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ON THE UNIFORM DISTRIBUTION PROPERTY OF
CERTAIN LINEAR ALGEBRAIC GROUPS

ATSUSHI MURASE

Let G be a connected semisimple linear algebraic group
defined over an algebraic number field 4. Denote by G
and G, the group of k-rational points of G and its adeliza-
tion. In this paper, we prove, under suitable assumptions
on G, a uniformity of distribution of G, in G, with respect
to the Haar measure on G,.

Introduction. Let G be a connected semisimple linear algebraic
group defined over an algebraic number field k. We denote by G,
the group of k-rational points of G, and we write G, for its adeliza-
tion. :

The purpose of this paper is to show, under suitable assump-
tions on G, that G, is, in a sense, “uniformly distributed” in G,
with respect to a Haar measure on G,.

For each place v of &, let G, be the group of %,-rational points
of G where k, is the v-completion of k. If v is a finite place, let
O, be the maximal compact subring of k,. Then G,, the group of
O,-rational points of G, is an open compact subgroup of G,,. We
set

Goo = H Gk.,, ?

VEFoo

GAf = f' G,, (restricted direct product).

vVEZF

Here 72, (resp. ;) denotes the set of all infinite (resp. finite) places
of k. Then we have

G, = G,,G., (direct product).

Let & be a finite subset of &7;. Furthermore, for each ge .o let
K, be an open compact subgroup of G, and let {S,(j)}i=, be a
sequence of nonempty compact subsets of G,, satisfying the follow-
ing conditions:

KS(NK, =8() (G=12--).
We set
86 = IS x T G, .
Then S(j) is a compact subset of G, ;- For a relatively compact
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domain S, in G, let N(S(j), S.) be the number of points in the set
8@ x 8.) NG, It is easy to see that N(S(j), S.) is finite.

We say that a sequence {S(4)}3. has the uniform distribution
property with respect to a Haar measure dg on G, if the following
equality holds for any relatively compact domain S_ in G.:

lim N(SG), S/, dg =1/ dg

S(4) x GE\G 4

Note that the above statement does not depend on the choice of a
Haar measure on G,.

Let dg; be a Haar measure on GAJ. Then our main result is
stated as follows.

THEOREM 1. Notation being as above, assume that G is ani-
sotropic (namely that G\G. is compact). Furthermore, we assume
that G is absolutely almost simple® and simply conmected®. Then
the sequence {S(j)};=. has the uniform distribution property with
respect to a Haar measure dg, if the equality (0.1) is satisfied:

©.1) 1im§ dg; = 4o .
Jooo JS(J)

REMARK 1. The additional assumption that G 1is absolutely
almost simple can be replaced by the following weaker assumption
(A).

(A) For ge.&, if G, is noncompact then G is k-almost simple
(namely that G has no proper closed connected normal subgroups
defined over %,) and G,G,, is dense in G,.

Note that G has the property (A) if G is absolutely almost
simple and simply connected, by virtue of the strong approximation
theorem (cf. [9], [11], and [12]).

REMARK 2. There are numbers of examples of G satisfying the
assumptions in Theorem 1 (e.g., quaternion unitary groups constructed
by G. Shimura in [14]).

Even if G is not anisotropic, it is probable that an analogue of
Theorem 1 is available. At present we can prove only the follow-
ing:

THEOREM 2. Let G be SL, (regarded as a linear algebraic
group defined over k). Then the sequence {S(7)}i-. has the uniform
distribution property if (0.1) is satisfied.

We present an implication of our results. Assume that G

D This implies that G has no proper closed connected normal subgroups.
2 For the definition, see [8], p. 189.
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satisfies the assumptions in Theorem 1. Assume t =@ and .& =
{p}”. Let S; be the set of elements g in G, such that the coordi-
nates of p’g are integral and moreover satisfy some preseribed
congruence conditions. Let U, V be relatively compact domains in
Gr, and let »(U), v(V) be their volumes measured by a Haar measure
on Gr. We denote by N,(j) (resp. N,(j)) the number of elements
in the set UNS; (resp. VN S;). Then we have

lim Ny (5)/ N (3) = o(U)/o(V)" .

A special case of Theorem 1 was first obtained by M. Kuga in
[10] when G is the group of indefinite division quaternions with
reduced norm 1. Several ideas in [10] together with recent results
of Howe and Moore [7] are basic in our present paper.

Note that H. Yoshida shows in [16] that Theorem 2 for % = Q
leads to his distribution law for PSL (2, Z[1/p])-elliptic conjugacy
classes.

I would like to express here my deep gratitude to Professor T.
Shintani for his suggestion of the problem considered here, his
many mathematical and linguistical advices and his constant en-
couragement during the preparation of this paper.

NoOTATION. For a complex number s, we denote by Ims (resp.
Re s) the imaginary (resp. real) part of s. For an algebraic number
field &k, we denote by A and I the adele ring of % and the idele
group of k%, respectively. We denote by |a|, the module of an
idele a, given by the equality d(ax) = |a|.dx where dx is a Haar
measure on A. For a locally compact topological space X, we denote
by C%X) the space of continuous functions on X and denote by
C{(X) the space consisting of fe C%X) with compact support. For

» We assume that Ge, is noncompact.

