xi_{2}^{2} \xi_{3}^{4 s} \in W_{2}$, so we assume ν_{1} to be a $S q^{1}$-boundary, $\nu_{1}=S q^{1} z$. Now $\lambda=\nu_{0}+\xi_{2}^{2} \nu_{1}+\xi_{3} S q^{2} z$ satisfies $\lambda \in W_{2} \cap \Gamma_{0}, \pi(\lambda)=\nu_{0}+\xi_{2}^{2} \nu_{1}$. For the second part, we have already observed that ν_{3} is necessarily zero.

$$
S q^{1} S q^{2}\left(\xi_{3} \nu_{2}\right)=\xi_{2}^{2} S q^{2} \nu_{2}+\xi_{3} S q^{1} S q^{2} \nu_{2},
$$

so $S q^{2} \nu_{2}=0$. The converse is clear. (*)
We now interpret Propositions 3, 4, 5, and 6 as statements about the structure of the various graded vector spaces we have defined. Let $T=\left\{w \in W \mid S q^{1} w=0\right\}$, so

$$
T \cong \bigoplus_{i=0}^{\infty} \xi_{1}^{4 i} \sigma X
$$

where X is defined in \S II.
As in \S II, Propositions 3 and 4 give
(a)

$$
Y \cong \bigoplus_{j=2}^{\infty} \xi_{1}^{4 j} \sigma T+\xi_{1}^{4} \sigma W_{1}+\sigma Y
$$

and Propositions 5, 6 and Lemma 7 give
(b)

$$
\begin{gathered}
W_{1} \cong \bigoplus_{j=1}^{\infty} \xi_{1}^{4 j}\left(\sigma T+\xi_{2}^{2} \sigma W\right)+\xi_{2}^{2} \sigma W_{2}+\sigma W_{1} . \\
\left(\text { For } S q^{1}(x)=0 \Longrightarrow \nu_{2}=S q^{1} \nu_{1} .\right)
\end{gathered}
$$

(c)

$$
W_{2} \cong \bigoplus_{j=1}^{\infty} \xi_{1}^{4 j}\left(\sigma W+\xi_{2}^{2} \sigma T+\xi_{3} \sigma W\right)+\xi_{2}^{2} \sigma T+\xi_{3} \sigma W_{3}+\sigma W_{2}
$$

(d)

$$
W_{3} \cong \bigoplus_{j=1}^{\infty} \xi_{1}^{A_{j}}\left(\sigma W+\xi_{3} \sigma T\right)+\xi_{3} \sigma Y+\sigma W_{3} .
$$

Solving these equations inductively, noting that

$$
\bigcap_{k=0}^{\infty} \sigma^{k} Y=(1)
$$

we obtain
(a)

$$
Y \cong \bigoplus_{k=1}^{\infty} \bigoplus_{j=2}^{\infty} \xi_{k}^{4 j} \sigma^{k} T+\bigoplus_{k=1}^{\infty} \xi_{k}^{4} \sigma^{k} W_{1}+Z / 2
$$

(b) $\quad W_{1} \cong \bigoplus_{k=1}^{\infty} \bigoplus_{j=1}^{\infty} \xi_{k}^{4 j}\left(\sigma^{k} T+\xi_{k+1}^{2} \sigma^{k} W\right)+\bigoplus_{k=1}^{\infty} \xi_{k+1}^{2} \sigma^{k} W_{2}+Z / 2$ (1)
(c)

$$
\begin{aligned}
W_{2} & \cong \bigoplus_{k=1}^{\infty} \bigoplus_{j=1}^{\infty} \xi_{k}^{4 j}\left(\sigma^{k} W+\xi_{k+1}^{2} \sigma^{k} T+\xi_{k+2} \sigma^{k} W\right) \\
& +\bigoplus_{k=1}^{\infty} \xi_{k+1}^{2} \sigma^{k} T+\bigoplus_{k=1}^{\infty} \xi_{k+2} \sigma^{k} W_{3}+Z / 2
\end{aligned}
$$

(d)

$$
W_{3} \cong \bigoplus_{k=1}^{\infty} \bigoplus_{j=1}^{\infty} \xi_{k}^{\ddagger j}\left(\sigma^{k} W+\xi_{j+2} \sigma^{k} T\right)+\bigoplus_{k=1}^{\infty} \xi_{k+2} \sigma^{k} Y+Z / 2 \text { (1) }
$$

By now substituting (d) in (c), (c) in (b), and (b) in (a), we obtain

$$
Y \cong \bigoplus_{k=1}^{\infty} \bigoplus_{j=2}^{\infty} \xi_{k}^{4 j} \sigma^{k} T+\bigoplus_{k=1}^{\infty} \bigoplus_{l=1}^{\infty} \bigoplus_{j=1}^{\infty} \xi_{k}^{4} \xi_{l+k}^{\xi j}\left(\sigma^{l+k} T+\tilde{\xi}_{l+k+1}^{2} \sigma^{l+k} W\right)
$$

$$
\begin{aligned}
& \left.+\xi_{n+m+l+k+2} \sigma^{n+m+l+k} T\right)+Z / 2(1)+{\underset{k}{\infty}}_{\infty}^{\xi_{k}^{t}}(Z / 2(1))
\end{aligned}
$$

