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ON THE UNIFORM DISTRIBUTION PROPERTY OF
CERTAIN LINEAR ALGEBRAIC GROUPS

ATSUSHI MURASE

Let G be a connected semisimple linear algebraic group
defined over an algebraic number field k. Denote by Gk

and GA the group of /^-rational points of G and its adeliza-
tion. In this paper, we prove, under suitable assumptions
on G, a uniformity of distribution of Gk in GA with respect
to the Haar measure on GA.

Introduction* Let ffbea connected semisimple linear algebraic
group defined over an algebraic number field k. We denote by Gk

the group of /^-rational points of G, and we write GA for its adeliza-
tion.

The purpose of this paper is to show, under suitable assump-
tions on (?, that Gk is, in a sense, "uniformly distributed" in GA

with respect to a Haar measure on GA.
For each place v of k, let Gkv be the group of /^-rational points

of G where kv is the v-completion of k. If v is a finite place, let
Oυ be the maximal compact subring of kΌ. Then GOv, the group of
0^-rational points of G9 is an open compact subgroup of Gkv. We
set

Goo = Π GkΌ f

GΛf = Π' Gk (restricted direct product).

Here &„ (resp. &f) denotes the set of all infinite (resp. finite) places
of fc. Then we have

GΛ — GAJGΓ^ (direct product).

Let y be a finite subset of &f. Furthermore, for each QeSζ let
KQ be an open compact subgroup of GOg and let {Sβ(j)}f=1 be a
sequence of nonempty compact subsets of Gkq satisfying the follow-
ing conditions:

We set

S(i) = Π S β ( i ) χ Π < V

Then S(j) is a compact subset of GAf. For a relatively compact
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domain SL in G^, let N(S(j), SJ) be the number of points in the set
(S(j) x SJ) Π Gk. It is easy to see that N(S(j), SJ) is finite.

We say that a sequence {S(j)}f=1 has the uniform distribution
property with respect to a Haar measure dg on GA if the following
equality holds for any relatively compact domain £«, in G^:

dg .
Gk\GA

Note that the above statement does not depend on the choice of a
Haar measure on GA.

Let dgf be a Haar measure on GAf. Then our main result is
stated as follows.

THEOREM 1. Notation being as above, assume that G is ani-
sotropic (namely that Gk\GA is compact). Furthermore, we assume
that G is absolutely almost simple^ and simply connected^. Then
the sequence {S(j)}f=ί has the uniform distribution property with
respect to a Haar measure dg, if the equality (0.1) is satisfied:

(0.1) lim \ dgf = +

REMARK 1. The additional assumption that G is absolutely
almost simple can be replaced by the following weaker assumption
(A).

(A) For QβS^, if Gki is noncompact then G is &9-almost simple
(namely that G has no proper closed connected normal subgroups
defined over fcβ) and GkGh is dense in GA.

Note that G has the property (A) if G is absolutely almost
simple and simply connected, by virtue of the strong approximation
theorem (cf. [9], [11], and [12]).

REMARK 2. There are numbers of examples of G satisfying the
assumptions in Theorem 1 (e.g., quaternion unitary groups constructed
by G. Shimura in [14]).

Even if G is not anisotropic, it is probable that an analogue of
Theorem 1 is available. At present we can prove only the follow-
ing:

THEOREM 2. Let G be SL2 (regarded as a linear algebraic
group defined over k). Then the sequence {S(i)}~=L has the uniform
distribution property if (0.1) is satisfied.

We present an implication of our results. Assume that G
υ This implies that G has no proper closed connected normal subgroups.
2) For the definition, see [8], p. 189.
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satisfies the assumptions in Theorem 1. Assume k = Q and Sf ~
{p}3). Let Sj be the set of elements g in GQ such that the coordi-
nates of pjg are integral and moreover satisfy some prescribed
congruence conditions. Let U, V be relatively compact domains in
GR, and let v(U\ v(V) be their volumes measured by a Haar measure
on GR. We denote by Nv(j) (resp. Nv(j)) the number of elements
in the set U Π S3 (resp. V Π Sj). Then we have

limNu(j)/NvU) =
J-

A special case of Theorem 1 was first obtained by M. Kuga in
[10] when G is the group of indefinite division quaternions with
reduced norm 15). Several ideas in [10] together with recent results
of Howe and Moore [7] are basic in our present paper.

Note that H. Yoshida shows in [16] that Theorem 2 for k = Q
leads to his distribution law for PSL (2, Z[l/p])-elliptic conjugacy
classes.

I would like to express here my deep gratitude to Professor T.
Shintani for his suggestion of the problem considered here, his
many mathematical and linguistical advices and his constant en-
couragement during the preparation of this paper.

