TWO QUESTIONS ON WALLMAN RINGS

JOSE L. BLASCO

In this paper we give an example of a Wallman ring \mathscr{S} on a topological space X such that the associated compactification $\omega(X, Z(\mathscr{S}))$ is disconnected and \mathscr{S} is not a direct sum of any two proper ideals, herewith solving a question raised by H. L. Bentley and B. J. Taylor. Also, an example of a uniformly closed Wallman ring which is not a sublattice is given.

I. Introduction. Biles [2] has called a subring \mathscr{A} of the ring C(X), of all real-valued continuous functions on a topological space X, a Wallman ring on X whenever $Z(\mathscr{A})$, the zero-sets of functions beloning to \mathscr{A} , forms a normal base on X in the sense of Frink.

H. L. Bentley and B. J. Taylor [1] studied relationships between algebraic properties of a Wallman ring \mathscr{A} and topological properties of the compactification $\omega(X, Z(\mathscr{A}))$ of X. They proved that if \mathscr{A} is a Wallman ring on X such that $\mathscr{A} = \mathscr{B} \oplus \mathscr{C}$ where \mathscr{B} and \mathscr{C} are proper ideals of \mathscr{A} , then $\omega(X, Z(\mathscr{A}))$ is disconnected. We shall prove that the converse of this result is not valid. But, when $\omega(X, Z(\mathscr{A}))$ is disconnected we find a Wallman ring \mathscr{A}° , equivalent to \mathscr{A} , which is a direct sum of any two proper ideals.

It is well-known that every closed subring of $C^*(X)$, the ring of all bounded functions in C(X), that contains all the rational constants is a lattice. But this is not true for arbitrary closed subrings of C(X). We give an example of a uniformly closed Wallman ring on a space Y which is not a sublattice of C(Y). This corrects an assertion stated in ([1], p. 27).

II. Definitions and basic results. All topological spaces under consideration will be completely regular and Hausdorff. A nonempty collection \mathscr{F} of subsets of a nonempty set X is said to be a ring of sets if it is closed under the formation of finite unions and finite intersections. The collection \mathscr{F} is said to be disjunctive if for each closed set G in X and point $x \in X \sim G$ there is a set $F \in \mathscr{F}$ satisfying $x \in F$ and $F \cap G = \emptyset$. It is said to be normal if for F_1 and F_2 in \mathscr{F} with empty intersection there exist G_1 and G_2 which are complements of members of \mathscr{F} satisfying $F_1 \subset G_1$, $F_2 \subset G_2$ and $G_1 \cap G_2 = \emptyset$. The collection \mathscr{F} is a normal base for the topological space X in case it is a normal, disjunctive, ring of sets that is a base for the closed sets of X.

Throughout this section \mathscr{D} will denote a disjunctive ring of closed

sets in a topological space X that is a base for the closed sets of X. Let $\omega(X, \mathscr{D})$ denote the collection of all \mathscr{D} -ultrafilters, and topologize them with a topology having as a base for the closed sets, sets of the form $D^* = \{\mathscr{U} \in \omega(X, \mathscr{D}) : D \in \mathscr{U}\}$ where $D \in \mathscr{D}$. Then X can be embedded in $\omega(X, \mathscr{D})$ as a dense subspace when it carries the relative topology. The embedding map takes each $x \in X$ into the unique \mathscr{D} -ultrafilter of supersets of x in \mathscr{D} . The space $\omega(X, \mathscr{D})$ is a T_1 -compactification of X ([3], p. 122).

We now state some facts concerning the space $\omega(X, \mathscr{D})$ which will be needed. For a proof see ([3], p. 119, p. 123).

PROPOSITION 2.1. The space $\omega(X, \mathscr{D})$ is Hausdorff if and only if \mathscr{D} is a normal base on X.

The following result is an interesting characterization of $\omega(X, \mathscr{D})$ due to Sanin.

THEOREM 2.2. The space $S = \omega(X, \mathscr{D})$ is uniquely determined (in the usual sense) among T_1 -compactifications of X by its properties

- (a) $\{cl_s D: D \in \mathscr{D}\}$ is a base for the closed sets of $\omega(X, \mathscr{D})$.
- (b) For F_1 , F_2 in \mathcal{D} , $\operatorname{cl}_S F_1 \cap \operatorname{cl}_S F_2 = \operatorname{cl}_S(F_1 \cap F_2)$.