In I§ II, we showed that as graded $Z / 2$-vector spaces,

$$
X \cong \bigoplus_{k=1}^{\infty} \xi_{1}^{2 k} \sigma V+\sigma X,
$$

so

$$
X \cong \bigoplus_{k=1}^{\oplus} \oplus \oplus_{l=1}^{\infty} \xi^{k j} \sigma^{l} V+Z / 2(1)
$$

This shows that the graded set

$$
B=\{1\} \cup\left\{\xi_{k}^{a k} \xi_{k+1}^{2 j}+\sigma^{k+1}(p)\right\}_{a \geq 0},
$$

:/ a monomial in U, is isomorphic to a basis for X. Since $; T \cong$

Let

$$
\begin{aligned}
& \left.+\xi_{m+l+k+1}^{2} \sigma^{m+l+k} T+\xi_{m+l+k+2} \sigma^{m+l+k} W\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { - (} \left.\boldsymbol{\sigma}^{n+m+l+k} W+\xi_{n+m+l+k+2} \sigma^{n+m+l+k} T\right) \text {. }
\end{aligned}
$$

Using the basis C obtained for T above, and the monomial
basis for W, we obtain
Theorem 8. A basis for Z is, as a graded set, isomorphic to the collection of all monomials of the following types:
(i)

$$
\begin{aligned}
& 1, \xi_{k, 4}^{4} \xi_{k}^{4} \xi_{l+k+1,}^{2}, \xi_{k}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k+2,} \xi_{k}^{4 a+4} \xi_{k+1}^{4 u} \\
& \xi_{k}^{4} \xi_{l+k}^{4 a} \xi_{l+k+1,}^{4 u} \xi_{l}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k}^{4 u} \xi_{m+l+k+1}^{4 v+2}, \\
& \xi_{k}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k+2} \xi_{n+m+l+k}^{4 a} \xi_{n+m+l+k+1}^{4 u} \xi_{n+m+l+k+2}
\end{aligned}
$$

(ii) $\underline{\xi}_{k}^{4 a+4} \xi_{k+1}^{4 u} \xi_{k+l+1}^{2 b} \xi_{k+l+2}^{2 v} \sigma^{k+l+2}(\mu)$
(iii) $\xi_{k}^{4} \xi_{l+k}^{4 a} \xi_{l+k+m+1}^{4 u} \xi_{l+k+m+1}^{2 b} \xi_{l+k+m+2}^{2 v} \sigma^{l+k+m+2}(\mu)$
(iv) $\quad \xi_{k}^{4} \xi_{l+k}^{4 a} \xi_{l+k+1}^{4 u+2} \xi_{l+k+2}^{2 v} \sigma^{l+k+3}(\mu)$
(V) $\xi_{k}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k}^{4 a} \xi_{m+l+k+1}^{4 u} \sigma^{m+l}+k+1(\mu)$
(Vi) $\quad \xi_{k}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k}^{4 u} \xi_{m+l+k+1}^{4 v+2} \xi_{n+m+l+k+1}^{2 a} \xi_{n+m+l+k+2}^{2 u} \sigma^{n+m+l+k+2}$ ($\left.\ell l\right)$
(Vii). $\quad \xi_{k}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k+2} \xi_{n+m+l+k}^{4 a} \xi_{n+m+l+k+1}^{4 u} \xi_{n+m+l+k+2}^{2 v} \sigma^{n+m+l+k+2}(\mu)$
(Viii) $\quad \xi_{k}^{4} \xi_{l+k+1}^{2} \xi_{m+l+k+2} \xi_{n+m+l+k}^{4 a} \xi_{n+m+l+k+1}^{4 u} \xi_{n+m+l+k+2}^{2 v} \sigma^{n+m+l+k+2}(\mu l)$ where μ is any momomial in $U, a, b \geqq 1$, and $u, v \geqq 0$.
(i) above asserts that
(ii) $\quad Y \cong Z \bigoplus \bigoplus_{k=1}^{\infty} \bigoplus_{l=1}^{\infty} \bigoplus_{m=1}^{\infty} \bigoplus_{n=1}^{\infty} \xi_{k}^{1} \xi_{l+k+1}^{2} \xi_{m+l+k+2} \xi_{n+m+l+k+2} \sigma^{n+m+l+k+k} Y$.

Definition 9. A λ-sequence will be a collection $\alpha=\left\{i_{s}, j_{s}, k_{s}\right.$, $\left.l_{s}\right\}_{s=1}^{m}$ of integers satisfying $2<i_{s}<j_{s}<k_{s}<l_{s}<i_{s+1}$. Given a λ sequence α, we define $q(\alpha)=\prod_{s=1}^{m} \xi_{i_{s-2}}^{4} \xi_{j_{s-1}}^{2} \xi_{k_{s}} \xi_{l_{s}}$, and let $r(\alpha)=l_{s-2}$.
(ii) now gives

Theorem 10. As a graded set, a basis for Y is given by

$$
\bigcup_{\alpha, \delta}\left\{q\left(\alpha(\sigma) \sigma^{(\alpha)}(\delta)\right)\right\}
$$

as α ranges over all λ-sequences and δ ranges over all monomials in Theorem 8.
IV. Relations with the Mahowald-Milgram splitting. We recall from [4] that as an \mathscr{A}_{1}-module, $W \cong \bigoplus_{i} M_{i} \oplus F$, where F is free and M_{i} is a certain \mathscr{A}_{1}-module. In order to obtain F, we must know the image of $Y \cap M_{i}$ in terms of the basis we have constructed for Y. This calculation is entirely straightforward, and we only state the result.

