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J-HOMOLOGY COBORDISM BUNDLES

GERALD A. ANDERSON

Let K be a set of primes and A the localization of the
integers away from K. In this paper we compute the
homotopy types of G(K)/H(K) and H(K)/PL, when H(K) is
the classifying monoid for Λ-homology cobordism bundles,
with applications to the space BH(K).

1* Introduction* Let A be a subring of Q with unit, and K
the set of primes invertible in A. This paper is concerned with
Λ-homology cobordism bundles, which are defined as in [13], using
^-coefficients throughout.

In § 2, we define Λ-homology cobordism sphere, disc and cone
bundles and discuss their basic properties, including representability,
existence of normal bundles and transversality. Most of the results
of this section are known in some form (from the bundle theories
of [19], [28], straightforward generalizations of the A = Z case in
[13], [15], [8] or special cases of [9], [22]).

In § 3, we consider rational surgery obstructions for simply con-
nected manifolds. Our main result is a product formula for Z/m-
manifolds, which allows us to apply the Morgan-Sullivan construc-
tion ]18].

In § 4 we compute the homotopy type of G(K)/H(K). A similar
construction has been briefly sketched by Quinn [19], following, as
does the one given here, the construction of Sullivan [24] for G/PL.
We show that G(K)/H(K) = A'+ x K(ψξ (g) A, 4) x Y, where Y is
given by the fiber diagram

Y > (Π K(Lt(l; Λ) (g) A, i)){2)

1
(BOK\ >TίK(Q,U).

Here ψ% denotes the group of PL Λ-homology w-spheres, modulo
iϊjrcobordism, and ψξ is the kernel of an invariant ψξ —> (Z/8) (g) A.

In § 5, we compute the homotopy type of H(K)/PL. Our result
is: H{K)IYL^: (BSPL)(ί:) x IL>o K(ψf <g) A, i), where (BSPL)(AΊ is the
fiber of BSPL -> BSPIΛ

Finally, in § 6, we consider applications to Λl-homology cobordism
bundles. The homotopy groups of BH(K) are shown to be
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Λ ί^O mod (4)

πt(BH(K)) ~ \πt(BFL) (x) A 0 tor W{A) ® A i = Aj > 4

We also show that, unless 2 e K or K — ψ, BH{K) is not "comput-
able" in terms of BTOP, showing that a conjecture of Quinn [19]
is false.

2* /ί-homology manifolds and Λ-homology cobordism bund-
les. A polyhedron M is called a A-homology manifold of dimension
n if M has a subdivision AT so that H^(LK(x, M'); A) ^ ^ ( S * " 1 ; 4)
or 0. The boundary of Λf, 3Λf = {# 6 M': H*(LK(x, M')\ A) = 0} is a
Λί-homology manifold of dimension n — 1.

A A-homology n-sphere is a Λ-homology w-manifold J? so that
H*(Σ; A) = H*(Sn; A); a A-homology n-disc is a compact Λ-acyelic
Λ-homology ^-manifold A. The prefix "PL" indicates that Σ or J is
a PL manifold. A ,4 n-cell is the cone citf over a Λ-homology (w —1)-
sphere or (n—l)-disc ikf; such a yl ^-cell is a ./l-homology ^-manifold
with boundary M or Ml) c(dM). An Hκ-cobordism is a J-homology
manifold triad (TΓ;Λf+, MJ) with ίί^TΓ; Λf±; 4̂) - 0. (Again the
prefix "PL" means that W is a PL-manifold.)

A A-cell decomposition of a simplicial complex X is a collection
.$/ of subpolyhedra of X so that

( i ) each Δ e ,5/ is a Λ-cell,
(ii) X has a subdivision X' so that every simplex of X1 lies

in the interior of a unique element of j ^ %
and

(iii) if J G j ^ , 5z/ is a union of elements of j ^ \
Let X be a simplicial complex with a Λ-cell decomposition ,sχf.

A A-homology cobordism {n-sphere) bundle ξ over X is a complex
E = 2?(£) over j y (see [13], pg. 96) so that, for each ι/m e j^f

( i ) E(Δ) is a /ί-homology (w + m)-manifold with

and
(ίi) there is a complex W over «jy|z/ so that W{ΔQ) is an

iϊ^-cobordism between E(ΔQ) and Jo x Sn for each Jo 6 J^\Δ.
Here .jy|J denotes the Λ-cell decomposition of A consisting of

those Jo 6 , j ^ with J o c J .
If fm, rf are ^-homology cobordism sphere bundles over X, Γ,

then we define their product ζ x η to be the space E(ξ) x J&(̂ ) over
the induced Λ-cell decomposition of 1 x 7 . Restrictions are defined
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in the obvious way. If £ is a Λ-homology cobordism sphere bundle
over X, and /: Y—> X is a simplicial map, then the pull-back /*£ is
defined to be ε° x £ | Gff where εp denotes the trivial bundle Y x Sq,
and we identify Y with the graph Gf of-/. If £, i) are Λ-homology
cobordism sphere bundles over X, their Whitney sum £0?? is de-
fined by J*(£ x ή), where Δ: X -> X x X is the diagonal.

Two Λ-homology cobordism n-sphere bundles ξ, η over X are
isomorphic, written £ = η, if there is a complex G over *5%f so that
for each Je.stf', G(Δ) is an jffx-cobordism between E(ξ)(Δ) and

We similarly define a Λ-homology n-disc bundle ξ over X to be
a complex Z? = E(ξ) over j y so that, for each Δm e j ^ %

( i ) E{A) is a Λ-homology (^ + m)-manifold, with dE(Δ) conta-
ining E(dΔ) as a codimension 0 submanifold,
and

(ii) there is a complex W over *s%f\Δ so that W(Δ0) is an
^-cobordism between (E(Δ0); E(dΔ0), dE(Δ0) - E(dΔ0)) and (Jo x i)w;
3Δ0 x J9W, Λ x S*"1) for each Jo e j^\Δ.

A Λ-homology n-cone bundle is a Λ-homology n-disc bundle £
with i?(J) = c(dE(Δ) — E(Δ)). The concepts given above generalize
to disc and cone bundles in the obvious way.

PROPOSITION 2.1. ([13], Prop. 3.3). There exist bijective cor-
respondence between the isomorphism classes of Λ-homology cobordism
(n — l)-sphere, n-cone, and n-disc bundles over X.

Thus we may freely pass among the three types of bundles de-
fined above. The term Λ-homology cobordism n-bundles shall refer
either Λ-homology cobordism (n — l)-sphere, n-disc or n-cone bundles.

Let kn(X) denote the set of isomorphism classes of Λ-homology
cobordism n-bundles over the simplicipal complex X.

THEOREM 2.2. ki is representable, i.e., there is an H-space
BH(K)n so that kί(X) ^ [X, BH(K)n].

The construction of BH{K)n follows from Martin and Maunder
[13]: Let H{K)n be the J-monoid with ί-simplexes given by iso-
morphisms of the trivial bundle Δι x Dn over Δ\ Then the classify-
ing space BH(K)n of H(K)n represents ki.