According to the Proposition 2.1 if any Hausdorff compactification of X satisfies (a) and (b), then \mathscr{D} is a normal base on X.

III. Disconnectedness of $\omega(X, Z(\mathscr{M}))$. The next result is a necessary and sufficient condition for the disconnectedness of $\omega(X, Z(\mathscr{M}))$ being \mathscr{M} a Wallman ring on X.

THEOREM 3.1. Let \mathscr{A} be a Wallman ring on a space X. Then $\omega(X, Z(\mathscr{A}))$ is disconnected if and only if there is a Wallman ring \mathscr{A}° , equivalent to \mathscr{A} (i.e., $\omega(X, Z(\mathscr{A})) = \omega(X, Z(\mathscr{A}^{\circ})))$, which is the direct sum of any two proper ideals.

Proof. The sufficiency has been proved in ([1], Theorem 3.14) with $\mathscr{A} = \mathscr{A}^{\circ}$. Necessity. Suppose that $S = \omega(X, Z(\mathscr{A}))$ is disconnected. Then there exist nonempty disjoint closed subsets A and B of S whose union is S. Since A is a closed set of S,

$$A = igcap \{ \mathrm{cl}_s Z : A \subset \mathrm{cl}_s Z, \, Z \in Z(\mathscr{A}) \} \; .$$

It follows from $A \cap B = \emptyset$ that $\{B, \operatorname{cl}_S Z: A \subset \operatorname{cl}_S Z, Z \in Z(\mathscr{M})\}$ does not have the finite intersection property. Therefore $B \cap \operatorname{cl}_S Z_1 \cap \cdots \cap$ $\operatorname{cl}_S Z_n = \emptyset$, for some $Z_i \in Z(\mathscr{M}), A \subset \operatorname{cl}_S Z_i, 1 \leq i \leq n$. This implies $A = \bigcap \{\operatorname{cl}_S Z_i: 1 \leq i \leq n\} = \operatorname{cl}_S \cap \{Z_i: 1 \leq i \leq n\}$. So $A = \operatorname{cl}_S Z(f)$ where $f \in \mathcal{M}$. In the same way we find that $B = \operatorname{cl}_{S}Z(g), g \in \mathcal{M}$.

The set $\mathscr{N}^{\circ} = \{h/s: h, s \in \mathscr{M}, Z(s) = \emptyset\}$ is a subring of C(X)such that $Z(\mathscr{M}) = Z(\mathscr{M}^{\circ})$. So \mathscr{N}° is a Wallman ring on X equivalent to \mathscr{M} . The functions $h_1 = f^2/(f^2 + g^2)$, $h_2 = g^2/(f^2 + g^2)$ belong to \mathscr{M}° and they are the characteristic functions of the zero-sets Z(g) and Z(f), respectively. Since $Z(f) \cap Z(g) = \emptyset$, the ideal (h_i) of \mathscr{M}° generated by h_i is proper, $1 \leq i \leq 2$. On the other hand, $1 = h_1 + h_2$ implies that $\mathscr{M}^{\circ} = (h_1) \bigoplus (h_2)$.

The following is an example of Wallman ring which cannot be expressed as the direct sum of nontrivial ideals.

EXAMPLE 3.2. Let $X = [0, 1) \cup [2, 3)$, $\mathscr{B} = \{f \in C(X): \text{ for some compact set } K \subset X, f \text{ is an integer constant on } X \sim K\}.$

Since X is locally compact, $Z(\mathscr{B})$ is a disjunctive base for the closed sets of X.

Consider the following functions in C(X)

$$\begin{split} & \varphi_1(x) = e \ , \ \ x \in [0, 1) \qquad \varphi_1(x) = 0 \ , \ \ x \in [2, 3) \\ & \varphi_2(x) = 0 \ , \ \ x \in [0, 1) \qquad \varphi_2(x) = e \ , \ \ x \in [2, 3) \ . \end{split}$$

Let \mathscr{M} be the subring of C(X) generated by $\mathscr{B} \cup \{\varphi_1, \varphi_2\}$. Since $\varphi_1 \varphi_2 = 0$, a function of \mathscr{M} will be of the form

$$f = g_{_{00}} + g_{_{10}} arphi_{_1} + g_{_{20}} arphi_{_1}^2 + \, \cdots \, + \, g_{_{m0}} arphi_{_1}^m + g_{_{01}} arphi_{_2} + \, \cdots \, + \, g_{_{0j}} arphi_{_2}^j$$

where g_{ik} belong to \mathcal{B} and m, j are nonnegative integers.