NOTATION. For a complex number s, we denote by Im s (resp.
Re s) the imaginary (resp. real) part of s. For an algebraic number
field k, we denote by A and / the adele ring of k and the idele
group of k, respectively. We denote by \a\A the module of an
idele α, given by the equality d{ax) — \a\Adx where dx is a Haar
measure on A. For a locally compact topological space X, we denote
by C\X) the space of continuous functions on X and denote by
Cc(X) the space consisting of feC\X) with compact support. For

3) We assume t h a t GQP is noncompact .
4) In fact, our result implies the following asymptotic formula for Nuϋ). Let

K be a sufficiently small open compact subgroup of Y[κoOG\zι, and put Γ — (KXGR)Π
GQ. We may assume that ΓSjΓ=Sj(j=l,2, ' * •). We denote by \Γ\Sj\ the number
of left jΓ-cosets contained in Sj. Then we have

Nv(3)~vol (ΓXGR^-viU)- \Γ\Sj\

as i->oo.
5) C. Pommerenke obtained in [13] the following similar results, while his method

seems to be different from ours.
Let A be a positive definite symmetric integral matrix of size m^5. Set X~

For a positive integer n, put

Let A be the set consisting of positive integers n such that SnΦΦ- Then the sequence
{Sn}ne Λ is uniformly distributed in X with respect to a suitable measure on X.
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a continuous function / on a locally compact group G, and for a
compact subgroup M of G, we say that / is right M-finite if the
set {Rmf; m 6 M} spans a finite dimensional subspace in C°(G), where
we set Rmf(g) = f(gm). For a bounded linear operator Γ on a
Hubert space H, we denote by | |T | | the operator norm of T, given
by

| | T | | = sup \\Tv\\l\\v\\.
veH,vΦ0

For a finite dimensional vector space V over C, we denote by
Endc(F) the C-algebra of C-endomorphisms on V. If T is a C-
endomorphism on a C-vector space with an inner product, we denote
by Γ* the adjoint of T with respect to the inner product. If τ is
an unitary representation of a compact group M on a finite dimen-
sional vector space V over C, we set dim τ — dimc V.

1* We keep notation in the introduction without further com-
ment. From now on, we always assume that G is a connected
semisimple linear algebraic group defined over an algebraic number
field k. We set

* = Π ( ? o » x Π ί i .

Then if is an open compact subgroup of GAf. We normalize the
Haar measure dgf on GAf so that

dgf - 1 .

Choose a Haar measure dg^ on G^ and fix the Haar measure dg on
GA by setting

dg = dg/dgj^g = s ^ , #/ e G4/, ôo 6 GJ) .

Then cί̂ r induces an invariant measure dg on Gk\GΛ in a natural
manner.

Let L\Gk\GJK) be the Hubert space of right i£-invariant square
integrable functions on Gk\GA. Note that constant functions are in
L\Gj\GJK)f since the volume of the quotient space Gk\GA is finite
(cf. [2], 5.6).

Let ξs be the characteristic function of S(j). Then ξs is K-
biinvariant, continuous, and compactly supported on GAf. For each
feΠ(Gk\GA/K)f set

(1.1) /*?;(</) - \r

Then the mapping /ι-*/*ίy gives rise to a bounded linear operator
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on L\Gk\GJK). We set

(1.2) degf; - \ ξj(gf)dgf = \ dgf .

Then deg^ is equal to the [number of left if-cosets contained in
S(j). We denote by || || and (, ) the norm and the inner product
in L2(Gk\GJK), respectively. Set

v = I dg .
JGk\GΛ

Then the following proposition plays a basic role in the present
paper.

PROPOSITION 1. The sequence {S(j)}f=1 has the uniform distri-
bution property with respect to a Haar measure on GA, if the fol-
lowing equality holds for any feL2(Gk\GJK);

(1.3) lim !|/*ί;/deg ξ, - (/, l)/v|| - 0 .

To prove the proposition, we need the next lemma.

LEMMA 1. Under the assumption of Proposition 1, we have,
for any <peCχGk\GA/K) and geGA,

(1.4) lim 9>*&(flO/deg & - (φ, ϊ)/v .
i-oo

Proof. Assume that the lemma is false. Then there exists
g0 e GA such that the equality (1.4) does not hold for g0. We have

lim sup |φ*ίi(flr0)/degfi - (φ, l)/v\ = η > 0 .

We can choose a subsequence {ξίk}ΐ=i of {<̂  }£=i such that

lim \φ*ξίk(g0)/άeg ξjk - (φ, l)/v\ = η .

Let Sifi^ΣjAKσ^iσ^eGj.βSl-ζNj)) be a decomposition of
S(j) into a disjoint union of left iΓ-cosets. (The number N3- equals
deg^ .) It is easily verified that

ξi{) Σ

Hence we have, for g e GA,

ik - dp, i)/t>|

dp, DM
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-L I ^ ^ a. / \ __ a.

- {φ, l)jv\

Since the function φ is continuous and compactly supported on
Gk\GA, there exists an open neighborhood U of 1 in GA such that
gϊιg2 e 17 always implies

\<p(gj -?>(&) I < ? / 2 .

Suppose that geg^G^ n E7). Then we have (tfotf^'T1 x (g<*lSk)~l) =
o^^g^gσ^^'1 = ^ ^ e Z7. (Note that g^geG^ commutes with every
element in G4/.) Thus we have, for # e flToί^eo Π Z7),

1 £
Nik &

Hence, for any g e go(G^ Π U), the following inequality holds:

(1.5) ιi™inί I <p*SiMlte% ξik -

In fact, this inequality (1.5) holds for any g e G^OS-^ Π U)K since
φ*ξjk is left Gfc-invariant and right JΓ-invariant. Since (Gω Π U)K
is an open set in GA, we have, by virtue of Fatou's lemma,

lim inf \\φ*ξ3jάmζjk - (Ψ, D/v||2

lim inf | φ*ξik(g)/deg ξj]e — {φ, l)/v |2 dg

dg > 0 .