PROPOSITION 2.3. ([13], Prop. 3.4). Let ξ be a Λ-homology co-
bordism bundle over a Λ-homology manifold M. Then E(ξ) is a
Λ-homology manifold.
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Let I be a Λί-homology ^-sphere bundle over a Λί-cell decomposi-
tion J ^ of X. Let ΔQ, Δu Δ2e ^f with ΔQCIΔ^Δ^ and Wt complexes
over J&\ΔU ί — 1,2, so that Wi(Δ0) is an iJ^-cobordism between
E(Δ0) and ΔQ x S\ Attaching W1 and W2 along 2£(4>), we get an
fZtf-cobordism of Δo x Sn with itself, and so an automorphism of
Hn(ΔQ x Sn; A) = A. We say that ξ is orίentable if we may always
choose Wu W2 so that this automorphism is the identity times a
positive unit in A; a choice of these ί/^-cobordisms is called an
orientation. We may define a Λ-monoid SH(K)n so that BSH(K)n

classifies oriented Λ-homology cobordism w-sphere bundles.

PROPOSITION 2.4. ([13], Cor. 3.9). π^BHyD^zβ and BSH(K)n

is the universal cover of BH(K)n.

The same holds for BH{K)y BSH{K), where BH(K) = lim BH(K),

and BH(K)n~+ BH(K)n+1 is defined by block-by-block suspension,
etc.

Let J5PL penote the classifying space for PL block bundles. By
[3], there is a natural map BΫL-^BH(K); let H(K)jYL denote its
homotopy fiber.

THEOREM 2.5. ([3], Theorem 3.6). πn(H(K)/FL) 0 A ~ ψξ (x) A,
where ψξ is the group of PL A-homology n-spheres modulo PL
Hκ-cobordism.

Let W(A) denote the Witt group of even quadratic forms over
Λ, and W(A, Z) = coker(ΐ^(Z) -» PF(il)); l?(^ί, Z) is a torsion group,
all elements having order dividing 8, and is not finitely generated
in general (cf. §3). We have the following calculation of ψξ for

PROPOSITION 2.6. ψf - 0 and ψξ'® A ~ {°W{^ Z)* f l

Proof. Using the notation of [5], we have

ψf = ψί (g) ZlX) φf,®Zκ

= tor(A?) (X) Z{K) - 0 .

The result for n > 4 follows from [3], Theorem 3.5.

THEOREM 2.7. // n ^ 3, £&ew ί&ere is α map φn: BH{K)n

BG{K)n so that
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n >BGn

1 1
BH(K). >BG(K)n

commutes (up to homotopy); the maps φn are compatible with stabi-
lization.

Proof. The argument is basically the same as that in [8], § 6.
Let G(K)n denote the Λ-set with ί-simplexes PL A S^-block fibrations
over Δι x /, trivial over Δι x_{0,1}; note that BG(K)n ~ BG(K)n.

Define a map H(K)n —> G(K)n inductively on cells as follows:
Since the 2-skeletons of Hn and H(K)n coincide, we may use the
construction of [8] for cells of dimension 1 and 2. Assume an i-cell,
i ^ 3, is represented by a Λ-homology cobordism (n — l)-sphere
bundle ξ over Δi x /, trivial over Δί x {0, 1}, and, inductively, a A
S^-block fibration over Δ* x I. Since dim E(ξ) ^ 5 and E(ξ) is a
smooth manifold in a neighborhood of its dual 3-skeleton, it follows
from Corollary 3.3 of [5] that we may do surgery on E(ξ) rel dE(ξ)
to get a new Λί-homology cobordism bundle ξ' with π^Eiξ')) = 0.
The remainder of the proof follows as in [8].

The next theorem shows the existence of normal bundles.

THEOREM 2.8. Let Mn, Nn+k be compact A-homology manifolds
with M embedded as a full subcomplex of N. Then M has a
A-homology cobordism k-cone bundle neighborhood in N.

Proof. We use the notation of Stone [22]. Let {Xlf « ,Xm}
be the intrinsic variety of M. By Theorem 2.1 of [22], {Xo, , xj\
has a regular neighborhood stratification in N, and so has a cone
block bundle neighborhood £ in N. By construction, ξ is the desired
Λ-homology cobordism bundle.

We now turn to transversality. A bundle theory with the pro-
per transversality theorems has been developed by Quinn [19], and
we show that this theory coincides, stably, with ours. This is suf-
ficient for the applications in § 3.

Let X be a finite complex. A Q(K)-bundle over X is a pair
(E9 B) where B is a regular neighborhood of X in some Λ-homology
manifold and E is a relative regular neighborhood of (B, dB) is some
PL-manifold. We also assume B is stratified ([22]) in E. (Quinn
calls these PL^-bundles, which is ambiguous, since these bundles are
not equivalent to PL-block bundles if K = φ). Let BQ(K) denote
the classifying space for stable Q(ίΓ)-bundle (cf. [19]).
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Let YdX. A Q(K)-bundle structure on a neighborhood of Y
in X is a Q(.K>bundle (E, B) over Y, a regular neighborhood N of
F in X, and an embedding (ΛΓ, Y) -> (2£, F), transverse to B.

THEOREM 2.9. ([19], Theorem 3.4). Lei F δβ a subcomplex of
X with a Q(K)-bundle structure, and f:M—>X, where M is a
Λ-homology manifold. Then f is homotopic to a map g transverse
to Y, in the sense that g~ι(Y) is a Λ-homology manifold with can-
onical Q{K)-bundle structure.

We now construct a natural equivalence between the sets of
stable classes of Λ-homology cobordism bundles and Q(if)-bundles.
Let ^ C denote the category of compact PL-manifolds and isotopy
classes of embeddings (cf. [26]), and ^ # = lim ^ ^ , where stabiliza-
tion is defined by cartesian product with I. Let ^ , *s^b denote the
categories of finite simplicial complexes and abelian groups. Let
R: <& —> ^ denote the "regular neighborhood" functor of [26].

Define H, Q: ^ C —• ^fb to be the contra variant functors sending
M to the set of stable isomorphism classes of /1-homology cobordism
bundles, Q(if)-bundles over M. Clearly, H and Q induce functors

We construct natural transformations T: Q —> H, S: H —> Q of fol-
lows: let ξ be a Q(ίΓ)-bundle over a PL-manifold M. As in the
proof of Lemma 4.2 of [19], we may assume that E(ζ) is a regular
neighborhood of B(ξ) in some R% s large. By Theorem 2.8, B(ζ) is
a [̂-homology cobordism bundle over M, and we let T{M){ξ) — B(ξ).

If f is a yl-homology cobordism cone bunele over M, then E(ξ)
is a /ί-homology manifold by Proposition 2.3, and we define S(M)ξ —
(E(vE{ξ)), E(ξ)) where ι>E{ξ) is the stable normal bundle of E(ξ).