From the definition of \mathscr{B} , there exist compact sets $K_1 \subset [0, 1)$ and $K_2 \subset [2, 3)$ such that if $x \in X \sim (K_1 \cup K_2)$ then $g_{ik}(x) = \alpha_{ik} \in Z$ (the set of integer numbers). Therefore

$$(*) \qquad egin{array}{ll} f(x) &= lpha_{_{00}} + lpha_{_{10}} e^+ + \cdots + lpha_{_{m0}} e^m \,, \qquad x \in [0,\,1) \sim K_1 \ f(x) &= lpha_{_{00}} + lpha_{_{01}} e^+ + \cdots + lpha_{_{0j}} e^j \,, \qquad x \in [2,\,3) \sim K_2 \,. \end{array}$$

Since $Z(\mathscr{B}) \subset Z(\mathscr{A})$ it follows that $Z(\mathscr{A})$ is a disjunctive base for the closed sets of X and a ring of sets.

Now, we will show that $K = [0, 1] \cup [2, 3]$ is a compactification of X equivalent to $\omega(X, Z(\mathcal{M}))$. According to Theorem 2.2 it suffices to show that: (a) The family $\{cl_K Z: Z \in Z(\mathcal{M})\}$ is a base for the closed sets of K (b) For Z_1, Z_2 in $Z(\mathcal{M}), cl_K(Z_1 \cap Z_2) = cl_K Z_1 \cap cl_K Z_2$.

(a) If C is a closed set in K and $1 \notin C$, then the set $C \cap [0, 1]$ is compact and $1 \notin C \cap [0, 1]$. Let β be a point in [0, 1) such that $C \cap [\beta, 1] = \emptyset$. Then, there exists a function $f \in C(K)$ such that $f([\beta, 1] \cup [2, 3]) = \{1\}$ and $f(C \cap [0, 1]) = \{0\}$. If g is the restriction of f to X, then $g \in \mathcal{B}$, $h = \varphi_1 g \in \mathcal{M}$, $C \subset \operatorname{cl}_K Z(h)$ and $1 \notin \operatorname{cl}_K Z(h)$. With the point 3 a similar argument can be used (also in (b)).

(b) Let $f, g \in \mathscr{A}$ and suppose that $1 \in \operatorname{cl}_{\kappa} Z(f) \cap \operatorname{cl}_{\kappa} Z(g)$. From (*) there exists $\beta \in [0, 1)$ such that $f(x) = m_1$ and $g(x) = m_2$ for every $x \in [\beta, 1)$. By our assumption $m_1 = m_2 = 0$, therefore $1 \in \operatorname{cl}_{\kappa}(Z(f) \cap Z(g))$.

Then $K = \omega(X, Z(\mathcal{M}))$, hence $Z(\mathcal{M})$ is a normal base on X and \mathcal{M} is a Wallman ring.

Now, we will show that the characteristic function of the interval [0, 1) is not in \mathscr{M} . Let $h \in \mathscr{M}$. From (*), there exist $\beta \in [0, 1), \gamma \in [2, 3)$ and $\alpha_{ik} \in \mathbb{Z}, 0 \leq i \leq m, 0 \leq k \leq j$ such that

$$egin{aligned} h(x) &= lpha_{_{00}} + lpha_{_{01}e} + \, \cdots \, + \, lpha_{_{0j}e^j} \,, \quad x \in [\gamma, \, 3) \ h(x) &= lpha_{_{00}} + \, lpha_{_{10}e} + \, \cdots \, + \, lpha_{_{m0}e^m} \,, \quad x \in [eta, \, 1) \end{aligned}$$

If [2, 3) $\subset Z(h)$, then $\alpha_{00} = \alpha_{01} = \cdots = \alpha_{0j} = 0$ because *e* is a transcendental number. Therefore $h(x) = \alpha_{10}e + \cdots + \alpha_{m0}e^m \neq 1$ if $x \in [\beta, 1)$.