Contradiction! The lemma has been established.

Proof of Proposition 1. Let us consider any two relatively
compact domains SL, SI' in GM satisfying Si c S" (we denote by
Si the closure of Si in GJ. We choose a real-valued continuous
function f^ on G^ satisfying the following conditions (1.6) and (1.7):

(1.6) 0 ^ foo(goo) ^ 1 for any g^ e G^ ,

fl if g^eSL
( L 7 ) ^ ^

We set ψ(g) = ψAg^ψΛgoo) for βr = gfgJίgfSGAf and g^eGJ), where
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ψf denotes the characteristic function of K. Then ψ(g) is continuous
and compactly supported on GA. It is easy to see that the series^

<p(9) = Σ Ψ(yy)

converges absolutely and uniformly [on [any compact subset of GA,
and that φ(g)eC°c(Gk\GJK). Applying Lemma 1 to φ, we obtain

(1.8) lim 9>*&(l)/deg fi - (φ, l)/v .
5 -oo

We have

(<P, 1) = [ φ(g)dg = \ ψ(g)dg

= ί ψΛ9/)dgf \

In view of the conditions (1.6) and (1.7) imposed on ψ^, we have

(1.9) μiβL) ^ (ψ, 1) ^

where we set ^(S™) = ί .^djr.ίi = 1, 2).

Next we have

£i(l) = ί
JGAAf

= Σ
G

GAf

where we write 7 = ΎfΎ^(Ύf e GAf and 7^ e G«,). Since
is, as a function of #/, the characteristic function of KΎ/ ΓΊ S(i),
we have

_ ί1 i f 7 '
(o otherwise.

Hence
Σ ^oo(Too) .

Then (1.6) and (1.7) imply that

Ξ 2-J
 ι

Thus,

(1.10) N(Sti), SL) ^

Combining two inequalities (1.9) and (1.10), we get
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Z) deg ξ3- £ <P*UVK<P, D deg ξ3-

It follows from (1.8) that

lim sup N(S(j), SDMSZ) deg ξ, ^ 1/v
Q -

^ lim inf N(SU\ SZ)/μ(SL) deg ξs .

It is easy to see

\ wdg=μ(S<ί>) degξi (i = 1, 2) .

Hence we get the following two inequalities;

(1.11) lim sup N(S(j), SL)I\ dg ^ l/v

(1.12) lim inf N(S(j), SZ)I[ dg ^ ί/v μ(SL)/μ(SZ) .

For a given relatively compact domain SL in G ,̂ apply (1.11),

setting SL — S^. For any ε > 0, there exists a relatively compact

domain Si' such that 1 ̂  μ(SL')/μ(Sw) ^ 1 + ε and that Si'ID SI.

Hence we have

(1.13) lim sup tf(S(i), S j / t ^ ^ l/i; .

Similar arguments for the inequality (1.12) (in this case, we set

Si' = S J lead to

(1.14) lim inf N(S(j), Sj/f dff ^ 1/Φ .
J-*oo / JS(j)XSoo

Thus we have

lim ΛΓ(S(i), S J

This implies that the sequence {S(i)}JU has the uniform distribution
property with respect to a Haar measure on GA, and hence the
proposition has been proved.

2* In this section, we assume that G is anisotropic, simply
connected, and satisfies the condition (A).

We shall prove the following:

PROPOSITION 2. // (0.1) is satisfied, the equality
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(2.1) lim H/ fc/degξ, - if, l)/v\\ = 0

holds for any feL\Gk\GJK).

By virtue of Proposition 1, Theorem 1 is an immediate conse-
quence of this result.

In this section we keep the normalization of Haar measures on
GAp G^, and GA given in § 1. We set K, = GOQ for 9 e &s - <9* and
normalize the Haar measure dg% on Gk for g e &*f so that I dgs = 1.
The product measure ΐl6e^fdgQ is equal to the previously normalized
Haar measure dgf on GAf.

Let L\Gk\GA) be the Hubert space of square integrable functions
on Gk\GA. Then L\Gk\GJK) is the closed subspace of right K-in-
variant functions in L2(Gk\GA).

The next lemma is easily verified.

LEMMA 2. Let {T/}JU be a sequence of bounded linear operators
on a Hίlbert space H such that

llΓyll < - .

Let {jPn}?=1 be a countable orthonormal basis of H. If we have

/or all n, then we have, for any FeH,

Γ 5 F | | = 0 .

For each / 6 L2(Gk\GJK)9 set

Then the mapping /1-> Tsf gives rise to a bounded linear operator
on L2(Gk\GJK). For any xeGA and feL2(Gk\GA), we set Rmf(g) =
f(gx). Then J2β is a norm preserving linear operator on L\Gk\GA).
Since we can write, for any feL2(Gk\GA/K),

deg ξs

we have

dθg ξj

1=1 l

Hence
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llzyΊl g 11/11+ l ( / ^ 1 } l | | i | 1 ^

This implies that

s u p 1 1 ^ 1 1 ^ 2 .