It is easy to see that T and S are natural transformations and
that T°S — 1, S°T = 1. We can define a natural equivalence
[, BQ(K)] -> [, BH(K)] (as functors i f -> j ^ 6 ) by

[X, JSQ(ίΓ)] = [Λ(X)f BQ(K)]

s [X, BH(K)] .

This natural transformation is induced by the map BQ(K) -* BH(K)
that forgets the top space i? (of a pair (2£, β) as above), and so we
have:

THEOREM 2.10. BH(K) ^ BQ(K).
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This implies the following by [19], Lemma 4.2. (See also [28].)

COROLLARY 2.11. BSH(K) is K-local.

Let wPL e iϊ*(£PL; Z/2), pPL e H*(BYL; Q) denote the universal
Stiefel-Whitney, Pontrjagin classes, and let φ: BPL —> BH{K) be the
natural map.

PROPOSITION 2.12. ( i ) If 2&K, then there is a universal
Stiefel-Whitney class w eH*(BH(K); Z/2) so that φ*w = wPL.

(ii) There is a universal Pontrjagin class peH*(BH(K);Q)
so that φ*p = pTh.

Proof, (i) follows from Theorem 2.7, Theorem 4.2 of [25] and
the construction of Stiefel-Whitney classes for spherical fibrations.
(ii) is proven exactly as in [15] using the construction of Pontrjagin
class for rational homology manifolds of [27].

3* Rational surgery obstructions* This section is devoted to
proving the product formula for rational surgery obstruction neces-
sary to apply the Morgan-Sullivan construction [18]. This is the
crucial step in the computation of G(K)/H(K) (cf. § 4).

Let Ln(Λ) be the functor of Wall [30] applied to the ring Λ.
By [1],

0 n odd

Z/2 (x) Λ n ΞΞ 2 mod(4)

W(Λ) n = 0 mod(4) .

These groups have the following geometric significance: Let
/: Mn -» Xn be a normal map between a compact manifold M and a
simply-connected Λ-Poincare space X so that deg(/) 6 A', f\dM: dM-^>
dX is a Λ-homology equivalence, and n >̂ 5.

THEOREM 3.1. ([1]). There is an obstruction s(f) eLn(Λ) so that
s(/) = 0 if and only if f is normaly cobordant to a A-homology
equivalence.

If 2-ίK9 the obstruction s: L2k+2(A) —> Z/2 is the Kervaire invari-
ant, and the usual constructions (e.g., [7]) apply. We will need the
following existence theorem from [1].

THEOREM 3.2. Let k ^ l and xe W(A). Then there exists a de-

gree 1 normal map f: Af-> D4Je so that H*(dM; A) ^ H^S41*"1; A) and
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* ( / ) - X.

We now compute W(Λ). Recall the following results concerning
Witt groups from Lam [12] or Milnor-Husemoller [17]: Let p be
an odd prime. The first and second residue homomorphisms ap, βp:
W(QP) -> W(FP) define an isomorphism of W(QP) with W(FP) 0 W(FP),
where

^ (Z/2 0 Z / 2 p = l mod(4)
9 ~~ (Z/4 p Ξ 3 mod(4) .

Define α^, /Ŝ : T7(Q) —>Wr(F?)) to be the compositions of ccp, βp with the
functorial map W(Q) —>W(QP). This can be extended to p = 2 by
letting α2 be the signature mod(2) and β2 the 2-adic valuation of the
determinant. (Note that W(F2) = Z/2.)

We have ap(q) = βp(q (x) <p» if p ^ 2, and

p(? ® ?') = ap(q)ap(q') + βp(q)βP(q')(p Φ 2)

A(g (x) g;) -

Let σ: W(Q) —> Z be the signature homomorphism. The natural map
W(A)—>W(Q) is injective, and

V e K v e K

This computes W(Λ) if 2eK, and by [17], σ/8: W(Λ)~>Z if K = φ.
If 2 g K, K Φ φ, choose pQ e K, so that p0 = 3 mod(4) if such a p0

exists, and to be arbitrary if all primes in K are 1 mod(4). Let

PROPOSITION 3.3. Let 2$K, KΦ φ.

( i ) // all primes in K are 1 mod(4), then

W(Λ) = Z®Z/2®@ W(FP) .

(ii) Otherwise, W(Λ) s Z φ φ f t Γ ( W(F,).

Proof. Let ^ c C be the group of roots of unity and yp: W(QP) —>
^ the Gauss sum character of [17]. Define Φκ: W(Λ) —> Z/S by exp
@πiΦΞ(q)β) = exv(2πiσ(q)/S). ΐ[peK yp(q ® Q,)"1. By Theorem 1.1 of
[2], PΓ(4) s k e r ( ^ ) .

If j? = 1 mod(4), let 7rlf π2: W(FP) —>• Z/2 be the projections. Note
that πβpiq) = τr2βp(q ® <Sj,», where sy is some quadratic nonresidue
mod(p). By [2],
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p = 3 mod(4)

p = 5 mod(8)

p = 1 mod(8) .

Let in\ Xί(pd, , %k(Pk)) denote the element x e W(Λ) with
σ(x) = w, /SPi(a?) = a?f and βp{x) = 0, p Φ plf , pfc. If follows easily
that a? 6 W(Λ) if and only if

n + Σ (-l)"*- 3"^, + Σ 4^(3,) + Σ 4^^) s 0 mod(8) .
) () i ()1(8)

Thus W{Λ) is generated by (2; (-l)( ί ) f l )/4(p)) if p = 3 mod(4), (4; (1, 0)
(p)) if p s 5mod(8), and (4; (0, l)(p)) if p == 1 mod(8) ( p e ϊ ) .

It is now easy to check that the isomorphisms above are given
by ( τ / 2 φ φ p 6 ί o i 3 , if Po = 3 mod(4), tf/4 φ π ^ 0 φ p e J Γ ύ £„ if p == 5
mod(8) and σ/4©ττ2£P oφ 0,^/3, , if p = 1 mod(8).

Let α* = gcd{|σ(g)|: qe W(Λ)}. By the proof of Proposition 3.3,

1 2eK

2 2 $ K, some p e ϋΓ is 3 mod(4)

4 K Φ φ, sl\ p e K are 1 mod(4)

8 Z " - ^ .

Let Σ be a Z/2-homology 3-sphere and μ(Σ) e Z/16 the invariant
of [10]. It is easily checked that μ defines a homomorphism μκ: ψf—>
Z/16 if 2 0 K. By the result above, the image of μκ is contained in
Z/(16/aκ). Combining this with Theorem 3.2, we have

PROPOSITION 3.4. There is a surjective homomorphism μκ\ ψf—»
Z/(16/aκ) (x) A. We let ψf = k e r ( ^ ) .

Let X be a closed, oriented Q-Poincare complex of dimension n.
Define ap(X), βp(X) e W(FP) to be 0 if w ί O mod(4), and the cor-
responding invariants of the cup product pairing on Hn/2(X; Q) if
n = 0 mod(4). This definition can be extended to Q-Poincare pairs
in the usual way.