9 In fact, our result implies the following asymptotic formula for Ny(j). Let
K be a sufficiently small open compact subgroup of Ili<.Gz;,, and put I'=(KXGg)N
Go. We may assume that I'S;I'=S;(j=1,2,---). We denote by |I'\S;| the number
of left I'-cosets contained in S;. Then we have

Ny(g)~vol (M\Gr)™ - o(U)- II\S;]

as j—oo.

% (C. Pommerenke obtained in [13] the following similar results, while his method
seems to be different from ours.

Let A be a positive definite symmetric integral matrix of size m=5. Set X=
{xe R™'xAx=1}C R™. For a positive integer n, put

S.={g/vVnlge Zm, tAs=n}c X .

Let 4 be the set consisting of positive integers n such that S,7=¢. Then the sequence
{Splne 4 is uniformly distributed in X with respect to a suitable measure on X.
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a continuous function f on a locally compact group G, and for a
compact subgroup M of G, we say that f is right M-finite if the
set {R,.f; me M} spans a finite dimensional subspace in C°(@), where
we set R,f(g9) = f(gm). For a bounded linear operator T on a
Hilbert space H, we denote by ||T'|| the operator norm of T, given
by

17l = sup_|IToll/v]l-

For a finite dimensional vector space V over C, we denote by
End(V) the C-algebra of C-endomorphisms on V. If T is a C-
endomorphism on a C-vector space with an inner product, we denote
by T* the adjoint of T with respect to the inner product. If = is
an unitary representation of a compact group M on a finite dimen-
sional vector space V over C, we set dimz = dim, V.

1. We keep notation in the introduction without further com-
ment. From now on, we always assume that G is a connected
semisimple linear algebraic group defined over an algebraic number
field k. We set

K= Tl GoxILK,.

ge?ff—.s’

Then K is an open compact subgroup of G,,.. We normalize the
Haar measure dg; on G,, so that

SKdgf =1.

Choose a Haar measure dg. on G, and fix the Haar measure dg on
G, by setting

dg = dg;A9..(9 = 979y 97 €Gap 9.€G) -

Then dg induces an invariant measure dJ on G,\G, in a natural
manner.

Let L¥G,\G,/K) be the Hilbert space of right K-invariant square
integrable functions on G,\G,. Note that constant functions are in
LXG,\G,K), since the volume of the quotient space G,\G, is finite
(ef. [2], 5.6).

Let &; be the characteristic function of S(j). Then ¢&; is K-
biinvariant, continuous, and compactly supported on G,,. For each
fe LA(G\G/K), set

(LD foe@) =\, F@hehdn,

Then the mapping f i+ fx&; gives rise to a bounded linear operator
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on LXG,\G,K). We set
1.2) degé; = SG &i(90dgs = S dg; .
Af S(4)

Then deg ¢, is equal to the number of left K-cosets contained in
S(7). We denote by || || and (,) the norm and the inner product
in L¥G,\G,K), respectively. Set

0= g dg
Gr\G 4

Then the following proposition plays a basic role in the present
paper.

PROPOSITION 1. The sequence {S(j)};=, has the uniform distri-
bution property with respect to a Haar measure on G,, if the fol-
lowing equality holds for any fe L¥G,\G./K);

(1.3) lim [| £+8;/deg & — (f, Dol = 0.

To prove the proposition, we need the next lemma.

LEMMA 1. Under the assumption of Proposition 1, we have,
for any @ € CAG,\G,/K) and geG,,

(1.4) }irg px£;(g)/deg &; = (, L)/v .
Proof. Assume that the lemma is false. Then there exists
g, € G, such that the equality (1.4) does not hold for g,, We have
lim sup [+¢,(g0)/deg & — (@, Dfv| =2 > 0.
We can choose a subsequence {£;, )i, of {£;}7, such that
lim |p+¢;,(g0)/deg &;, — (P, D/v] =7 .

Let S@j) = S Ko (0{” €G, J1=1=<Nj;)) be a decomposition of
S(7) into a disjoint union of left K-cosets. (The number N; equals
deg £;.) It is easily verified that

Pe2i0) = 3, 2907 .

Hence we have, for geG,,

Iq)*f)k(g)/deg Ejk - (?9 1)/”]
= |px€;,(g90)/deg &;, — (@, D/v]
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— 1 [948:(0) — P785,(00)
2 |p*&;,(9,)/deg &;, — (@, 1)/v]

1 Gk (4)—1 (-1
N > |p(goi” ™) — P90 )] .
7

I=1

Since the function @ is continuous and compactly supported on
G.\G,, there exists an open neighborhood U of 1 in G, such that
9:'g, € U always implies

[P(g) — Plg)| < /2.

Suppose that ge g, (G..N U). Then we have (g,0% 7% X (gaf» ™) =
o9P g tgoi W = gi'ge U. (Note that g;'g € G, commutes with every
element in G,..) Thus we have, for gcg(G. N U),

1 Yie . .
N2 | Peol™) — g™ < 7/2 .
i =t

Hence, for any g eg,(G. N U), the following inequality holds:
(1.5) lim inf [ P+¢;,(g)/deg &;, — (P, D)/v|
z7—7n2=79/2.