We shall pick up a well-chosen orthonormal basis of L\Gk\GAjK)
and prove that the equality (2.1) holds for each member of this
basis. Then Lemma 2 implies that the equality (2.1) will hold for
any f eL\Gk\GA/K) and hence Proposition 2 will be proved.

Let Π be the right regular representation of GA on I/(Gk\GA).
Since Gk\GA is compact, the unitary representation Π decomposes
into a direct sum of at most countable irreducible unitary repre-
sentations of GA with finite multiplicities (cf. [4], Chap. I, § 2.3,
Theorem). We write

where H{n) is a closed GA-mvariant subspace of L\Gk\GA), and π{n)

is the restriction of π to H{n) (π{n) is irreducible). We may assume
that Hm = CΊ and that πm is trivial. Furthermore each repre-
sentation πin) is factorizable. That is to say, there exists an irreduc-
ible unitary representation π[n) of Gkv for every place v of k satisfy-
ing the following conditions (2.2) and (2.3).

(2.2) Except for a finite number of vf the representation space
Hv

{n) of π{

υ

n) contains a (?Ov-invariant unit vector fQ

υ which is unique
up to a scalar multiple.

(2.3) The restricted tensor product ®ί,τz:^) with respect to the
family {fQ

v} is unitarily equivalent to π{n) (cf. [4], Chap. Ill, § 6.2).
Then we have the decomposition;

L\Gk\GA/K) = Σ (L\Gk\GJK) n H™) .

Now we shall choose an orthonormal basis of L\Gu\GAjK) Π Hίn) for
each n. Then the union of bases for all n forms an orthonormal
basis of L*(Gt\GJK). When n = 0, we have

L%Gk\GA/K) Π Hm = Hm ,

and {1/τ/lΓ} can be taken as its orthonormal basis. It is obvious
that

) = 1/VΊΓ- (lft/T, l)/v = 0 .
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From now on, we fix an index n ^ 1, and, for simplicity, we drop
the index n. Hence we write H, π9 πυ, and Hv for H{n\ π{n\ π{

v

n),
and H™ respectively. Note that, for any FeHΠ L2(Gk\GJK), we
have (F, 1) = 0 and TάF = F*ζί/άeg ζ,-. Let us take an isometric
linear mapping T from the restricted tensor product ®υHv to H,
intertwining ®υπυ and π. For Qe^f, let F8 be the space of KB-
invariant vectors in HQ. Then VQ is finite dimensional (cf. [1],
Theorem 1). In view of (2.2), there exists a finite subset S?' of
&j containing £f such that VQ is one dimensional if g 6 &f — <5 \̂
Then we can take as a countable orthonormal basis of HΓ\L2(Gk\GJ
K) a set of elements of the form Γ((x) φv) where φ° e Hv for every
place v and satisfies the following condition (C):

(C)

( i ) \\φv\\υ = 1 for any place v, where || \\υ denotes the
norm of Hv.

(ii) φ 8 e V, for g e ^ '
(iii) <ρ = / 0

8 for

Hence, to show Proposition 2, it is enough to establish the fol-
lowing:

PROPOSITION 3. Notation being as above, for any element F e H
of the form T((&v φ

v

F) where φv

F satisfies the condition (C), we have

(2.4) limllF^/degfyll - 0 .
j—>co

Proof. We set St(J) = K, for all i if g 6 &*f - S?. Let 55 be
the characteristic function of iS,(i) for g e ^ . Then f/ is iζ,-biin-
variant, continuous, and compactly supported on Gh. For gf —
(•••, fir,, --OeCr^, we have

6(0/) = Π ίi8(ff8)
8 6^/

For g G ̂ ' , choose an orthonormal basis {/? 11 ^ Z ̂  dim Fg} of Fβ.
We may assume that f} = ?>J.. Then, for g e £f\ the integral

belongs to H9 and is invariant under the action of K9 through τr9.
Thus it belongs to F8 and hence can be written as a C-linear com-
bination of /i(l ^ m ^ dim Fβ). That is to say, we have

where
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= ί (π,(g?)ff, fl)tdgt.

(Here (,), denotes the inner product of Ht.) Now we have, for any
xeGA,

= \
βA

Since 21 is norm-preserving, we get

Π ll/oβll9x Π Il/i8*f/llβ

= π
m=l

dimF f l(
dim F f l

Σ Ίλ4

On the other hand, if we put

for ge^V, it is easy to see (recall the definition (1.2))

deg ξ$ = Π deg £/

(in fact it equals ILe^degf/). Thus we have

(2.5) || F^/deg ξ.|| ^ j± ( d i g β | λ 5 ι > l ( ί .) |/deg ξf ) .

Since S,(j) = K, for g e &" - ^ , we get finally

(2.6) || F*ξ, /deg ^ || ^ C 1^ ^ * Σ ^ I (^(g;1)/?, Λ). I ^ 9 / ^ dΛ

where C = Πββ^'-^dim Ffl.
Now we shall show that ττ8 is not one dimensional if QβS^

and GΛβ is noncompact. More generally, we shall prove the follow-
ing:

LEMMA 3. Let H be a connected, simply connected semisίmple
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linear algebraic group defined over an algebraic number field k9

and [let v be a place of k. Assume that H is kυ-almost simple and
that HkHkυ is dense in HΛ. Let p be an irreducible unitary repre-
sentation of HA realized on a closed subspace Sίf of L\Hk\HA) by
right translation. Furthermore assume that p decomposes into a
restricted tensor product (x) pw of irreducible unitary representations
pw of Hkw. If p is nontrivial, then pυ is not one dimensional.