LEMMA 3.5. If X is a compact oriented Q-Poincare complex,
then ap(dX) = βp(dX) = 0.

Proof. Assume X is of dimension 4fc + 1. We have a commu-
tative ladder

H2k(X; Q) — ίί2&(3X; Q) > H2k+1(X, 3X; Q)

i- i=
H2k+1(X, dX; Q) > H2k(dX; Q) —* H2k(X; Q) ,

3*
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where the vertical isomorphisms are given by Poincare duality, and
so H2k(dX; Q)/ker(j\) s Im(i*) g* Im(i*) = ker(j J . Therefore, dim
(Im(i*)) - dim(H2k(dX;Q))/2, and for x - j*yelm(j)*,

(x U x, [dX]) = <j*y U j*y, [dX])

= 0 .

By [17], the cup product form on H2k(dX; Q) is split, and so is split
over Qp. The result now is an easy consequence of Sylvester's
theorem [12].

LEMMA 3.6. If X is a closed oriented Poincare space, then

Proof. Assume dim(X) = Ak, and let q: H2k{X) —> Z be the cup
product pairing. By [17], yp(q (x) Qp) = 0 for p odd, and so βp(g) = 0
by Lemma 2.1 of [2] (cf. the proof of Proposition 3.3). Since
|det(?)| = lf/32(g) = 0.

Let g' = g©α(X) <-l>. Then σ(q') - 0, βp(q') = 0 for all p,
and so g' = 0 in W(Q). Therefore 0 = ap(q') = ap{q) - σ(X) l.

The following "Novikov additivity" result is proved in the same
way as the signature case [4].

PROPOSITION 3.7. Let Xy Y be compact, oriented Q-Poincare
complexes and f: dX —>dY an orientation-reversing PL homeomor-
phism. Then

βp{X\JfY) - βp{X) + βp(Y) .

We now turn to computing the obstruction s: L4k(Λ) —> W{Λ).
Let /: Mik —> X be a normal map as before with deg(/) = 1. Doing
surgery on M, rel(9ikΓ) we may assume that f^:Hi(M)—>Hι(X) is
an isomorphism for i < 2k and A = ker(f*: H2k(M; Λ) —> H2k(X; A)) is
a free /ί-module. Self-inter sections of 2&-spheres in M that are
null-homotopic in X define a nonsingular even quadratic form q over
Λ; s(f) is defined to be the Witt class of q. We let σ(f) = σ(q),
βP(f) - βM and ap(f) = ap(q). By [7], σ(f) = σ(M) - σ(X).

PROPOSITION 3.8. βp(f) - βp(M) - βp(X); ap(f) = ap{M) - ap(X).

Proof. By Lemma 4.5 and [7], Theorem V.1.3, βp{a) = βp(q*),
ap(q) = ap(q*), where g* is defined by the cup product pairing on
A* - coker(/*: H2k(X, 3X; Q) -> H2k(M, dM; Q)). We have H2\My
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dM; Q) = A* φ f*H2k(X, dX; Q), and for ϊ e ^ j / 6 H*k(X, dX; Q),

{x U f*y, [M, dM]) = f*y f)(xf\ [M, dM])

= vn (Ax n [X,
= o .

Since / is of degree 1, the cup product pairing on f*Hΐk(X, dX; Q)
is equivalent to that on W\X, 3X; Q), and so βp(M) = βP(q*) + β,(X),
ap(M) = aP(q*) + aP(X).

Now assume / is of degree n e Λ'+. Let vp(ri) be the p-adie
valuation of n and ep(n) = p~v*in) n.

COROLLARY 3.9. ( i ) If vp(ri) is even, then βt{f) = βp(M)-
(ep(n))βP(X) and aP(f) = a,(M) - (ep(n))ap(X).

(ii) If v,(n) is odd, then βp(f) = ^(Λf) - <e,(n))ap{X),

Φ2, βt(f)

= βt(M) + a,(X) + β2(X), a2(f) = at(M) + a2(X) .

Proof. Let (Y, dY) be the J-Poincare pair with underlying
space X and fundamental class n[X, dX]. Then / induces a degree
1 map f':(M,dM)-+(Y,dY) with s(f) = s(f'). If q, q' are the
quadratic forms corresponding to X, Y, then nq(x) = q'(x), and the
result follows from the definition of the first and second residues.

COROLLARY 3.10. If f:M-*N is a normal map between closed,
oriented manifolds of degree n, then for p Φ 2

0 vp(n) even

-σ(N) <e,(n)> vv(n) odd

a(f)- ί ' 7 ^ ) ' 1 - σ(N) (e,(n)} v,(n) even
a" ~ \σ(M) l v,(n) odd.

We have the following product formulas for the invariants aP, βp.

THEOREM 3.11. Let f: M —>• X, g: N —> Y be degree 1 normal maps
as above. Then

- a,(f)a,(g) + βP(f)βP{g) + ap{f)aP{Y) + β,{f)β,(Y)

+ ap(g)ap{X) + βp(g)βP(X) (p Φ 2)

= β,(f)a,(g) + β,(jB)a,if) + βPif)aP(Y) + βP(Y)ap{f)

+ βp(g)ap(X) + βp(X)aP(g) .



256 GERALD A. ANDERSON

Proof. First assume, dim If, dim iV ΞΞ 0 mod(4). By Proposition
3.8,

«,(/ x 9) = â CW x iV) - a,(X x Γ)

- (ap(M)ap(N) + βp(M)βp(N)) - (α2

/Sp(/ x flO = /9,(Λf X N) - βp(X x Y)

- (βp(M)a9(N) + β,(N)ap(M)) - (βp(X)a,( Y) + /

and the result follows from Proposition 3.8 by eliminating ap(M),
ocp(N), βp(M), βp(N) from these equations. (The a2 case follows from
the corresponding signature result.)

If dim(ikf x N) 3Ξ 0 mod(4), then the result is trivial, and we
consider the case dim M = 4ί + 1, dim iSΓ = Ah — 1. Let k = I + h
and assume dM — φ = 3iV (the bounded case being similar). We may
write H2k(M x N Q) = A®B, where

A - 0 iff(AΓ; Q) ® Hik-\N; Q)

s φ H*-i°-i(M;Q)®Hi(N;Q)

Furthermore, for « e A, <z U «, [M x iV]> = 0 since for x e H\M; Q),
i ^ 2Z + 1, x[jx = 0. Therefore, the form on H2k(MxN; Q) is split.
Similarly, the form on H2k(w x F; Q) is split, and so αp(/ x g) — 0 =
/3P(/ x #)• Since the right sides of the equations above are zero by
definition, we have equality.

Finally, assume dim M = U + 2, dim N = 4ί — 2. Let α̂ , , a;r,
2/i> * 9 Vr be a symplectic basis for H2l+1(M; Q) and A the subspace
spanned by xu , ccr. Then A (x) H2h~\N; Q) is a subkernel of
H2l+\M;Q)®H2h-\N;Q), and ®^2l+1H\M;Q) ® H^XN Q) (fc=
Z + λ) is split by the argument above. Therefore H2k(M x JV; Q) is
split and the result holds as before.