In fact, this inequality (1.5) holds for any g¢geG,9,(G.. N U)K since
px&;, is left G -invariant and right K-invariant. Since (G.N U)K
is an open set in G,, we have, by virtue of Fatou’s lemma,

lim inf || p«¢;,/deg &5, — (2, D/w]l*

=

lim inf |px&;, (g)/deg &;, — (P, D[v]* dg

Sak\akgo(amnv)x

> (7/2) S d§>0.

Gp\G90(GoNU)K

Contradiction! The lemma has been established.

Proof of Proposition 1. Let us consider any two relatively
compact domains S., S” in G. satisfying S.c SZ (we denote by
S? the closure of S, in G.). We choose a real-valued continuous
function ., on G, satisfying the following conditions (1.6) and (1.7):

(1.6) 0 <+.(9.) =<1 for any g.€G..,

1if g.e8S.

(1.7) "l"oo(geo) = 0 if gmes‘g .

We set (g) = v(g)V.(9.) for g = gs9.(9s€ G4, and g.€G..), where
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+y denotes the characteristic function of K. Then +(g) is continuous
and compactly supported on G, It is easy to see that the series

P(9) :r% ¥(79)

converges absolutely and uniformly [on jany compact subset of G,
and that @(g) € C2(G,\G,/K). Applying Lemma 1 to @, we obtain

(L.8) },irg px£;(1)/deg &; = (@, Dfv .
We have
@ = o= vod
= SGM Vs(97)dg; - Samwlrm(gm)dgw .
In view of the conditions (1.6) and (1.7) imposed on +,, We have
(1.9) “(Sh) = (P, 1) = (S2) ,

where we set ¢(S%) = S @901 =1, 2).
SOO
Next we have

e =, Plde, = |, 3 v9%0 e

G4
= S, vieee e,

where we write v = v,7.(v;€G4, and 7, €G.). Since ¥(797")Ei(95)
is, as a function of g, the characteristic function of Kv,N S(9),
we have

1if v,eS8()

e . =
SGAf P (Vr97)E(9 )9 {0 otherwise.

Hence

Px&;(1) = > Voo Too) -

7€GEN(8(F) XG o)
Then (1.6) and (1.7) imply that
S l=oexg() = > 1.

TeG NS xSL) FeGENSXSL)
Thus,
(1.10) N(S(5), 82) = p=£;(1) = N(S(G), 8) -
Combining two inequalities (1.9) and (1.10), we get
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N(S(5), 82)/1(82) deg &; < p+£,(1)/(, 1) deg &;
=< N(S(j5), S2)/1(Sx) deg &; .

It follows from (1.8) that
lim sup N(S(5), Sx)/i(Ss) deg &; =< 1/v

< lim inf N(S(5), SZ)/1(Sz) deg &; .
It is easy to see

dg = p(S5)-degg; (1=1,2).

Ssu‘) x5

Hence we get the following two inequalities;

1) limsup NSG), SHf{  dg = 1o pSDImSL,

S(N XS],

(dg = Lo-p(SD/i(SL) .

S(F)x8,

(L12)  liminf NSG), 82/

For a given relatively compact domain S, in G., apply (1.11),
setting S, = S.. For any ¢ > 0, there exists a relatively compact
domain SZ such that 1 =< p(SZ)/u(S.) <1+ ¢ and that SZ>S..
Hence we have

(1.13) lim sup N(S(3), 5.) / g dg < 1/v .

8(3) X8

Similar arguments for the inequality (1.12) (in this case, we set
S’ = 8.) lead to

(1.14) lim inf N(S(5), S“)/Sm dgz 1.
J—oo 3) X 8o

Thus we have

lim N(S(), S.) / S dg = 1/v .

J-oo NERE S
This implies that the sequence {S(j)};, has the uniform distribution
property with respect to a Haar measure on G, and hence the
proposition has been proved.

2. In this section, we assume that G is anisotropic, simply
connected, and satisfies the condition (A).
We shall prove the following:

PROPOSITION 2. If (0.1) 7s satisfied, the equality
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2.1 lim || f+¢;/deg & — (£, Djv]| = 0
holds for any fe L*G,\G./K).

By virtue of Proposition 1, Theorem 1 is an immediate conse-
quence of this result.

In this section we keep the normalization of Haar measures on
G4 G, and G, given in §1. We set K, = G,, for ge & — & and

normalize the Haar measure dg, on G,, for g e .Z% so that S dg, = 1.

The product measure [J;.-, dg, is equal to the previously normahzed
Haar measure dg; on G,,.

Let L¥G,\G.) be the Hilbert space of square integrable functions
on G,\G,. Then L*G,\G,K) is the closed subspace of right K-in-
variant functions in L¥G,\G,).

The next lemma is easily verified.

LEMMA 2. Let {T;}3-, be a sequence of bounded linear operators
on a Hilbert space H such that

§glpllT,-H < oo,
Let {F,}y_, be a countable orthonormal basis of H. If we have
lim || T, || = 0
for all n, them we have, for any F € H,
lim || T,F|| = 0.
For each fe L*(G,\G,K), set
T;f = f+&/deg &; — (f, D/v .

Then the mapping f+ T;f gives rise to a bounded linear operator
on LXG,\G,K). For any zeG, and fe L G,\G,), we set R,f(g) =
f(gx). Then R, is a norm preserving linear operator on L*G,\G,).
Since we can write, for any fe L*G,\G./K),

deg ¢ 5
Fres= 3 Rypf,
we have

1+, = 5 I Ry f 1] = deg &11£1] -

Hence
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I Tl < 11F1] + NTDL 1 =2isl.