Proof. Since HkHkv is dense in HA, Hkv is not compact, and hence
rankfcί; H ^ 1 (cf. [9], p. 187). It is known that, if X is a semisimple,
simply connected, almost simple linear algebraic group defined over
a local field K with positive iί-rank, then Xκ coincides with its own
commutator (cf. [3], 6-4 and 6-15; see also [6], Appendix II, Theorem).
Hence Hkv has no nontrivial unitary characters. Assume that pv is
trivial. Then every element in £$f is right iϊ^-invariant as a func-
tion on HA. There exists φeCc°(HA) and f e ^ such that

F = I φ{h)ρ{h)fdh Φ 0 (as an element of
JHA

It is easy to see that F is, as a function on HAf continuous. Since
F is right ίZ^-invariant and left ϋ^-invariant, F is constant on
HkHkv which is dense in HA. Hence F is a nonzero constant func-
tion on HΛ- Since p is irreducible, we have 2ίf - CΛ and p is
trivial. Contradiction! The lemma is proved.

Applying Lemma 3 for (H, p, v) = ((?, π, g)(g 6 S? and Gk% is non-
compact), we see that πΰ is not one dimensional.

On the other hand, Howe and Moore proved the following:

LEMMA 4 (cf. [6] Theorem 5.2).6) Let π be an irreducible unitary
representation of k-almost simple, simply connected linear algebraic
group [G defined over a local field k on a Hilbert space H. For
any x,yeH, set px,y(g) = (ττ(g)x, y). Then pXjy vanishes at infinity
if π is not one dimensional.

(Here we say that a continuous function / on a locally compact
group G vanishes at infinity, if, for any ε > 0, there exists a com-
pact subset C of G such that sup^β-c |/(flθ| < ε I n case that G is

6 ) In case G=SL(2) over a g-adic field kg, this result easily follows from the
existence of the Kirillov model of p (that is to say, p is realized on a closed subspace
^f of L2(k*), and, for any / 6 ^ T and for any aek*, we have

(cf. [4], Appendix to Chapter II, n°2 and n°5)).
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compact, every continuous function is said to vanish at infinity.)
Thus we conclude that the function on Gh given by g6 h->

I (πάgϊ^ff, / i) β | (1 ̂  m ^ dim Fβ) vanishes at infinity. In view of
(2.6), the proof of Proposition 3 has now been reduced to the follow-
ing lemma.

LEMMA 5. Let G,(l <; I <; m) be a locally compact group with
a left invariant measure dgx. Let /,(1 <Z,l<*m) be a continuous
function on Gt vanishing at infinity. Let {Siij)}™^ be a sequence
of open compact subsets of Gt such that

inf \ dgx = ηx > 0 (1 <* Z ̂  m) .

//

(2.7) lim Π I dgt = + °o ,

ίfcβ^ ί/te following equality holds:

(2.8) lim Π ( ί /i(ίir»)rfflr, A dflr,) = 0 .

Proof. Note t h a t (2.7) implies t h a t , for a t least^one leM —

{1, 2, , m}, Gz is noncompact. Observe t h a t

I f /f

\\s{j)fι(9ι)dgι βs^dgt

is bounded if Gt is compact. Hence we may assume that Gt is non-
compact for every leM. Set Nι = su^geGι \fι(g)\. Then iVz < °°(1 ^
I ^ m). For any β > 0, there is a compact subset Ĉ  of Gj such
that |/j(flf)| < ε for every geGx — Ct. By a simple calculation, we
have

Π I fι(gi)dgt

leM JSι(j)

= Σ Π \ fι(ΰι)dgι
ΛdM leΛ JSι(j)f)Cι

• Π ( fι(gι)dgt

where Λ ranges over the collection of all subsets of M. To simplify

the notation, we set

dgx and Kt(j) = \ dgx .

Since



ON THE UNIFORM DISTRIBUTION PROPERTY 177

and

we have

I fι(ffι)dgι ^ Min (iVzJz, NtK^j)) ,

I c/ι(9ι)dgι

π {ϊ
leM USiij

^ π ̂ w π s«ω
leM leM

H,κ,u) π
Ze /i ZeJί-/i

= Π NtJtl Π S,(i) + -J1 Π Nt .
leΛ

Here |Λf — Λ\ denotes the number of elements in the set M — Λ.
Hence, if ε < 1, we have

lim sup Π
l M
leM \JSiU)

leΛ

fι(gι)dgιlK,(j)
j

Since we can choose arbitrary small ε > 0, we obtain the equality
(2.8).

Thus Theorem 1 has been established.