Together with Corollary 3.9, this implies

COROLLARY 3.12. If f:M-+X is a degree n normal map and
N a compact manifold, then

ap(f x liV) - ap(f)ap(N) + βp(f)βP(N) (p Φ 2)

βJJ x IN) - βP(f)*,(N) + ap(f)βp(N) .

By Lemma 3.6, we have
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COROLLARY 3.13. If f.M-^X is a degree n normal map and
N a closed manifold, then

aJJ x 1*) = ap(f)σ{N)

βP(f x 1*) = βP(f)σ(N) .

In order to apply the results of [18], we must extend Corollary
3.13 to Z/m-manifolds. For a Z/m-manifold M, we let M denote
the manifold M is obtained from by identifying the m isomorphic
copies of δMczdM (cf. [16] or [18]).

Let M*, Nn be Z/m-manifolds, π^N) = π^δN) = 0, and f:M~±N
a normal map of degree r e Λ'+.

THEOREM 3.14. Let n^6. Then f is normally cobordant to a
Λ-homology equivalence if and only if an obstruction s(f) in

(tor W(Λ)) (x) Z\m n = l mod(4)

• (Z/2) <g) (Z/m) ®Λ n = 2, 3 mod(4)

k W{Λ) <g) Z/m n = 0 mod(4)

vanishes.

Proof. ( i ) n Ξ lmod(4): By Theorem 3.1 and Corollary 3.9,
the obstructions to completing surgery on f\8M: δM —> δN are σ(δM)~
σ(δN) and βp(δM) - (ep(r))βp(δN) (vp(r) = 0mod(2)), βp(δM) - (ep(r))
ap(δN) (vp(r) = lmod (2)). Since mδM, mδN are boundaries, σ(δM) —
σ(δN) = 0, mβp{δ_M) = mβp(δN) = map(δN) = 0, and so the obstruc-
tion lies in (tor W Λ̂)) <g) Z/m. By Theorem 3.1, there are no further
obstructions.

(ii) w =Ξ 2, 3mod(4): The arguments are identical to Theorem
3.4 of [16].

(iii) n ΞΞ 0mod(4): By Theorem 3.1, we may assume that f\δM
is a Λ-homology equivalence. By Theorem 3.2 and Proposition 3.7,
the surgery obstruction of /: M —> N may be changed by any element
of mW(Λ) and the result follows.

To compute the obstruction in dimensions 0 mod(4), we introduce
a generalization of Milgram's semi-index [16]. Let K be a set of
odd primes and define Iκ: W(Q) -> Zβ by

Iκ(q) - σ(q) + Σ (~D{p+1)/*2βp(q) + Σ ^iβM) + Σ 4ττ2^(g) .
p=K psK P=K
2>-3(4) P 15(8) P I 1(8)

LEMMA 3.15. Iκ defines an isomorphism of Im(W(Z)—> W(Q)/
W(Λ)) with Zβ.

The proof is immediate from the proof of Proposition 3.3.
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Let g:P-+Q be a degree reΛ'+ normal map between closed,
simply connected (An — l)-manifolds. Let G: W—>Q x / be a normal
cobordism from g to a Λ-homology equivalence. Assume G is (2ri)~
connected, and let qG denote the intersection pairing on K2n(W;Q).
Define the K-ίndex of g by Iκ(g) = /*(?*) e Z/8. Note that /*(#) =
σ(9G) moά(aκ).

LEMMA 3.16. Iκ(g) is independent of G.

Proof. Let G' be another such normal cobordism. Then G + G':
W\JP W —> Q x / is a degree r normal map which is a Λ-homology
equivalence when restricted to the boundary. Thus q[Q+Gf) ^qG — £<*'
is an even quadratic form over Λ and so

0 = Ix(q{G+G,) - IK(Qσ) - /*(?*')

by Lemma 3.15.
Let /: M-> N be a map as in Theorem 3.14 with n ΞΞ 0mod(4).

Define σJJ) - (l/aκ)σ(8(f))eZJmf σp(f) = βp(s(f)) e If(F f)®Z/m.

PROPOSITION 3.17. σ»(f) = l/aκ(σ(M)-σ(N) + mIκ(f\δM)), σp(f) =

Proof. Clear from the proof of Theorem 4.14.

Let M,N be Z/m-manifolds. Define M®N to be the Z/m-
manifold obtained from (M x N - (dM x c(m) \J δN x c(m))) ΌδMx
3N x W, where TF is a Z/m-manifold with δW — m*m. By [18],
(x) is well-defined and associative up to cobordism.

Define σ(M) = σ(M)y βp(M) = βp(M). By the proof of Lemma
3.5, a and βp are cobordism invariant mod(m).

PROPOSITION 3.18. σ(M®N) = σ(M)σ(N), βp(M(g)N) = ^(Λf)
α,(N) + βp(N)ap(M) (mod(m)).

Proo/. Choose TF above so that ^ ( T F , 3TF; Q) = 0. By Mayer-
Vietoris, H*(M®N\ Q) ^ H*(M; Q) (g) jgr*(/7; Q). By the usual argu-
ment (e.g., [23]), the equations above hold for this choice of W, and
hence any choice since we are working mod(m).

THEOREM 3.19. Let m = 2k and N a closed oriented smooth
Z/m-manifold. Then σv(f x 1̂ ) = σv(f)σ(N) for v = 2, 3, 5, , oo.

Proof. The v — ^ case follows exactly as in [18] (and does not
require N to be smooth). Assume v is a finite prime p e Λ\ By
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Propositions 3.13 and 3.18, we need only show that βp: Ω%°(Z/m) ->
W(FP) (g) Z/m is 0.

First assume k ^ 3. By [18], there is an exact sequence

.s~\so O ^ m r)SQ( y7/yy> \ Cyso

By Lemma 3.6, £ p vanishes on I m ( r J . Let [V] eΩ%(Z/m). By [29],
g F + δ F = 3 T Γ f o r some smooth manifold W. Then δ(#w/2 W\J (-V)) =
0, so that [#m*W\J(-V)] = rm[U] for some [U]eΩf°. Therefore

by Proposition 4.7

= -βP(V) since m/2 = 0mod(4) .

For TO = 2 or 4, we have a commutative ladder

> β f ^ > ΛS° ̂ ^ Ωl°(Z/m) -^-» β f i ! »• •

I- I - i* . 1=
> ΩΊn-^> Ωl° -2z+ Ωl°(Z/2m) - ^ ΩVL, > -

and so βp vanishes on d^iΩl0^) by the argument above and [29].

4* The homotopy type of G(K)/H(K). In this section, we
use the methods of Sullivan [24] to compute the homotopy type of
G{K)IH{K).

LEMMA 4.1. G(K)/H(K) ~ Λ'+ x SG(K)/SH(K).

