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RESOLUTIONS ON THE LINE

MARK MANDELKERN

It has been shown previously that under suitable con-
ditions a bounded open set on the line may be resolved
into a countable union of disjoint open intervals. Here,
such a resolution is obtained for an unbounded open set;
it requires the introduction of a suitable system of extend-
ed real numbers. The methods used are those of modern
constructive analysis.

1* Introduction* A recurring procedure in analysis is that of
measuring the distance from a point to a set. It is not always
possible to do this constructively. Often enough, however, it is
possible. Subsets G of a metric space X, for which the distance

exists for every x in X, are called located. Metric spaces commonly
used have sufficiently many located sets to allow the constructiviza-
tion of analysis to be carried out in Bishop's Foundations of Con-
structive Analysis [1] and in the work of many others. The metric
complement of a located set G is the set

-G = {xeX:p(x,G)>0} .

These metric complements are called colocated; they are the open sets
with which we shall work, and may be considered to be those open
sets having constructive significance.

Our main result (Theorem 6) is that every colocated set on the
line is a countable union of disjoint open intervals. Classically (i.e.,
nonconstructively) this is true for every open set, but not construc-
tively; a counterexample is given in [3, §7]. The resolution of a
colocated set given here will be developed further in [4] to yield a
complete characterization of located sets on the line and an explicit
procedure for their construction.

The italicized word "not" used in the above paragraphs has a
special meaning in constructive mathematics. It means that a
counterexample exists in the sense of Brouwer. Such a counter-
example consists of a proof showing that the statement in question
implies one of several principles which are constructively unbelievable.
That is, no proofs of the principles are known, and it seems
very unlikely that constructive proofs will ever be found. For
example, the statement "every open set on the line is a countable
union of disjoint open intervals" implies the limited principle of
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omniscience (LPO). LPO states that there is a general procedure
which applies to any given sequence of integers and determines, by
a finite process, either that each term of the sequence is zero or
that some (specifically presented) term is nonzero. A moment's
reflection is usually sufficient to produce complete conviction that
such a procedure will never be discovered. Therefore, because of
the implication given in the counterexample, we do not believe that
a proof of the statement in quotes will ever be found. Further
discussion of Brouwerian counterexamples is found in Chapters 1 and
2 of [1].

The resolution of a bounded colocated set on the line into a
countable union of disjoint open intervals is given in Theorem 1 of
[3]. It depends on the fundamental lemma (L) of [2]. L shows
that the components of a bounded colocated set are totally bounded
(and thus their endpoints may be calculated). The extension of the
resolution to unbounded (i.e., not known to be bounded) colocated
sets requires two steps. First, an extension of L to unbounded sets
is required. Second, a generalization of the concept of extended
real number is needed for the calculation of the endpoints of the
components.

The first step is carried out in §2. Theorem 2, which shows
that components are located, is the extension of L required. The
proof of Theorem 2 proceeds by a reduction to the bounded case; it
uses L and Theorem 1. Theorem 1 characterizes located sets in terms
of totally bounded sets; its proof is also based on L.

The second step is required because of an example in [3, §11].
The example shows that an unbounded colocated set need not have
a resolution into disjoint open intervals, when open intervals have
endpoints that are extended real numbers in the sense of real num-
bers or ± oo. The colocated set constructed in the example is based
on an increasing sequence {αj of zeros and ones. One of the com-
ponents would be J Ξ U{(0, n + 1): an — 0}. This component can not
be expressed as an open interval (α, 6), where b is the usual sort of
extended real number. That is, J does not have a supremum in the
existing system of extended real numbers. However, the correspond-
ing set J in ( —1, 1) does have a supremum in [—1, 1].

Thus it seems natural to redefine the extended real numbers so
that iΓ3 will be similar to [—1, 1]. Then components will have
suprema in iϋ°°. There is no more reason for being able to decide
whether an extended real number is finite or infinite than for decid-
ing whether a point of [ — 1, 1] lies in ( — 1, 1) or is ± 1 .

The construction of R°° is carried out in §4. Extended real
numbers are defined in terms of [ — 1, 1]; they are characterized in
terms of R by Theorem 3. Theorem 4 constructs the required
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suprema of convex located sets. However, not all located sets will
have suprema in R°°\ those which do are characterized in [5],

Colocated sets are resolved into countable unions of disjoint open
intervals in §5.