This implies that
sup || 5|l = 2.
j=21

We shall pick up a well-chosen orthonormal basis of L*(G,\G,/K)
and prove that the equality (2.1) holds for each member of this
basis. Then Lemma 2 implies that the equality (2.1) will hold for
any feL¥G,\G,K) and hence Proposition 2 will be proved.

Let IT be the right regular representation of G, on L*G,\G,).
Since G,\G, is compact, the unitary representation I7 decomposes
into a direct sum of at most countable irreducible unitary repre-
sentations of G, with finite multiplicities (cf. [4], Chap. I, §2.3,
Theorem). We write

L2(Gk\GA) — i; H(n) , H — i; n.(n)

where H™ is a closed G ,invariant subspace of L*G,\G.), and z=™
is the restriction of # to H™ (x'™ is irreducible). We may assume
that H® = C-1 and that z is trivial. Furthermore each repre-
sentation 7 is factorizable. That is to say, there exists an irreduc-
ible unitary representation 7 of G, for every place v of k satisfy-
ing the following conditions (2.2) and (2.3).

(2.2) Except for a finite number of v, the representation space
H™ of n{" contains a G, -invariant unit vector f which is unique
up to a scalar multiple.

(2.3) The restricted tensor product @, {” with respect to the
family {f;} is unitarily equivalent to #™ (cf. [4], Chap. III, §6.2).
Then we have the decomposition;

LHG\G./K) = 3, (L(G\G./K) 0 H™) .

Now we shall choose an orthonormal basis of L¥G,\G./K)N H™ for
each n. Then the union of bases for all » forms an orthonormal
basis of L¥G,\G,/K). When n =0, we have

LNG\GJK)NH® =H®,

and {1/ v} can be taken as its orthonormal basis. It is obvious
that

T,V v)=1vv— AV v, Div=0.
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From now on, we fix an index n = 1, and, for simplicity, we drop
the index n. Hence we write H, w, z,, and H, for H™, =™, z{»,
and H™ respectively. Note that, for any Fe HN L G,\G/K), we
have (F,1) =0 and T,F = Fx£;/degé&;. Let us take an isometric
linear mapping 7' from the restricted tensor product @, H, to H,
intertwining @, x, and #. For ge F,;, let V, be the space of K-
invariant vectors in H,. Then V, is finite dimensional (cf. [1],
Theorem 1). In view of (2.2), there exists a finite subset 5’ of
; containing .&” such that V, is one dimensional if ge & — 5.
Then we can take as a countable orthonormal basis of H N LY G,\G,/
K) a set of elements of the form T(®R @) where ¢’ ¢ H, for every
place v and satisfies the following condition (C):

(i) |l¢°ll, =1 for any place », where || ||, denotes the
J norm of H,.

©) l(ii) g eV, for ge .
(iii) ¢ = f¢ for ge Fr — .

Hence, to show Proposition 2, it is enough to establish the fol-
lowing:

PrOPOSITION 3. Notation being as above, for any element F e H
of the form T(@,P:) where P} satisfies the condition (C), we have
(2.4) lim || F'+¢;/deg &[] = 0 .

Proof. We set S;(j) = K; for all j if ge & — &. Let & be
the characteristic function of S,(j) for ge &. Then &7 is K,-biin-

variant, continuous, and compactly supported on G,. For g,=
(+*, Gy ) €Gy4; we have

£(9s) :gel;lf £:%(9,) -

For ge.%”’, choose an orthonormal basis {fi*|1 = < dim V,} of V,.
We may assume that f = @%. Then, for ge.&”’, the integral

fosgp =\ entormia)sodg,
]
belongs to H, and is invariant under the action of K, through =,.

Thus it belongs to V, and hence can be written as a C-linear com-
bination of fi(1 < m < dim V;). That is to say, we have

JixEp = ;% sfmg')"m?l(sj)

where
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NatE) = |, 07w 0) s, o,

= Ss (5 (ns(ggl)fl" fa)dg, -

8

(Here (, ), denotes the inner product of H,.) Now we have, for any
reG,,

Fegio) = |, Fag o)
PR ZUCT O

=7(@ 7®® |, tomoerds,)w

VE P
=T(Q® #2:® ® [fi® @ fixt)(x).
VE€E P00 ge9f—.5/" ges!
Since T is norm-preserving, we get

1Pl = T0 lobllox LISl IL ffeesl
= 1

ges’

dim Yy |
3 a8

dim ¥,

= IS haae)) -

ges! m=

8

On the other hand, if we put

deg ¢ = Sakgé,-%ga)dga = SS‘(j)dgs

for ge &, it is easy to.see (recall the definition (1.2))
degg; = II degés
ges’

(in fact it equals J],.. deg é;#). Thus we have
dim VB
(2.5) 1Fesjdeg &1l < T1 (30" e l/deg &4 ) -
g’ m=1
Since S,(j) = K, for ge &’ — &, we get finally

(2.6) || Fxg;/deg &;|| gcsgg digﬂm(g;‘)ff, f,&)eldgg/s _dg,

Sg(4) Sg()

where C = [[4esr—o dim V.