Proof. We have the following homotopy commutative diagram
of fibrations

BSG(K) > BG{K) > K(Λ\ 1)

I ί ί
BSH(K) > BH(K) > K({±1}, 1)

by [25] and Proposition 2.6. Since the fiber of K({±1}, 1) -> K(Λ\ 1)
is K(Λ/{±1}, 0) = Λ'+, G(K)/H(K) is given as stated.

LEMMA 4.2. SG(K)/SH(K) is K-local.

Proof. Both BSG(K) and BSH(K) are lf-local by [25] and
Corollary 2.11.
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In order to construct odd primary characteristic classes for
SG(K)/SH(K)f we must introduce variants of the homomorphisms
σv defined in § 3.

Assume 2 g K and let Min be a smooth, closed, oriented mani-
fold, φ: M-*SG(K)/SH(K). By Theorem 2.10, φ determines a Q(K)~
bundle ζ over M that is fiber Λ-homotopy equivalent to v*M. It fol-
lows that T(ξ)κ and T(vM)κ are homotopy equivalent. Let a e
Hin+t(T(vM)) correspond to the natural collapse S4n+t —> T(vM); a de-
termines an element a' e H4n+t(T(ξ); A), and there exists a fteΛΓ+n^
so that ka' is represented by /: S4n+t —> T(£). Making / transverse
to ikf, we get a normal map fQ:N-*M (of degree ft). Define

σ(M)) eΛ

PROPOSITION 4.3. The invariants σ^, σp determine homomor-
phisms

σw: ΩfS(SG(K)ISH(K)) > A, σp: Ωξ°(SG(K)/SH(K)) >W(FV) .

Proof. We verify this for σ^; the proof for σp is similar. Since
σ is a cobordism invariant, we need only show that σjrf) is inde-
pendent of k and has odd denominator (i.e., I/ft σ(N) — σ{M) = 0
mod(α^)).

Suppose fu U SAn+t -> T(ξ) represent kLa', k2a' respectfully. It
follows easily that k2Nx (the disjoint union of k2 copies of Nx) is
cobordant to kγN2, so that ktσ{N^) = ^{N^}.

To see that l/kσ(N) - σ(M) = 0 mod(αA0, notice that σ(N)~
σ(M) = 0 modfe), since this is the signature invariant of the
normal map /. We have

and need to consider 3 cases: (i) aκ = 8: K ~ φ, so that ft = 1; (ii)
aκ = 4: Then all primes in K are lmod(4) and so ft ΞΞ lmod(4); (iii)
aκ — 2: 2 £ K, so ft is odd. In all cases, 1 — ft = 0 mod(α^) and the
result follows.

PROPOSITION 4.4. σ^, σp are multiplicative with respect to the
signature.

Proof. This is clear for 5M, and if [P] e Ωf,
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σ^of: MxP > SG(K)/SH(K)) = -f βP(N x P) - βp(M x P)
k

= λβ (N)σ(P) - βP{M)σ{P)
k

= σp(φ)σ(P)

by the methods of § 3.

We may similarly define σ%: ΩΐZ(SG(K)/SH(K); Z/2m) ->.
σ?: Ω™(SG(K)/SH(K); Z/2m) -> TΓ(F,) ® Z/2m by

- σ(M)) ,

- βp{M)

(with notation as above and in §3). Again by the methods of §3,
we have

PROPOSITION 4.5. σ™, σ™ are multiplicative with respect to the
signature.

THEOREM 4.6. Let 2 ί K. Then there exist unique classes J2?'* e
HA*(SG(K)/SH(K); Z{2)), β* e H"(SG(K)/SH(K); W(FP)) so that if
[ψ,M]eΩl°(SG(K)/SH(K)) or Ωl°(SG(K)/SH(K); ZJ2T), then

U φ*JZ>*, [M])

σp(φ) = iSfu U φ*β*,

Proof. The existence and uniqueness of ^ ^ follows exactly as
in [18]. For β*9 let Tp be the Moore space M(Zjbp, 1) where bp = 4(2)
if p = 3mod(4) (p = lmod(4)). Let X = SG(K)/SH(K), and define
σ': Ωf°+1(X+ A TP; Z{2)) to be 0 and σ'm: Ω™+1(X+ A Tp; Z/2m) -> Z/2m to

be the composition

J2f*°+1(X+ Λ Tp; ZI2T) = Ωf°+2(X+ A Tp A M(Z/2™, 1))

> βfί + 2 (X + Λ M(Z/bp, 2)) (m ^ 2 if δp = 4)

>ΩΪ2(X;Z/bp)

>Z/bpaZ/2™ ,

where the final map is d™ is bp — 4 and one of π^σ^ if 6P = 2. If
m = 1, &p = 4, define 5W similarly, replacing Z/6̂  with Z/2, and 5^
with 2σJ. It is easily checked that σ', σ'm are compatible, so by
Corollary 4.3 of [18] (and the remarks following), there exist uni-
que classes β* e HA*+1(X+ A Tp; Z(2)) = H^(X; Z/4) (p Ξ 3 mod(4)),
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πφ* eHi*+1(X+ A Tp; Z{£)) s JΪ4*(X; Z/2) (p = 1 mod(4)) so that (let-
ting /S - (7Γ./9?, τr2/9?) 6 H«(X; Z/2 φ Z/2)), *?(*>) - (&>κ U 0*/S?, [Λf ]>
for [φ,M]eΩt°(X;Z/2m).

We may similarly define σ'p: Ωξ°(SG(K)/SH(K)) -> 17(FP) by
σ'p(φ) — llkaP(N) — ap(M) (notation as before). It follows from the
proofs of Lemma 3.6 and Proposition 3.17 that σ'p is multiplicative
with respect to the signature, and so we may construct a class
a*peH4*(SG(K)/SH(K); W{FP)) as before.

There is also a Kervaire class /c*eH'*+\SG(K)/SH(K); Z/2), as
in [18] or [20], classifying the homorphism c: ΩS

4£+2(SG(K)/SH(K)) ~>
Z/2, c[φ, M] = the Kervaire invariant of the normal map determined
by ψ.

The classes £?*, fc#, β*9 a$ satisfy the following product formu-
las: Let m be the if-multiplication on SG(K)/SH(K) defined by
Whitney sum. Then

( i i ) m*(ιc*) = tc* 0 1 + 1 (x) ic*

(iii) m*(βt) = βt (x) 1 + 1 ® /5? + αj (g) /S? + β* ® a*
(iv) m*(αj) = αj (x) 1 + 1 (x) α* + α* (x) α* + /3? (x) /5*.

The proofs of (i), (ii) follow as in [18], [20]. For (iii), let [φ, M],
[f, N] 6 Ωl°(SG(K)/SH(K)). Then

σ,(m°(φ x nj>

and so

{m°(φ x ψ)*β'? U.̂ MXN, [M x JV;

= σp(m°

- (.(Φ*βi

+ Φ*a

]>

(Φ xψ]

ϊ Θ i ^

0

σp(φ)σ(N)

ϊψ*βϊ + 4

A similar formula holds for Z/2w-manifolds and the result follows
by uniqueness; (iv) is similar.