3* In this section, we always assume G — SL2 (regarded as a
linear algebraic group defined over an algebraic number field k).
We shall prove Proposition 2 under our assumptions. Note that
Proposition 2 for G = SL2 implies Theorem 2, by virtue of Proposition
1. We set

U =
1 u

1
TT t Φ o and P = UH .

These groups can be naturally regarded as A -subgroups of G. For
any FeC!(UAHk\GA), set

= Σ(3.1)

The series (3.1) converges absolutely and uniformly on any compact
subset of GA. The function ΘF is, as a function on Gk\GΛ, continuous
and compactly supported, and hence square integrable on Gk\GA (cf.
[5], § 6). Let θ be the closure of the subspace of L2(Gk\GA) spanned
by all elements of the form ΘF with FeCc°(UAHk\GA). Let £ίf be
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the closed subspace of L\Gk\GA) consisting of all elements / such

that the integral I f(ug)du vanishes for almost all g e GA. Then
JUk\UA

Θ and 3έ? are both right (^-invariant. It is known that L\Gk\GA)
is the direct orthogonal sum of Θ and <%f (cf. [5], § 7). It follows
that L\Gk\GJK) is the direct orthogonal sum oΐJl = ΘnL2(Gk\GA/K)
and ^f = Sίf Π L\Gk\GJK); L\Gk\GA/K) = Θ φ ^f (direct orthogonal
sum). Hence, for any feL2(Gk\GA/K), we can write f=φ + ψ where
φeθ and ψe3(f. As is well-known, Θ contains constant functions.
Hence έ%f is orthogonal to C l. Thus we have

fc - (/, V)\v\\ ^ ||9>*ίy/degfy - (φ, l)/v\\ + ||f*

Hence the proof of Proposition 2 in our case has now been reduced
to the verification of the following two propositions.

PROPOSITION 4. // (0.1) is satisfied, the equality

(3.2) lim || ?>*ίy/deg £, - (<P, l)/v || - 0

ftoίeZs /or any φeΘ.

PROPOSITION 5. // (0.1) is satisfied, £Ae equality

(3.3) l im| | t*&/deg£ y | | - 0

holds for any ψ e £{f.

It is known that the right regular representation on 3ίf decom-
poses into a direct orthogonal sum of at most countable irreducible
and factorizable unitary representations with finite multiplicities (cf.
[5], §2 and [4], Chap. Ill, §3-3, Theorem). Then, to prove Pro-
position 5, we just repeat the argument of the proof of Proposition
2 in § 2, replacing L\Gk\GA/K) with <^T.

In order to show Proposition 4, we need several results about
the spectral decomposition of Θ.

Let M — IL Mv be the maximal compact subgroup of GA, where
we set

Gov

S0(2)

sum

if ve&

iί ve&

if veέ

Sco a n d

^ and ~ c

Then we have GA = UAHAM. We fix, once and for all, the Iwasawa
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decomposition of geGA given by

g = u(g)h(g)m(g) ,

where u(g) e UA, h(g) e HAf and m(g) e M. We normalize the Haar
measure dg on GA by putting, for any feC°e(GΛ)f

(3.4) \ f(g)dg = [dm\ \β(K)\A

1dh\ f(uhm)du .

Here we set

β(h) = ί2

for

/ί 0

and we denote by du, dh, and dm Haar measures on UAf HAy and
ilί respectively, which are normalized by the following conditions;

[ du = lf[ I β{h) \s

Adh = 1/8 (Re s > 0) ,
JUICXUA JHk\HA,\β(h)\^l

and

From now on, we normalize the Haar measure dgQ on Gh(qe^f) so

that I dg& = 1. Let d#/ be a Haar measure on GAf given by
J MQ

(3.5) ώ S r / = Π dg, (g, = Π 9*eGA).

We normalize the Haar measure dg^ on G^ so that dg = dgJLgf

(g = goog/), where dί/ and dgf are given by (3.4) and (3.5), respec-
tively.

Let Iλ be the subgroup of / consisting of ideles with module 1.
For a positive real number λ, we denote by £(λ) the idele such that
£(λ)β = 1 for every Q e &f and ξ(X)v = λ for every v e ^ Let N
be the image of {£(λ); λ > 0} by the natural projection from / to
fex\/. Then we have

k*\I = (fcVi) x iV (direct product) .

Let Xx be the set of all unitary characters on Hk\HA which are
trivial on the image of N by the natural isomorphism from &X\J to
Hk\HA. Then Xx can be identified with the dual of fcx\/le Since
fcVi is compact, Xi is discrete (cf. [15], Chap. VII, § 4).
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We fix a complete system Λf~ of representatives of equivalence
classes of finite dimensional irreducible unitary representations of
M. Let Hτ be the representation space of r e i k P . For ZeXίf let
HT(X) be the subspace of Hτ consisting of all vectors v e Hτ which
satisfy the following equality:

v - τ(uh) = v X~\h) (Vuh ePAf]M) .

We denote by Xχ(τ) the set of all elements Z e Xx such that HT(X) Φ
0. It is easy to see that Xt(τ) is a finite set.