Now we shall show that 7z, is not one dimensional if ge.&”
and G,, is noncompact. More generally, we shall prove the follow-
ing:

LEMMA 3. Let H be a connected, simply conmected semisimple
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linear algebraic group defined over an algebraic nmumber field k,
and let v be a place of k. Assume that H is k,-almost simple and
that H.H, ts dense in H, Let p be an irreducible unitary repre-
sentation of H, realized on a closed subspace 57 of L*(H\H,) by
right translation. Furthermore assume that o decomposes into a
restricted temsor product Q p, of irreducible unitary representations
0, of Hy,. If p is nontrivial, then p, is not one dimensional.

Proof. Since H,H,, is dense in H,, H,, is not compact, and hence
rank, H =1 (cf. [9], p. 187). It is known that, if X is a semisimple,
simply connected, almost simple linear algebraic group defined over
a local field K with positive K-rank, then X, coincides with its own
commutator (ef. [3], 6-4 and 6-15; see also [6], Appendix II, Theorem).
Hence H,, has no nontrivial unitary characters. Assume that p, is
trivial. Then every element in 57 is right H, -invariant as a funec-
tion on H,. There exists p e CXH,) and fe 5~ such that

F= g p()p(h)fdh = 0 (as an element of 57) .
HYq

It is easy to see that F'is, as a function on H,, continuous. Since
F is right H,-invariant and left H,-invariant, F' is constant on
H,H, K which is dense in H,. Hence F' is a nonzero constant func-
tion on H,. Since p is irreducible, we have 5 = C-1 and p is
trivial. Contradiction! The lemma is proved.

Applying Lemma 3 for (H, o, v) = (G, «, g)(ge & and G,, is non-
compact), we see that 7, is not one dimensional.

On the other hand, Howe and Moore proved the following:

LEMMA 4 (cf. [6] Theorem 5.2).9 Let @ be an irreducible unitary
representation of k-almost simple, simply connected linear algebraic
group 'G defined over a local field k on a Hilbert space H. For
any x, y<€ H, set p,,(9) = (w(@)x, ¥). Then p,, vanishes at infinity
if 7w is not one dimensional.

(Here we say that a continuous function f on a locally compact
group G wvanishes at infinity, if, for any ¢ > 0, there exists a com-
pact subset C of G such that sup,.q_c|f(9)] <e. In case that G is

® In case G=SL(2) over a g-adic field ks, this result easily follows from the
existence of the Kirillov model of o (that is to say, o is realized on a closed subspace

2Z of Lz(k;‘), and, for any f€2# and for any a €k, we have

,,<“ _l)f(m)=f(a2x) (@e k)
a

(cf. [4], Appendix to Chapter II, n°2 and n°5)).



176 ATSUSHI MURASE

compact, every continuous function is said to vanish at infinity.)

Thus we conclude that the function on G, given by g,—
[(mo(g; ) S8 fi)l 1 < m < dim V,) vanishes at infinity. In view of
(2.6), the proof of Proposition 8 has now been reduced to the follow-
ing lemma.

LEMMA 5. Let G A <1< m) be a locally compact group with
a left imvariant measure dg,. Let fil =1 < m) be a continuous
Sunction on G, vanishing at infinity. Let {S;(9)}7.. be a sequence
of open compact subsets of G, such that

ianS dgi=7>0 1<l<m).
1449

izt

Iy

@.7) lim I g dgs = + oo ,
Sy

oo 1=1

then the following equality holds:

J

joroo 1=1

2.8) tim [1 ([, | fitonda, || dar) =0.

Proof. Note that (2.7) implies that, for at least one leM =
{1, 2, ---, m}, G, is noncompact. Observe that

' gs,u') filgndg, /L,(a')dgl I

is bounded if G, is compact. Hence we may assume that G, is non-
compact for every le M. Set N,=suDycq |fi(g)|. Then N, < oo(l <
Il <m). For any ¢ > 0, there is a compact subset C; of G, such
that | fi(g)| < e for every geG, — C;. By a simple calculation, we
have

1H S . Silg)dg
eM JSi(d

Ji(g))dg,

AcHM led SS;(j)ﬂC;

9 O T A%
leM—4 )85 N@G—Cp

where 4 ranges over the collection of all subsets of M. To simplify
the notation, we set

o=\ dg ana K= do.
(4]

Si(4)
Since
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. flo)ds,

spne;

< Min (N,J,, N.K,(5)) ,

and

Silgndg,

Ssm’) ne—cp

= eK(J),

we have

1 [, Ao/} |
< Il NJ/ 11 S(9)
+ 5 ILNKG) I oK) TLEG)™
=lg[ NlJ,/lg Si(7) + A;,"s"””’”- £[AN, .

Here |M — 4| denotes the number of elements in the set M — 4.
Hence, if ¢ < 1, we have

timsup | 1 {{, = 7i@do/K} |
<e3 TN

ASM led

Since we can choose arbitrary small ¢ > 0, we obtain the equality
(2.8).
Thus Theorem 1 has been established.

3. In this section, we always assume G = SL, (regarded as a
linear algebraic group defined over an algebraic number field k).
We shall prove Proposition 2 under our assumptions. Note that
Proposition 2 for G = SL, implies Theorem 2, by virtue of Proposition
1. We set

=0 =10

These groups can be naturally regarded as k-subgroups of G. For
any FeCNU,H\G)), set

3.1 6:(0) = 3 Flrg) .