If a set S has the property that, for any x, the condition xeS
is contradictory, then, as usual, S is said to be void. If, on the
other hand, it is known that there exists some element x in S (i.e.,
x is explicitly constructed and xeS is proved), then we shall say
that S is fixed. (The negative term "nonvoid" could be used for the
negativistic concept " 'S is void' is contradictory"; however, this
concept is of little constructive interest.) In general, it can not be
determined whether a given set is void or fixed. We require sets
(in particular, open intervals) which are known to be either void
or fixed; such sets, and families of such sets, will be called fixative.

2. Located sets*

LEMMA 1. The closure of a located subset of a metric space X
is also located. A dense subset of a located subset is also located.

Proof. When S is either the closure of a located subset G, or
is dense in G, it is easy to show that p(x9 S) = p{x, G) for any xe X.

LEMMA 2. Any finite union of located subsets of a metric space
X is also located.

Proof. Let Gτ (1 <; i ^ n) be located, and put G Ξ \Jt G> Let
x e X and put p Ξ= Λ* p(χ, Gt). Clearly p <; p(x9 y) for all y eG. Let
ε > 0, choose i so that p{x, Gt) < p + ε/2, and construct yeGi such
that p(x, y) < p(x, Gt) + ε/2; then p(x, y) < p + ε. Hence p(x, G) = p.

LEMMA 3. If G is a subset of a metric space X, and p(x, G)
exists for all x in some dense subset S of X, then G is located.

Proof. Let {xn} be a Cauchy sequence in S. Then p(xn, G) ^
piPn, a J + p(xm, G); hence \ρ{xn, G) - p(xm, G)\ ̂  p(xn9 xj for all n
and m, and thus {p(xn, G)} is a Cauchy sequence. Let x e X, construct
{xn} in S with xn—>x, and put p = limp(xn9 G). For yeG, since
p(xn9 G) <L p{xn, y) for all n, it follows that p <L p(x, y). Now let
ε > 0, c h o o s e n s o ρ{x, x n ) < ε / 3 , a n d c o n s t r u c t yeG w i t h p(xn9 y) <
p(xn, G) + ε/3. Then p{x, y) ^ ^(a;, xn) + p(x»9 y) < ρ{xn, G) + 2ε/3 <
p + ε. It follows that p(x9 G) = p.

LEMMA 4. // G is a located set on the line and aeG, then
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G Γ\(—°°, a] is also located.

Proof. Put H = G Π (— <*>, a], let x e —{a}, and put p = (a — a) V
/o(a?, G). (1) If a? > α, then p = x — a and clearly p(x, H) = p. (2)
If x < a, then jθ = (̂a?f G), so ^ ^ jθ(#, y) for all y eH. For any
ε > 0, construct j / e G such that p(x, y) < p(a?, G) + e/2. (2.1) If
y < a, then ?/ e i ϊ with ô(a?f y) < p + e. (2.2) If # > α — ε/2, then
p(x, a) < p(a?, 2/) + ε/2 < p + ε. Hence p(x9 H) = ^. It follows from
Lemma 3 that H is located.

COROLLARY 1. In the situation of the lemma, ρ{x, G Π (— °°, a]) =
(x — a) V |θ(ίc, C?), /or αK a? w JR.

LEMMA 5. If G is a located set on the line, ae—G9 and G
meets (— °°, a], then G Π (— °°, a] is also located.

Proof. Put H == G Π (— °°, α], construct 6 e iϊ, and put d Ξ
(— oo, b — 1] U G U [α + 1, +oo), Then U = — Gi is a bounded colocated
set with ae U. Applying [2, Theorem 4], construct the component
(c, d) of α in U; Then c lies in the closure of G19 hence in the closure
K of G. By Lemma 4, iΓn (—°°, c] is located. Thus, since i ϊ is
dense in JBΓΠ (—°°, c], it follows from Lemma 1 that ΐZ* is also
located.

COROLLARY 2. Iw ίfeβ situation of the lemma, p(x, G Π (— °°, a]) —
(a; — c) V /θ(a:, G), /or all xeR, where c is the left-hand endpoint of
the component of a in — G.