For F!eC°c(UAHk\GA\ τ eikΓ, ZeXx(r), and.for seC, we set

(3.6) Γ ( β , Z, r) = ( ί F(hm)τ(m"ι)X(h) \β(h)\A

sdhdm .
jMJHk/HA

The integral (3.6) converges for any seC. As a function of s,
F~(s, Z, τ) is a holomorphic function in C with values in Endc(iϊr).
Set

(3.7) θϊ(8, X,τ) = [[ [ θF{uhm)τ(m~ι)X(h) \β(h)\s

A

ιdudhdm ,
jMJHk\HAJUk\UA

where ΘF is given by (3.1). The integral (3.7) converges absolutely
and uniformly on any compact subset of the domain {s e C | Res>l}.
As a function of s, 0j(s, Z, τ) is continued to a meromorphic function
in C with values in Endc(ffΓ) (cf. [5], § 6). It is known that

(3.8) θϊ(s, Z, τ) - 2^(1 - 8f Z, τ) + ^ ( β , Z"1, τ)Φ(β; X, τ) ,

where Φ(s; Z, r) is a meromorphic function of s in C with values in
Endc(ijΓΓ) (cf. [5], § 6). Furthermore suppose that, as a function on
GA, F(g) depends smoothly with respect to the archimedean compo-
nents of g. Then the norm of ΘF in L\Gk\GA) is given by the follow-
ing formula (cf. [5], §7, (7.8)):

(3.9) | |0, | | 2 = \ Σ Σ ί II^GS Z, r)||ίdβ + i - \(ΘF, 1)|2 .
27ΓT/ — 1 τeM" ZeJTjCr) )j V

Here | |Γ| |ϊ denotes dimz Tr(2Ύ*) for ΓeEndc(iίΓ), and we set

(3.10) J = j s e C Re s = —, Im s < 0i .

The following lemma is easily proved.

LEMMA 6. Let {ΓiJiU be a sequence of bounded linear operators
on a Hίlbert space H such that s u p ^ || Tά\\ < oo, and let H' be a
dense subspace of H. Assume that, for any v e H',
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(3.11) l i m | | 2 > | | = 0 .
j—»oo

Then the equality (3.11) holds for any veH.

Now we are ready to prove Proposition 4. Let Tά be a linear
operator on Θ given by

Tfl> = ?>*£ /deg ξj - (φ, 1)/V (φ G Θ) .

We have already seen that || T̂ H ̂  2(j = 1, 2, - •). We set JlίM =
Π ê oo Λί Then ilί^ is a maximal compact subgroup of GM. Let
^ be the space consisting of all continuous functions on UAHk\GA/K
satisfying the following conditions (3.12) and (3.13).

(3.12) F(g) is compactly supported modulo UAHk.

(3.13) As a function on GA, F(g) depends smoothly on GM and F(g)
is right ilC-finite.

Let Θ' be the linear space spanned by elements ΘF with
Then θ' is a dense subspace of θ.

Now we shall prove that the following equality holds for any
ΘF G θ':

(3.14) lim| |Γy^| | - 0 .

Then, in view of Lemma 6, Proposition 4 will be proved. To show
the equality (3.14), we need the next lemma.

LEMMA 7. For any θFeθ', we have

(3.15) || Tflr ||
2 = * Σ Σ

27Γχ/ 1 eiίfA χ e Z ^

Proof. We have

Γ = II^*li/degf, «?Λ 1)/Ϊ;||

r(θr*ξit 1)}

We set f7(ί/) — iiiff"1)- Then it is easily verified that

(/i*fΛ Λ) - (Λ, /. ί ) (Λ, /. 6 L\Gk\GJK)) ,

and that deg fs = deg ί̂  Hence we have

(3.16) (θF*ξu 1) = (ΘF, UξJ) - deg ξ7(θF, 1) = deg fy(^, 1) .

Thus
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II ΓAII2 = llMf;/degf# - \(ΘF, l)\Vv .

Observe that θF*ζs also belongs to Θ'. Applying the formula (3.9)
to θF*ξί9 we have

7== Σ Σ t

The equality (3.16) implies that the last two terms of the right
side of the above equality cancel each other, and hence the lemma
is proved.

Since ΘF is, as a function on G^, right il^-finite, and since θF*ξj
is right jK-invariant, there exists a finite subset L of AP such that
τeM~ — L always implies (#,.*£/)(«, X, τ) = 0(i = 1, 2, •) for any
seC and for any XeX^τ). Thus the right side of (3.15) is a finite
sum. Hence, to verify the equality (3.14), we have only to show
that the following equality holds for any τe ikP and any ZeX^r):

(3.17) lim i = ί ||(^*fiΓ(β, Z, τ)/deg f^Wβ = 0 .

Observe that

x sup Hβ ^ fiΠβ, %,

, %, τ)/degί,||2r .

Hence the proof of (3.17), and hence of Proposition 4 has now been
reduced to the verification of the following equality for any F e £&,
Γ G M Λ , and for any XeX^τ) under the assumption (0.1):

(3.18) lim {sup || «•(*,*£,)>, X, r)/deg f,||r} = 0
^ - o o 8 e j

(recall that J is given by (3.10)).
To establish the equality (3.18), we need the following lemma.

LEMMA 8. For Fe&,τeM~, and XeXfa), there exists a
positive constant C such that the following inequality holds for any
seJ = {seC\Res = 1/2, Ims < 0}:
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β ' Z ' Γ ) ' U ^ C\u(\<(3 19) ' ' S ( * ' f ' Γ ( β ' Z ' Γ ) ' U ^ C\u(\<,Λf

( 3 = 1 , 2 , • • • ) .