TEPy

t;éO}, and P=UH.

The series (3.1) converges absolutely and uniformly on any compact
subset of G,. The function 6, is, as a function on G,\G,, continuous
and compactly supported, and hence square integrable on G,\G, (cf.
[5], §6). Let ® be the closure of the subspace of L*G,\G.) spanned
by all elements of the form 6, with FeC(U,H,\G,. Let 57~ be
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the closed subspace of L*G,\G,.) consisting of all elements f such

that the integral S -~ f(ug)du vanishes for almost all geG,. Then

@ and &7 are both rlght G ~invariant. It is known that L¥G,\G),)
is the direct orthogonal sum of 6 and 5~ (cf. [5], §7). It follows
that LZ(G,,\GA/K) is the direct orthogonal sum of 6=0NLAG\G./K)
and 57 = o7 NLAG\GL/K); LHG\GJK)=6D 7 (direct orthogonal
sum). Hence, for any fe L*G,\G4/K), we can write f=® +  where
pecb and './pe%’ As is well-known, 6 contains constant functions.
Hence S# is orthogonal to C-1. Thus we have

|| f+&;/deg &; — (f, D/v]| = ||px&;/deg &; — (@, D/v]|| + ||4*&;/deg &;]| .

Hence the proof of Proposition 2 in our case has now been reduced
to the verification of the following two propositions.

PROPOSITION 4. If (0.1) is satisfied, the equality

3.2) lim [|p+5;/deg & — (P, Dfv]] =0
holds for amy @ <6.

PROPOSITION 5. If (0.1) is satisfied, the equality
3.3) 111_1’2 [|ypx&;/deg & = 0

holds for amy + € 5.

It is known that the right regular representation on 5% decom-
poses into a direct orthogonal sum of at most countable irreducible
and factorizable unitary representations with finite multiplicities (cf.
[5], §2 and [4], Chap. III, §3-3, Theorem). Then, to prove Pro-
position 5, we just repeat the argumeni of the proof of Proposition
2 in §2, replacing L*G,\G,/K) with =7.

In order to show Proposition 4, we need several results about

the spectral decomposition of 6.
Let M = [, M, be the maximal compact subgroup of G,, where

we set
Gov if 'Ue\.qéf
SO®?) if ve”, and k,= R
SUQ) if veF, and k,=C.

Then we have G, = U,H,M. We fix, once and for all, the Iwasawa
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decomposition of g e G, given by

9 = w(9)h(g)m(g) ,

where u(g) e U,, h(g) € H,, and m(g)e M. We normalize the Haar
measure dg on G, by putting, for any feCYG)),

(3.4) [, rodg = S,,,dmLA 8w dn | fahmdu .
Here we set
Blh) =
for
h = £ 0 )eH
B (0 ¢! 4

and we denote by du, dh, and dm Haar measures on U, H,, and
M respectively, which are normalized by the following conditions;

du =1, S |8 |5dh = 1/s (Res > 0),

SU]‘\UA Hp\H 4,8k =1

and
Ldm =1.

From now on, we normalize the Haar measure dg, on G,(g€.Z%) so
that S dg, = 1. Let dg,; be a Haar measure on G,, given by
M

8

(3.5) dgs =°Hfdge (95s=1I 9.€G4,) .
e 96.?f

We normalize the Haar measure dg., on G, so that dg = dg.dg;
(9 = 9.95), Where dg and dg, are given by (3.4) and (3.5), respec-
tively.

Let I, be the subgroup of I consisting of ideles with module 1.
For a positive real number A, we denote by &(\) the idele such that
E(\), =1 for every g€ and &), =\ for every ve &, Let N
be the image of {£(A\); » > 0} by the natural projection from I to
EX\I. Then we have '

B\ = (k*\I,) X N (direct product) .

Let X, be the set of all unitary characters on H,\H, which are
trivial on the image of N by the natural isomorphism from k~\I to
H)\H,. Then X, can be identified with the dual of %*\I,. Since
k*\I, is compact, X, is discrete (cf. [15], Chap. VII, §4).
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We fix a complete system M~ of representatives of equivalence
classes of finite dimensional irreducible unitary representations of
M. Let H. be the representation space of e M~. For Xe X, let
H.(X) be the subspace of H, consisting of all vectors v € H, which
satisfy the following equality:

v-t(uh) =v-A7'(h) (YuheP,NM).

We denote by X,(z) the set of all elements X € X, such that H.(X)+
0. It is easy to see that X,(z) is a finite set.
For FeC(UH\G,), e M", X € X,(z), and for seC, we set

3.6) F (s, X 1) =§ S F(hm)e(m=9X(R) | B(h) |5*dhdm .
MJIHE/H 4

The integral (3.6) converges for any seC. As a function of s,

F~(s, X, t) is a holomorphic function in C with values in End(H.).