Now consider the intersection of a located set G with open in-
finite intervals. In the case a e — G, since G D (— cx?, a) = G Π (— °°, α],
Lemma 5 applies. For the case a e G, however, we construct a
located set G and a point a in G such that G meets (—°° fα), but
Q[)(—oofa) is wo£ located, in the sense of a Brouwerian counter-
example. Let a 2> 0 and put G == {0, 1 — α, 1}; then G n ( - ° ° , 1) is
not located, for if it were we would have a procedure determining
either a > 0 or a = 0, yielding an equivalent form of LPO.

The next lemma is contained in [1, p. 89].

LEMMA 6. A set on the line is totally bounded if and only if
it is located and bounded.

LEMMA 7. If G is a located set on the line, and a and b are
points of G U — G such that G meets [a, b], then G Π [α, b] is totally
bounded.
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Proof. Apply Lemmas 4 and 5 in succession.

THEOREM 1. For any fixed set G on the line, the following are
equivalent:

(1) G is located.
(2) For every x and y in R such that G meets \x, y], and for

every ε > 0, there exist a within ε of x, and b within ε of y, such
that G Π [a, b] is totally bounded.

(3) For every n in Z+ there exist a < —n and b > n such
that G Π [a, b] is totally bounded.

Proof. (1) implies (2). If p(x, G) > 0, put a = x, while if
p{x, G) < ε, construct a in G such that p(x, a) < ε. Construct b
similarly. It is easily seen that G meets [a, 6]; apply Lemma 7.

(2) implies (3) is easily seen.
(3) implies (1). Fix y in G and let xeR. Choose n > 3(|y | V )x))

and construct corresponding numbers a and b. Put p = p(x, G Π
[α, 6]), and let zeG. (1) If a < % < 6, then p ^ ρ(x, z). (2) If
\z\ > n, then p <; p(x, y) < 2w/3 < p(x, z). Hence p(x, G) = p.

The next theorem extends the fundamental lemma of [2], and
completes the first step in the construction of unbounded components.
The second step is Theorem 5 in § 4, which calculates sup H.

THEOREM 2. Let U be a colocated set on the line with a e U.

Then

H == {x 6 R: x ^ a and [a, x] c U]

is located.

Proof. Let neZ+, and choose b > n V \a\. Then a<b and

H f] [ — 5, b] = {x 6 [α, 6]: [α, x] c U), which by [2, Lemma] is totally
bounded. It follows from Theorem 1 that H is located.

3* Line and interval* In the next section R°° is constructed
so that it is similar to [ — 1,1]. In order to do this, R must first
be related with ( —1, 1). The mapping x—>x/(\x\ + 1) will be used;
a tedious computation results.

DEFINITION 1. For any real number x, put x = x/(\x\ + 1).

LEMMA 8. For any xy y in R, \x — y\ ^ \x — y\.

Proof. F i r s t n o t e t h a t f o r a n y xeR, w e h a v e \x\ ̂  \x\. N o w
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l e t x, y eR a n d ε > 0 . (1) \χ\ < ε/2. T h e n \x - y\ < \y\ + ε/2. A l s o

\x - y\ ^ | # | - \x\ > \y\ - ε/2, a n d h e n c e \x — y\<\x — y\ + ε . (2)

\y\<ε/2. S i m i l a r . (3) x Φ 0 a n d 2/ =£ 0 . ( 3 . 1 ) x>0 a n d 2 / > 0 .

T h e n \x-y\ = \x- y\/(x + l){y + l)<ί\x- y\. (3 .2) y < 0 < x.

T h e n ?7 < 0 < x, s o t h a t \x — y\ — x — y<^x — y — \x — y\. T h e

remaining cases reduce to these.

COROLLARY 3. / / xn -> x, then xn —> ^.

L E M M A 9 . If x,yeR and x <y, then x\y\ ^ \x\y.

Proof. (1) If 0 > x, then x\y\ ^ OJ(-]/) = (-x)y = |a;|i/. (2) If

0 < 2/, then a; I y I = a?2/ ^ I a? 11/.

LEMMA 10. If x, y e i?, ίfce^ x < y if and only if x < y.