Proof. We set

(3.20) F*ξ}(g) = \r F(gh
JGAf

Then it is easily verified that F*ξd also belongs to £?, and that
θF*ξi = θF.ξ.. Applying (3.8) to θF*ςd ~ θFHp we obtain

(3.21) (θF*ξsn8, X, τ) - (F*S,ni - 8, X, τ)

In view of (3.6) and (3.20), we have

(F*Sjr($, X, T)

= {[ \
)MjHk\HA JGA/

Observing that

hmgj1 = hu

we have

(F*ξ,r(8, X, τ)

= ί ί ϊ
JMJHk\HA JGAf

= H (ί
JMJGAf \jHk\HA

(note that huimgj^h"1 e UA and that ί 1 is left ^-invariant). Set

i^G/, β, Z) = ί F(hg)X(h) \ βih) \~/dh .

This integral converges absolutely for any s e C and for any ge
Then,

*' Z ' τ ) = \*\a(3 22) ( J ? V f ' Γ ( * ' Z ' τ) \*\aA

Observe that

( τ(m-ι)F~(m, s, X)dm = F~(s, X, τ) .
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Then applying Peter-WeyΓs theorem, we have

(3.23) FΛ(m, 8, Z) = Σ dimτ Tr [τ(m)F~(8, Z, τ)]
r e M A

for meM. Since JF7 is, as a function on G ,̂ right M-finite, the
right side of (3.23) is a finite sum. Moreover it is known that
F~(s, Z, τ) is, as a function of s, rapidly decreasing at infinity in
any vertical strip (cf. [5], § 7). Hence, if P(s) is a polynomial of s,
we have

We set

sup \P(8) F~(mf8,X)\
Re s=ll2,meM

s u p \8 F~(m,l — 8,X)\
sej meM

and

C2 = sup |s F~(m, 8,
sej.me 3f

In view of (3.22), we have, for s e J = {s e C | Re s = 1/2, Im s < 0},

(3.24)

I ^ ( 1 ) ) ! ^ ^ / ) IITim'1)\\τd9fdm
^ Cί dim τ \\ | βiMmgj1)) \ll%(gf)dgfdm .

Similarly we obtain the following inequality for s e J:

(3.25) Γ r
^ C2 dim τ\ I I β{h{mg-f

1)) I ^ G / / ) ^ / ^

On the other hand, it is known that, for any se J9

(3.26)

Here C3 is a positive constant which depends only on τ and Z (cf.
[5], § 6, (6.16)). Combining (3.21), (3.24), (3.25) and (3.26), we obtain
the inequality (3.19) if we set C = (d + C2C3) dim r. Hence the
lemma has been proved.

We set, for seC,

JMJGAf

By virtue of Lemma 8, the proof of (3.18), and hence of Proposi-
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tion 4, has now been reduced [to the verification of the following
proposition.

PROPOSITION 6. // (0.1) is satisfied, then we have

Proof. To prove the proposition, we shall express Ω(s, ξj) as a
product of some integrals of zonal spherical functions on Gh =
SL (2, &β) for QβS^. For Q G &*ff we fix the Iwasawa decomposition
of g, e GH given by gQ = w(Λ)Λ(Λ)m(Λ), where u{g%) e Uh, h(g%) e Hh,
and m(gq)eMΛ. We set

We denote by | |8 the module of Λβ. Namely, for a prime element
/c of kβ, neZ, and for any element ε in the unit group of O9, we put

— π-n

Here g denotes the order of the residue field of fc9. We normalize
the Haar measure dmQ on Λffl so that

S
We set, for gr e Gfeg and s 6 C,

(3.27) ω,(gf s) = [ \ β{h(m,g)) |;

The integral (3.27) converges absolutely for any seC, and for any
g G G V We call α>β(#, «) the zonal spherical function on Gfcg. This
function is, as a function of g, Mg-biinvairant on Gki.

For m = Y[vmveM and #/ = Πββ^ί/βeG^, it is easily verified
that

l/3(λ(mfir7ι))U= Π

It follows that

Ω(8, ξj) = Π ί ( I β(h(m,g;1)) \\dg%dm%

X Π ( ί \βQkirn^1))\ldg,dmi.

Note that g^eM^ implies | β{h{m^g~1)) |β = 1 for any m β 6 l , . Thus
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0(8, ξs) = Π \ \ \β(M^Q7ι))\ldgQdmΰ .
g e ^ JΛfg JSβ(i)

Changing the order of integrations, we obtain

0(8, ζj) = π , j β {i)

ω*toι>*>d0*

Applying Lemma 5, we observe that it is enough to establish
the following.

LEMMA 9. For every Q e &f, the function on Gh given by g\->
u)6(g, 1/2) vanishes at infinity.

Proof. As is well-known, the zonal spherical function ω^g, 1/2)
is a matrix coefficient of an irreducible unitary representation of
SL2(&8) belonging to the principal series. Hence the lemma follows
from the general result of Howe and Moore (stated in § 2 as Lemma
4). However, in the following, we give a direct proof of the lemma
based on the precise knowledge on the behavior of a)6(g, 1/2) on Gh.

By virtue of the explicit formula for the zonal spherical func-
tion on Gk (cf. [4], Chap. II, § 3.10), we have

for n ^ 0. Hence

(3.28)

Then the lemma follows from (3.28) together with the Cartan
decomposition of GkQ:

ftcn \
Gka = U MA )Mq (disjoint union) .

Thus Theorem 2 has been completely proved.
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