Set

G703, % ) = SMS 0, (whm)z(m=HX(h) | B(k) '~ dudhdm

Hk\HASUk\UA
where 6, is given by (3.1). The integral (3.7) converges absolutely
and uniformly on any compact subset of the domain {se C|Res>1}.
As a function of s, 65(s, X, 7) is continued to a meromorphic function
in C with values in End.(H,) (cf. [5], §6). It is known that

(3.8) (s, X, 7)=F"(1—3sX )+ F (s, X7 0)0(s; X, T) ,

where @(s; X, ) is a meromorphic function of s in C with values in
End.(H.) (cf. [5], §6). Furthermore suppose that, as a function on
G, F(g) depends smoothly with respect to the archimedean compo-
nents of g. Then the norm of 4, in L*(G,\G,) is given by the follow-
ing formula (ef. [5], §7, (7.8)):

3.9 1160 = [, 1636, %, ©)lzds + = |(6s, DI

1
271'1/—-1 teMA xeXq() JT
Here || T||? denotes dim z-Tr (TT*) for T € End.(H.), and we set
(3.10) J={seclRes=l, 1ms<o}.
2
The following lemma is easily proved.
LEMMA 6. Let {T;}7, be a sequence of bounded limear operators

on o Hilbert space H such that sup;s, || T;|| < o, and let H' be a
dense subspace of H. Assume that, for any ve H',
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(8.11) lim || Tw]|| = 0.
]
Then the equality (3.11) holds for any ve H.

Now we are ready to prove Proposition 4. Let 7; be a linear
operator on © given by

Tip = px&;ldeg &; — (@, Vv (peB).

We have already seen that ||T;]|=<2(j =12, ---). We set M, =
Il.c». M,. Then M, is a maximal compact subgroup of G.. Let
< be the space consisting of all continuous funetions on U, H,\G./K
satisfying the following conditions (3.12) and (3.13).

(8.12) FY(g) is compactly supported modulo U, H,.

(3.13) As a function on G,, F(g) depends smoothly on G. and F(g)
is right M_-finite.

Let ©' be the linear space spapned by elements 0, with Fe <.
Then O’ is a dense subspace of 6.

Now we shall prove that the following equality holds for any
0,€06":

(3.14) lim || T,6,|] =0 .

Then, in view of Lemma 6, Proposition 4 will be proved. To show
the equality (3.14), we need the next lemma.

LEMMA 7. For any 6,€ 6, we have

5 | 1600 6,7, 0deg 1105 .

1
+ R . A
(3.15) ” T:/aF“ 2751/"‘"1 TeMA YeXq(7)

Proof. We have

| Ti6r|I* = ||05+&;/deg & — (05, D/v|*
= ||0p*¢&;/deg &I — 2 Re {(Br, 1v/deg &;-(8r%&;, 1))
+ 110z, Dfvl” .

We set &(g9) = £;(g™). Then it is easily verified that
(fixéip f) = (i fx&7)  (fy e NG \GL/K)) ,

and that deg &; = deg &;. Hence we have

(8.16)  (0r&;, 1) = (05, 11£7) = deg &7(0r, 1) = deg ,(6r, 1) .

Thus



182 ATSUSHI MURASE
[ T30 = [|67%&;/deg &l" — [(0r DI/v .

Observe that 6.+£; also belongs to 6'. Applying the formula (3.9)
to 0,%&;, we have

1700 = S|, 11604607, 7, ©)/deg &[1ds

1
oy —1 z'eZM’\ 2€X1(0)
+ % | 0+8,/deg &5 D — |(@rs Do -

The equality (3.16) implies that the last two terms of the right
side of the above equality cancel each other, and hence the lemma
is proved.

Since 6, is, as a function on G, right M_-finite, and since 6,x&;
is right K-invariant, there exists a finite subset L of M~ such that
teM”™ — L always implies (6,%¢;)(s, %, 7) =07 =1,2, ---) for any
seC and for any Xe X,(r). Thus the right side of (8.15) is a finite
sum. Hence, to verify the equality (3.14), we have only to show
that the following equality holds for any te€ M~ and any X eX,(7):

. 1 ~ tde —
@11 tim——Z| 10,2605, %, ©)fdeg &;lds = 0.

Observe that

1 ~ 2
=), 102606, X, D)fdeg &, s
1 1 ~ 2
S /=T X Pl 0086 7, des &

= L suplls- (0,42, %, ©)/deg &1 -

Hence the proof of (3.17), and hence of Proposition 4 has now been
reduced to the verification of the following equality for any Fe 2,
zeM”, and for any X € X,(z) under the assumption (0.1):

(3.18) lim (sup || s-(0,+¢)(s, 2, )/deg &(I.} = 0

(recall that J is given by (3.10)).
To establish the equality (3.18), we need the following lemma.

LEMMA 8. For Fe=,teM”, and XecX,(zt), there exists a
positive constant C such that the following imequality holds for any
seJ={seC|Res =1/2, Ims < 0}:
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-0t s, 2, )1 5 O ([, 1 8mar Do dg dm

(3.19)
(G=1,2 .
Proof. We set
(3.20) Fee) = |, Fahidendn, .

Then it is easily verified that F=£; also belongs to &, and that
0,*E; = Op-;. Applying (3.8) to 0,+&; = 0., We obtain

(321) (0F*Ei)A(sr X’ T) = (F*Ey)A(l -8 X, T)
+ (F*&;) (s, X7, 0)0(s; X, T) .

In view of (3.6) and (3.20), we have
(F*£;)°(s, X, 7)
= S,,S,,k\,, SaAf F(hmg7)¢(9 ) v(m™)X(h) | B(h) |3°dg ;,dhdm .