Finally, we will show that \mathscr{A} cannot be expressed as the direct sum of nontrivial ideals. Suppose that $\mathscr{A} = \mathscr{C} \bigoplus \mathscr{H}$ where \mathscr{C} and \mathscr{H} are proper ideals of \mathscr{A} . Then $1 \in \mathscr{A}$ implies that there exist $f \in \mathscr{C}$ and $g \in \mathscr{H}$ such that 1 = f + g and fg = 0. Hence $\{Z(g), Z(f)\}$ is a partition on X. On the other hand, since \mathscr{C} and \mathscr{H} are proper ideals, the zero-sets Z(f) and Z(g) are nonempty, so [0, 1) = Z(f) and [2, 3) = Z(g). Therefore $g \in \mathscr{A}$ is the characteristic function of the interval [0, 1), which is a contradiction.

IV. An example of a closed Wallman ring which is not a lattice. Let N denote the set of natural numbers. By a sublattice of C(X) we mean a subset of C(X) which contains the supremum and infimum of each pair of its elements. By a closed subring of C(X) we mean a subring of C(X) which is closed in the uniform topology on C(X).

EXAMPLE 4.1. Let \mathscr{B} be the set $\{f \in C(N): \text{ for some finite subset } M \subset N, f \text{ is an integer constant on } N \sim M\}$. Then \mathscr{B} is a subring of C(N) and $Z(\mathscr{B}) = \{B \subset N: B \text{ or } N \sim B \text{ is finite}\}$. It is well-known that \mathscr{B} is a Wallman ring on N such that $\omega(N, Z(\mathscr{B}))$ is the one-point compactification of N.

Let φ be the function defined $\varphi(2n) = n$, $\varphi(2n-1) = -n$, $n = 1, 2, \cdots$. Let \mathscr{A} be the subring of C(N) generated by $\mathscr{B} \cup \{\varphi\}$. Obviously $Z(\mathscr{B}) \subset Z(\mathscr{A})$. To show that $Z(\mathscr{A}) \subset Z(\mathscr{B})$, let $f \in \mathscr{A}$. Then $f = g_0 + g_1 \varphi + \cdots + g_m \varphi^m$, where $g_i \in \mathscr{B}$, $0 \leq i \leq m$. From the definition of \mathscr{B} , there exist $n_0 \in N$, $\alpha_i \in Z$, $0 \leq i \leq m$ such that $g_i(2n-1) = g_i(2n) = \alpha_i$, $0 \leq i \leq m$ for every $n \geq n_0$. If $\alpha_1 = \cdots = \alpha_m = 0$, then $f(2n-1) = f(2n) = \alpha_0$ for every $n \geq n_0$ and therefore $f \in \mathscr{B}$. Suppose $\alpha_{i_0} \neq 0$ for some $i_0 \geq 1$. Then, if $n \geq n_0$, $f(2n) = \alpha_0 + n\alpha_1 + \cdots + n^m \alpha_m$ and $f(2n-1) = \alpha_0 - n\alpha_1 + \cdots + (-1)^m n^m \alpha_m$. So Z(f) is finite and $Z(f) \in Z(\mathscr{B})$. Hence \mathscr{A} is a Wallman ring on X.

If $\varphi^+ = \varphi \lor 0$, then $Z(\varphi^+) = \{1, 3, 5, \cdots\} \notin Z(\mathscr{A})$. Therefore $\varphi^+ \notin \mathscr{A}$ and \mathscr{A} is not a lattice. Finally, since the functions of \mathscr{A} are integer-valued, it follows that \mathscr{A} is uniformly closed in C(N).

References

1. H. L. Bentley and B. J. Taylor, Wallman rings, Pacific J. Math., 58 (1975), 15-35. 2. C. M. Biles, Gelfand and Wallman-type compactifications, Pacific J. Math., 35 (1970), 267-278.

3. J. Nagata, Mordern General Topology, North-Holland Publishing Co., Amsterdam-Gronigen, 1968.

Received May 2, 1979.

CATEDRA DE MATEMATICAS II Facultad de Ciencias Burjasot, Valencia Spain