THEOREM 4.7.

0 n odd

π (SG(K)ISH(K)) ~\ZI2®A n ^ 2 m θ d ( 4 )

Proof. Consider the long exact homotopy sequence of the fibra-
tion

(SH(K)/SYL)K > (SG(K)/S¥L)K > SG(K)/SH(K) .
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By Theorem 2.5, πn(SH(K)/Sl>L)κj= πn(H(K)/PL) 0 A s f* 0 4 and

by [1], π%(SG(K)lSFL)x zz πn(G/PL) ® A. Since f*(gM = 0 for α

even and πΛ(G/PL) 0 Λ = 0 for n odd, the homotopy sequence of

the fibration above reduces to short exact sequences

0 > πn(G/?L) ®A > πn(SG(K)/SH(K)) > ψJU 0 A > 0 .

The cases when n is odd or 2mod(4) are now immediate.

Define σκ: π4k(SG(K)/SH(K)) -> W(A) (x) Λ = Λ 0 toτ{W{Λ)) 0 A by
Propositions 3.3 and 4.3. (Note that σ^ is defined even when 2 e K.)
We have the following diagram, for k > 1,

0 > τr4fc(G/PL) 0 yl - ^ πik(SG(K)/SH(K)) — ^ - 1 ® ^ > 0

i
0 > ^ —τ+ T7(yl) 0 il > TF(^, Z) 0 .1 > 0

i π
with exact rows, and σκo%^ = jo(σ/8) by construction, (s is the iso-
morphism of § 2.) Since σ is also an isomorphism, σκ is an iso-
morphism by the 5-lemma provided the right square above com-
mutes.

Let a e πik(SG(K)/SH(K)) and choose x e W(A) so that π(x 0 1 ) =
8od(ά). Let axeπ4k(SG(K)/SH(K)) be the element corresponding to
the normal map / of Theorem 3.2 with s(f) = x. By [3], s<>d(a9) =
π(x)9 and so δCα α^1) = 1. It follows that π <> σκ(a - az1) — 1, and so
s o d(a) — π(x 0 1) = π o σκ(a9) = TΓ O σ^(α).

For fc = 1, we have

0 0

i . l
0 > il ----> ^ f 0 - 4 >0

J 1 I
0 > π«(Cr/PL) ® Λ »• πt(SG(K)/SH(K)) > f 3

K ® ^ > 0

I i I
0 >A ——> A * Zmiaκ) ®Λ > 0

I 1 I
0 0 0

where A = kerίαj. By the argument above, σ^ is onto and both
squares commute. Therefore, the dotted arrow above may be filled
in, and πlSG{K)jSH{K)) is given as stated.
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Let iζ, = KU {2}, iΓ0<id = K\J {oddprimes}.

THEOREM 4.8. G(K)/H(K) s A'+ x K{fξ <g> Λ, 4) x Γ, wλβrβ Γ
is given by the fiber diagram

Y—> Π

p denotes the Pontrjagin class.

Proof. By Lemma 4.1, it suffices to compute the homotopy type
of SG(K)/SH(K). First consider (SG(K)/SH(K)\. By Theorem 4.7,

Ό n ^ 4k

πn(SG(K)/SH(K))2 =

so there is a map ^2: (SG(K)/SH(K))2 => K(fξ (g) Z^, 4) inducing the
projection on ττ4.

Write SG(K)/SH(K) = lim Xj9 the direct limit of its finite sub-
complexes. Since X5(zSG{K)ISH(K), there are compatible signature
homomorphisms, as in § 3,

Ω*(Xί}Q) >Q

I 1
Ω^X-Q/Z) >Q/Z

which determine an orientation class Δ) e KO{Xά) (x) Z2 by [25],
Theorem 6.3. Represent the ^-localization of Δ) by a map
Δό: {Xό)K2 -> {BO)K2. By naturality, the Δ'β induce a map Δ: (SGH(K)/

By construction, Δ\(SG/SFL)Kz=Δs, where Λ: (SG/ST?L)K2

is the localization of the orientation class of [25]. By the proof of
Theorem 4.7, (SG/SfL)K2d(SG(K)/SH(K))2 induces an isomorphism
on πn, n Φ 4, and the direct summand inclusion ZKQ -» Z^o φ ^f (g) Z ^
if n = 4. Therefore,

(A, zf): (SG(K)/SH(K))2 > * ( # * (x) Z^2, 4) x {BO)K%

is a homotopy equivalence.
Let k, 6 Hδ(K(Z/2, 2), Z^odd φ t f ® Z^odd) be the first ^-invariant

of (SG(K)/SH(K))i2). If f:(SG/SΫL)Koddd(SG(K)/SH(K))(2)1 then by
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[11] and [24], kL = f$(δSq2), where /# is induced by the map on τr4,
since / is 3-connected. But dSq2 is of order 2, and /# is multiplica-
tion by 16/aκ = 0 mod(2), so kλ = 0. Therefore there are maps φ{2):
(SG(K)/SH(K))M -+ K(Z/2(g)Λ, 2), φ'(2): (SG(K)/SH(K)){2) -> K{ZKodd@
ψf (x) ZKodύ, 4) inducing isomorphisms on π2, ττ4 respectfully;

If 2έK, then by the remarks following Theorem 4.6, there is
a class /c4,+2: (SG(K)/SH(K)))2) -> JBΓ(Z/2, 4i + 2), i ^ 1, and by Pro-
position 3.3 and Theorem 4.6, there is a class σu: (SG(K)/SH(K))i2)->
K{W(Λ) 0 Z{2), 4i), i > 1, inducing isomorphisms on τr4ΐ+42, TΓ̂ , respec-
tively. (For 2eK, (SG(K) SH(K))i2) ~ (SG(K)/SH(K)), so none of
this is necessary.) Again,

^ ) : (SG(K)/SH(K)){2) > K(ψfβ) ZKoda, 4)
x Π K(Z/2 (g) ̂  4i + 2) x

is a homotopy equivalence.

5* The homotopy type of H(K)/Ph. In this section, we use
the results of § 4 to compute the homotopy type of the classifying
space H(K)/FL of ^-reductions ofJPL-block bundles. Let (£SPL)(7°
denote the fiber of BSPL -> (BST?L)K.

THEOREM 5.1. H(K)/FL ~ (BS¥LγK) x Πt>o K(ψ< Θ Λ, i).

Proof. We first compute (H(K)[PL)κ. By [24] and Theorem

4.8, Ω5(SG/SPL)Kodd and Ω5(SG(K)/SH(K))Kodά have no nonzero fc-in-

variants, so allfc-invariants of Ω%SH(K)/sfL)Kodd = Ω%H(K)/¥L)Kodd^

Ω\H(K)/PL)K vanish. Since the first (possibly) nonzero homotopy

group of H(K)/FL occurs in dimension 3 and the next in dimension

7, {H{K)IYL)K ~ Π*>o K(ψf <g> A, i).
For the localization at K, consider the diagram

(SG(K)/SPL){K) > (SG(K)ISH(K))iK)

(BSFL){K) —-> K(ψξ (x) Q, 4) x Π K(Q, 4i)
(θ,P) i>0

where: φ is induced from SG(K)ISFL -> BSPL -> BSG(K), ψ is the
Q-localization, c is the constant map and p is the Pontrjagin class.