Proposition 1. Let Z be as in § III. Then $Z \cap\left(\oplus_{i} M_{i}\right)$ may be identified with the subspace spanned by all monomials of type (i) in Theorem III. 8. Moreover, $Y \cap\left(\oplus_{i} M_{i}\right)$ may be identified with the subspace spanned by

$$
\bigcup_{\alpha, \beta}\left\{q(\alpha) \sigma^{r(\alpha)}(\delta)\right\}
$$

as α ranges over all λ-sequences, and δ ranges over all monomials of type (i).

This immediately gives
Theorem 2. A basis for F as a free, graded \mathscr{A}_{1}-module is given by the set

$$
\bigcup_{\alpha, \delta}\left\{q(\alpha) \sigma^{r(\alpha)}(\delta)\right\}
$$

where α ranges over all λ-sequences, and δ ranges over all monomials of types (ii)-(viii) in Theorem III. 8.

From §I, $H^{*}\left(b o, Z_{2}\right) \cong W^{*}$, so $H^{*}\left(b o \wedge b o, Z_{2}\right) \cong \mathscr{A}(2) / \mathscr{A}(2), \overline{\mathscr{A}}_{1}$ $\otimes Z / 2 W^{*}=\mathscr{A}(2) \bigotimes_{\mathscr{N}_{1}} W^{*}$. Thus the splitting of W^{*} as \mathscr{A}_{1}-modules tensors to a splitting of $H^{*}(b o \wedge b o, Z / 2)$ as . $\mathscr{A}(2)$-modules. In [4], it is shown that this algebraic splitting is actually a geometric splitting, and we obtain

Corollary 3. bo $\wedge b o \cong X \bigvee_{r \in \Gamma} \Sigma^{d(\gamma)} K(Z / 2,0)$ where Γ is the set of all monomials in Theorem 2, and $d(\gamma)$ denotes the degree of γ, and X is the spectrum mentioned in (B) of the introduction.

In [3], it was shown that the Adams Spectral Sequence with $E_{2_{2}}$-term

$$
\operatorname{Ext}_{-x^{*(2)}}^{* *}\left(H^{*}(b o), H^{*}(b o)\right),
$$

and converging to $[b o, b o]_{*}$, collapses. Thus, if \mathscr{B} denotes the ring of self-maps $b o \rightarrow b o$, and I denotes the ideal of all maps which vanish in $\bmod 2$ cohomology,

$$
\mathscr{B} / I \cong \operatorname{Hom}_{\sim(2)}\left(H^{*}(b o), H^{*}(b o)\right)
$$

A standard change of rings result gives that as a graded $Z / 2$-vector space.

$$
\mathscr{R} / I \cong \operatorname{Hom}_{\mathscr{\Omega}_{1}}\left(Z / 2, H^{*}(b o)\right)
$$

which in turn is isomorphic to $\left\{x \in \mathscr{A}(2) / \mathscr{A}(2) \bar{a}_{1} \mid S q^{1} x=S q^{2} x=0\right\}$. Since we have a splitting of $\mathscr{A}(2) / \mathscr{A}(2), \mathscr{A}_{1}$, the calculation in Theorem 2 gives

Corollary 4. As a graded $Z / 2$-vector space,

$$
\mathscr{R} \mid I \cong \bigoplus_{i} \operatorname{Hom}_{\mathscr{\varkappa}_{i}}\left(Z / 2, M_{i}\right) \oplus \Sigma^{6} F
$$

References

1. D. Anderson, Thesis, Berkeley, 1964.
2. D. Anderson, E. Brown and F. P. Petersen, The structure of the spin cobordism ring, Ann. of Math., 86 (1967), 217-298.
3. G. Carlsson, Operations in Connective K-theory and Associated Cohomology Theories, Thesis, Stanford, (1976).
4. R. J. Milgram, The Steenrod algebra and its dual for connective K-theory, Proceedings of the Northwestern Conference on Homotopy Theory, August, 1974. Ed. D. Davis (published by the Mexican Mathematical Society).
5. J. Milnor, The Steenrod algebra and its dual, Ann. of Math., 67 (1958),.
6. R. Stong, Determination of $H^{*}(B 0[k, \cdots, \infty), Z / 2)$ and $H^{*}(B u[k, \cdots, \infty)$. $Z / 2)$, Trans. Amer. Math. Soc., 107 (1963), 526-544.

Received October 23, 1978. Supported in part by NSF Grant MCS 77-01623.
University of California, San Diego
La Jolla, CA 92037