Proof Let x <y. Adding this to t h e inequality in Lemma 9,

we obtain x\y\ + x < \x\y + y; t h u s x < y. Now let x < y. F i r s t

suppose y < xf then ^ < #, a contradiction, hence x ^ y. Now p u t

β == y — x > 0 and suppose # < x + ε. Then e — \x — y\^\x — y\<s,

a contradiction; hence y ^ x + e> x.

COROLLARY 4. If x, y e R, then x ^ y if and only if x ^ y.

LEMMA 11. For any M > 0, if \x\ ^ M and \y \ ^ M, then

Proof F i r s t consider t h e case x Φ 0 and y Φ 0. (1) & > 0 and

7/ > 0. Then \x-y\^\x- y\/(x + l)(y + 1) ^ |a? - y\/(M + I) 2 . (2)

a? < 0 < y. Then y — x>0 and — 2#2/ > 0; hence \χ — y\ =

\x/(-x + 1) - »/(» + 1)| - \2xy -y + x\/(-x + l){y + 1) ̂  |» - x -
2xy\/(M + I) 2 > \y — x\/(M + I ) 2 . Now for a r b i t r a r y x and y, choose

xn —> ίc and yn-*y wi th 0 < | α;Λ | ^ M and 0 < | yn \ ^ Λf, and apply

Corollary 3.

COROLLARY 5. Let 0 < £ > < l . / / | ^ | ^ 6 and \y\<*bf then

LEMMA 12. For any y in (•—1, 1), there exists x in R such that

x = y.

Proof Put x = y/(l - \y\).

PROPOSITION 1. The mapping x—>x is an order preserving

bicontinuous correspondence of R with ( — 1, 1).
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4* Extended real numbers*

DEFINITION 2. A sequence {xn} of real numbers is an extended
Cauchy sequence if {xn} is a Gauchy sequence in (—1,1). An extended
real number is an extended Cauchy sequence of real numbers. The
set of extended real numbers is denoted R°. For any x E= {xn} in
R°°, we put x = lim xn. For any x and y in R°°, define x = y, x ^ y,
x < y, or x Φ y it the corresponding relation holds between 5; and ^
in [—1,1], For any real number x, put #* = {x, x, x, •}.

The map cc —> α?* is an order-preserving injection of R into JB°°;

thus we identify R with a subset of R°°. The map x —> x is an order-
preserving correspondence of ϋΓ with [—1, 1]. If xeR°° and x = 1
(resp. ic = —1), we write a? = +co (resp. α? = — oo).

THEOREM 3. A sequence {xn} of real numbers is an extended
Cauchy sequence if and only if there exists an increasing sequence
{βkϊ of O's and Γs, and a sequence {Mk} of positive integers, such
that

(a) ifσk = 0, then either xn^k (n^Mk), or xn^~k (n^Mk), and
(b) if σk = 1, then \xm — xn\ <; 1/fc (m, n ^ Mk).

Proof. We first prove the sufficiency. Let m, n^ Mk. (1) If
σk — 0, then, in the first case, xn ^ k — k/(k + 1) > 1 — 1/fc, and
similarly for xm; thus |icm — »»| ^ 1/fc. The other case is similar.
(2) If σk = 1, then by Lemma 8, | £ w - xn\ ^ |ajm - a?w| ^ 1/fc.

Conversely, let {x%} be a Cauchy sequence in (—1,1) and put
y = lim a?Λ. Construct an increasing sequence {σn} of 0's and Γs such
that (a) \y\> fc/(fc + 1) when σk = 0, and (b) \y\<l when crfe = 1.
(1) If σk = 0, consider the case # > &/(& + 1). Choose Mk so that
xn ^ fc/(fc + 1) for n ^ Mkt thus α;w ̂  fc (n ^ Mk). The other case is
similar. (2) If σk = 1, choose 6 so \y\ < 6 < 1. Then |ά?J <̂  &
eventually; hence by Corollary 5 we have \xm—ccj<;(l/(l—bf)\xm—xn\
eventually. Since {xn} is a Cauchy sequence, there exists Mk such
that \xm — xn\ ^ 1/fc (w, n

DEFINITION 3. A set S on the line is convex iί xeS whenever
a, beS and a ^ x ^ b.

THEOREM 4. Any convex located set on the line has a supremum
and an infimum in i2°°.