Since SG(K)/SH(K) is Z-local, f is a homotopy equivalence by
Theorem 4.8, and the diagram commutes up to homotopy by the
proof of that theorem. We have BSG(K){K) ~ *, so that φ is a
homotopy equivalence. Therefore,
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(H(K)/FL)iK) = fiber j>f (c, p)

^ ? is the Q-localization, and (BSPLYK) cz fiber of (BSPL){K)

(BSPL)Q. -
Therefore we have a fiber diagram

H(K)P?L > K(ψf ® ^ ) x Π K(ψf (x) A)

I I -
K(ψf (x) Q, 3) x (BSPL){K) > K(ψξ (x) Q, 3)

and the result follows.

6* Application to Λ-homology cobordism bundles• In this
section, we use the results of §§4 and 5 to study the space BH(K).
We first commute its homotopy groups.

THEOREM 6.1. The homotopy groups of BH(K) are given as
follows:

πt(BYL) (g)A i ΐ O mod(4)

πlBYh) (x) A 0 tor W(A) ® A ί = 4j,j>l

A(& ψf (g) A ί = 4 .

Proof. We have a homotopy commutative diagram

A'+ x (G/PL)* > 5 P L X > BG{K)

I I 1=
G(K)/H(K) > BH(K) > BG(K)

of fibrations, which yields a commutative ladder

• κι+1(BG(K)) -+ Li(l) ® A -> ^(5PLΛΓ) -> τn(BG(K)) -+ L

> πi+1(BG(K)) -> πi(G(K)IH(K)) -> πt(BH(K))

with exact rows, i > 0.

1. i έ̂ 0mod(4).
In this case, & is an isomorphism by the results of § 4, and

since φ^: W{Z) (x) A -> 1^(4) (g) ̂  j > 1, ^4: yl -> A φ f 3

K (g) yl are also
injective, ψi is an isomorphism by the 5-lemma.
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Case 2. i = 4i, j> > 1.
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Again, φi is injective and ^_x is an isomorphism, so ψi is injec-
tive with coker(^) ^ coker(^) ~ W(Λ, Z) (x) ̂ f. By Theorem 4.6,
there is a map ίΓ(tor W(Λ) (x) Λ, i) -> G(K)/H(K)-> BH(K). This de-
fines a section of nt(BH{K)) -> TΓ(iί) ® Λ c tor( FΓ(il, Z)) ® Λf and so
tor(ίΓ(i4)®i4) is a direct summand of ^(BH(K)). Since both
7rέ(J5PL) (g) ̂  and πt{BH{K)) are rank 1 ^-modules, πt(βH(K)) s

© tor( ̂ ) (g) A).

Case 2. ί = 4:

Consider the following diagram

τtA{G!PL)κ

πA(BPL)κ

H(H(K)!PL)K

icJS(K)IH{K)

in which only π±BH{K) is unknown. (Compare [21].) Since πABH(K)
has rank at least 1, we may write πJ5ΈL(K) = Λ 0 .A, and the
diagram becomes
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Let f\A, g\A: Λ-* Λ be multiplication by a, b respectfully. By com-
mutativity of the square above, 24α = (16/aκ)b and by multiplication
by a suitable unit in A, we may assume a, beZ+. We also have
a u ΞΞ lmod(24) for some ueA* and b-v divides 24 for some veA\
We consider 4 cases:

(1) 2, 3 e if: Then we have 24α = (16/^)6, 6 divides 24 and
a = 1 mod(24). The first two of these imply that 6 = 3, 6,12 or 24 and
a = 1, 2, 4 or 8. Therefore α = 1 and 6 = 3 if α* = 2, 6 if α* = 4
and 12 if aκ = 8.

(2 ) 3 e if, 2 g if: We have α* = 2, 24α = 85, bv divides 8 and
au ΞΞΞ 1 mod(8). As above a = u"1, & = 3^"x.

(3 ) 2 e if, 3 £ K: As in (2), α - u~\ b = 3w"V2.
(4) 2 6 if, 3 e if: In this case, 6 e A' and α = 26/3 e A.

In all cases, a e A', and a diagram chase shows that A = ψf (x) ΛL

COROLLARY 6.2. Bi?(if )2 - if(ψf <g) 4, 4)2 x J5PL*2.

Proof. Define φ: BPLKz -» BH(K)2 to be the natural map, and α/r
to be the composition K(ψf (g) A, 4)2 = if(f f ® A, 4)2 -> (G(K)/H(K)\->
BH(K)2, where the middle map is a splitting of the first factor of
{G{K)IH(K)\. Let m: BH(K\ x BH(K)2 -> £iϊ(if )2 be the J?-multiplica-
tian induced by Whitney sum. Then mo(ψf ψ); K(ψξ 0 A, 4)2 x 5PL^2~>
BH(K\ is a homotopy equivalence by the proof of the theorem.

For 2 6 if, this gives the homotopy type of BH{K).

COROLLARY 6.3. If 2 e if, BH(K) ~ K(ψξ ® Λ, 4) x J5PL,,.

Consider the diagram

(* ) [
BH(K)

where all maps are the natural ones. Galewski and Stern [8] and
Matumoto [14] have independently shown that when if = φ, there is

a map BH(K) -> BTOPK making this diagram commute up to
homotopy.

THEOREM 6.6. // if Φ φ and 2 g if, then there is no map

BH(K) -> BTOPK making (*) commute.

Proof. Such a map induces a homotopy commutative diagram
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>(G/ΎOP)K

G(K)/H(K)

and, applying πif we have

4 X 2 A

A >Λ
I

Λ

The map / is then multiplication by c e A on Λ, and (16/aκ)c = 2.
Therefore 2eK or aκ — 8, i.e., K — φ.

Galewski and Stern [9] have shown that BH ~ B TOP x K(ψz, 4)
provided ψ\j = Z/2 0 ^3. Quinn [19] has conjectured a similar formula
for BH(K) in general, which we now show to be false if 2 g ϋΓ and

THEOREM 6.5. If2gK and Kφφ, then there is no homotopy
equivalence

BH(K) > STOP* x K{$ϊ (x) A, 4) x Π #(tor IF(Λ) ® 4 4i) .
ΐ>l

Proof. Assume ^ is such a homotopy equivalence, and let

φ': BH(K) -»J5TOP* be ^ followed by projection. By the proof of
Theorem 6.1,

BPLK > BΎOPK

/
/*

BH(K)

induces commutative diagrams after πn is applied, and by the same
argument as in Theorem 6.4, 2eK or K — φ.
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