Observing that
hmg;' = hu(mgz)h™" - hh(mg;") - m(mgs*) ,
we have
(F&;)"(s, X, 7)
=V o, Vo, FOBOMGmma7 )t (0 )2m™200) | 800 g b

=\, (1, F-mlmgz @) | £ )L 7)
| BR(mg7)) i€ (9 Jr(m™)dg ,dm
(note that hu(mg;)he U, and that F is left U, -invariant). Set

Fo,80=\_  Foalm|60)dh.

This integral converges absolutely for any s€C and for any geG..
Then,

(Fes e, %0 = ||, Fmimor), s, D1 hmar)
.| Bk(mg7)) |3&i(g ) r(m™)dg dm .

(3.22)

Observe that

Sur(m“)F“(m, s, X)dm = F~(s, X, 7) .
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Then applying Peter-Weyl’s theorem, we have
(3.23) F (m,s X) = > dimz-Tr[c(m)F"(s, X, 7)]

TeEMA

for me M. Since F is, as a function on G,, right M-finite, the
right side of (3.28) is a finite sum. Moreover it is known that
F~(s, X, 7) is, as a function of s, rapidly decreasing at infinity in
any vertical strip (ef. [5], §7). Hence, if P(s) is a polynomial of s,
we have

sup . IP(S)'FA(m’ 8, X)] < oo

Res=1/2,me

We set
C,= sup |s-F"(m,1—s, X)]
sedJ meM

and

C,= sup |s-F (m,s, L.

seJ.meM

In view of (3.22), we have, for seJ = {seC|Res = 1/2, Im s < 0},
s (B (L = 5, %, )]l
< [\, 15 Fo(mmaz, 1 - 5, 2)
| BEmgF e (0, || 2m™) | .dg dm
< Cedime| [ |£Gmr) 1% o) dg dm .

(3.24)

Similarly we obtain the following inequality for seJ:
18- (F%&;)"(s, X7, D)l

3.25
(3.2 < C.dime( [, 180Umar) 0 g dm

On the other hand, it is known that, for any se.J,
(3.26) @G, X, D). = G .

Here C, is a positive constant which depends only on 7z and X (cf.
[5], §6, (6.16)). Combining (3.21), (3.24), (3.25) and (3.26), we obtain
the inequality (3.19) if we set C = (C, + C,C;)dimz. Hence the
lemma has been proved.

We set, for seC,
G

s, &) = ||, 180Gma7 e o g dm .

By virtue of Lemma 8, the proof of (8.18), and hence of Proposi-
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tion 4, has now been reduced {to the verification of the following
proposition.

PROPOSITION 6. If (0.1) is satisfied, then we have

lim Q (-;- &) /deg £=0.

g§-ooo

Proof. To prove the proposition, we shall express 2(s, &) as a
product of some integrals of zonal spherical functions on G, =
SL (2, k,) for ge.&”. For ge F, we fix the Iwasawa decomposition
of g,eG,, given by g, = u(g.)h(9,)m(g,), Where u(g,) € Uy, h(g;) € Hy,,
and m(g,) e M,. We set

t
B(h) = t* for h = ( t’1> eH, .

We denote by | |, the module of k,. Namely, for a prime element
k of k, neZ, and for any element ¢ in the unit group of O,, we put
lE"ely = g .

Here g denotes the order of the residue field of %, We normalize

the Haar measure dm, on M, so that
g dm, = 1.
Mg

We set, for geG,, and seC,

(3.27) o, 9) = |, 16m.g) idm, .

The integral (3.27) converges absolutely for any seC, and for any
g€G,. We call @,(g, s) the zonal spherical function on G,,. This
function is, as a function of g, M,-biinvairant on G,,.

For m = [I,m,e M and g; = [lie-,9:€ G, it is easily verified
that

| BR(mg7 )] = 1L fl Bh(megs™) s -

It follows that

26,8 =1L\ | 18Gmg;)ldgdm,

ges

x 1\, |, 16@mariagdm, .

ge T =

Note that g, e M, implies |B(h(m,9;")|; =1 for any m,e€ M,. Thus
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26,6 =10\, | 160mg;)idadm, .

e '\

Changing the order of integrations, we obtain

26 ¢) =1 | oo, 9da,.

g€ JSgld)

Applying Lemma 5, we observe that it is enough to establish
the following.

LEMMA 9. For every g %, the function on G, given by g+—
w,(g, 1/2) vanishes at infinity.

Proof. As is well-known, the zonal spherical function w,(g, 1/2)
is a matrix coefficient of an irreducible unitary representation of
SL,(k,) belonging to the principal series. Hence the lemma follows
from the general result of Howe and Moore (stated in § 2 as Lemma
4). However, in the following, we give a direct proof of the lemma
based on the precise knowledge on the behavior of w,(g, 1/2) on Gy,

By virtue of the explicit formula for the zonal spherical func-
tion on G, (cf. [4], Chap. II, §3.10), we have

0)g<<ﬁm x“”) ’ ’;—> = g1 + ¢ {@n + L)g — @n — 1)}

for » = 0. Hence

n—00

(3.28) lim wa<<'£" ) ) ,l> —0.
£’ 2

Then the lemma follows from (3.28) together with the Cartan
decomposition of G, :

Gy, = i:j M, (It x"‘>M" (disjoint union) .
Thus Theorem 2 has been completely proved.
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