Proof By Theorem 1, construct a decreasing sequence {αj and
an increasing sequence {bn} such that an < — n, and bn > w, and
G . Ξ f f n [an, bn] is totally bounded. Put sn == sup Gn; clearly {ŝ } is
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increasing. If for some n, we have sn<bn, then sm=sn (m*zri). For,
let xeG and suppose x > sn. Choose y so sn < y < bn A x] then
y e Gn, so that y <ί sn, a contradiction. Hence x ^ sn for all a? 6 G,
and it follows that sm = sn (m ^ n). Thus we may construct an in-
creasing sequence {σn} of O's and Γs such that (a) sn > n when
σn = 0 and (b) βw < δ% when σn = 1. (1) If σΛ = 0, then sm ^ w
(m ^ w), because {sj is increasing. (2) If σn = 1, then sw = sn

(m ^ w), as shown above. By Theorem 3, {sn} is an extended Cauchy
sequence and s Ξ {sj is in R°°; clearly s — sup G.

The convexity in the above theorem is essential. A located set
on the line need not have a supremum in R°°. For example, let {an}
be an increasing sequence of zeros and ones, and let the set G
consist of the point 0 and also, in the event that some an = 1, of
the least such integer n. Then G is located but does not have a
supremum in R°°; see [3, §11]. This problem is considered further
in [5].

COROLLARY 6. Every open (resp. closed) located convex set on
the line is an open (resp. closed) interval.

Proof. Let G be a located convex set; put r == inf G and
s = sup G. If G is open then clearly G = (r, s). Now let G be
closed; clearly G c [r, s]. (Note that [r, s] consists of all finite
numbers x with V <̂  x <̂  s.) Let xe[r, s]; first construct a point
y eG such that x ^ y, as follows. (1) If s > x, construct y eG such
that y > x. (2) If s < a? + 1, then s is finite, so seG; put y = s.
Similarly, construct zeG such that 2 ^ x. Hence xeG.

Not every located convex set on the line is an interval. A
Brouwerian counterexample is easily given; it shows that the asser-
tion "every located convex set on the line is an interval" implies the
(unbelievable) limited principle of existence (LPE). LPE states that
if {αj is any sequence of integers such that it is contradictory that
all an = 0, then some an Φ 0; or, equivalently, if t ^ 0 and t = 0 is
contradictory, then t > 0. The set used in the counterexample is
{# e [0, 1): x = 0 is contradictory}.

We now calculate the endpoints of the components of a colocated
set.

THEOREM 5. Let U be a colocated set on the line with ae U.
Then

H ΞΞ {χeR:χ >̂ a and [a, x] c U)
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has a supremum in i2°°.

Proof. Theorem 2 shows that H is located; thus Theorem 4
applies.

5* Resolution of colocated sets*

THEOREM 6. Any colocated set U on the line is a countable
union of fixative disjoint open intervals. Thus, U = (J?=i Ik, where

(1) each open interval Ik is either void or fixed, and
(2) Ij and Ik are disjoint whenever j Φ k.

Proof. In the bounded case, this is Corollary 1 of [3]. The
boundedness restriction is used there at only two points: (a) The
lemma in [2], where we now use Theorem 5 above, and (b) Lemma
1 in [3], where we now examine the images of the intervals in
[-1,1].

The proofs of the following applications proceed as for the
bounded case given in [3].

COROLLARY 7. // two fixed open subsets of the line are disjoint,
with one colocated, then there exists a point on the line that belongs
to neither subset.

COROLLARY 8. A fixed closed colocated subset of the line is the
entire line.

For Corollary 8 to have any content, the concept of located set
must be extended so as to include the void set 0 , from which the
distance p(x, 0 ) of any point x is +o°. More to the point, we must
consider as located those sets from which distances exist in R°°, but
which are not known to be fixative. For example, if {aj is an
increasing sequence of zeros and ones, then the set {n: an = 1} is, in
general, not fixative, and yet is located in the sense of distance in
j?°°. This more general concept of located set will be considered in
[4] and [5].

COROLLARY 9. Every fixed colocated convex set on the line is
an open interval.

It follows that a fixed colocated convex set on the line is located.
However, not every fixed colocated set is located; consider U =
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(0, 1) U (2, 2 + 1/&), where {αj is an increasing sequence of zeros and
ones and k is the least of the integers n such that an — 1, if any
exist.
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