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EXISTENCE AND REGULARITY FOR THE PROBLEM
OF A PENDENT LIQUID DROP

E. GonzALEZ, U. MASSARI AND I. TAMANINI

The subject of this paper is the study of the existence of
a pendent drop. We carry out this study in full generality by
exploiting the local minima of a suitable functional, chosen to
represent the energy of the drop.

If we denote by & < R**' a liquid drop hanging from the fixed
horizontal reference plane {¢ = 0}, then we can write the global
energy of that configuration in the following way:

0.1  F(E) = St/ochpE} +v S PudH, + £| o, Oidudt

Here, the first integral is the measure of that part of the boundary
of E lying in the half-space {t < 0}. Physically, it corresponds to
the energy due to surface tension. The second integral, proportional
to the measure of the boundary of E contacting the horizontal plane,
represents the energy given by the attraction between the liquid
and the plane itself, while the third one corresponds to the gravi-
tational energy.

Exact definitions of these objects will be given in the next
section.

The constant v is determined experimentally, depending on the
materials in the liquid-solid-vapor interface; physically, it represents
the cosine of the angle between the exterior directed normal to the
liquid surface, along the intersection with the contact plane {¢ = 0},
and the positive (vertical) ¢-direction. The constant £ =0 takes into
account the gravitational acceleration, and is referred to as the
“capillary constant” (see e.g., [12]).

We have to minimize the functional (0.1) among the sets of
finite perimeter (in the sense of De Giorgi; see |7] or [11], where
the equivalent notion of mass is used), having preseribed V volume.
It is clear that we cannot expect a finite lower bound for (0.1) in
such a class, as physical considerations may suggest. Indeed, a
pendent drop is just a local minimum of the energy functional.

In order to prove the existence of such a local minimum, we
introduce a ground floor (i.e., a plane {¢ = T} with a suitable T' < 0)
and minimize the energy among those configurations K lying between
floor and ceiling: for small gravity, we can prove that such minima
do not reach the floor. We do this by observing that as gravity
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decreases to zero, the corresponding minima approach—in the sense
of a good convergence —the solution in the absence of gravity, which
is part of a sphere.

We remark that when it is possible to deseribe the part of the
boundary of E, lying below the contact plane, as the graph of a
function u e C*2), 2 open in R*, then we can write the functional
(0.1) in the equivalent way

0.2) T ) = 591/1 TTDul + v| 2| — %S wida .

Q2

It follows that a minimum of (0.2) satisfies the Euler equation
(0.3) divTu = —ku + N, Tu = Du-(1 -+ |Du|?)™*

in which X is a constant ensuing from the volume constraint.

In the physical case n = 2, considering only rotationally symmetric
solutions (i.e., solutions symmetric about the vertical t-axis), equation
(0.3) takes the simpler form:

! ’
0.4) %(W_lj:__%%) = —kulr) + A
with u = u(r).

The behavior of a solution of (0.4), in its dependence on the
initial value %(0) = u, < 0, has been studied extensively by P. Concus
and R. Finn in a series of papers ([12, 2, 3, 4]; see also [28, 29]).
We refer to [4] for a recent detailed exposition on this argument.

Several interesting results dealing with equation (0.4) have also
been obtained from the computational point of view; see [12] and
the references cited there for a general account.

The question of existence of a drop suspended from an arbitrary
aperture, consisting of a simple closed curve in R?, was studied by
H. C. Wente in [34]. The method employed in that paper still involves
minimization of a suitable functional, however by means of complex-
variable techniques, and gives an affirmative answer for sufficiently
small gravitational field; it differs completely from our method, which
relies on De Giorgi’s Theory of Perimeter and works in any dimension.

In this framework, developed in [5], [6], [7] (see also [1], [19]
for a detailed treatment of the subject), several capillarity problems
have been recently solved; first of all, the problem of existence of
equilibrium surfaces in a capillary tube, whose solution was obtained
by M. Emmer in [9] (see also [13], [32] for extensions of Emmer’s
result to capillary tube of general cross-section, and [27], [14], [15],
[30], [31], [33], [17] for interior analiticity and boundary regularity
of Emmer’s solution). E. Gonzalez and I. Tamanini ([20], [21], [22])
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studied subsequently the problem of a sessile drop (i.e., a liquid drop
sitting on a flat plate), proving existence, regularity and convexity
-of the equilibrium configuration. Further contributions along this
line were obtained by U. Massari and L. Pepe in [25], [26].

Definitions and notations to be used in the sequel are given in
the first section. Section 2 is devoted to the gravity-free problem,
that is to the study of the minima of (0.1) with £ = 0, while e-gravity
problems are studied in §3. Sections 4 and 5 deal with some
properties of e-solutions that are used in the last two sections to
present the conclusive existence and regularity results.

For convenience of the reader, some questions related to the
existence of multipliers have been quoted in the Appendix.

We wish to thank P. Concus for many helpful suggestions on the
use of comparison surfaces, in §6.

When writing the manuscript we were informed by E. Giusti
that he obtained an analogous existence result, without any use of
comparison surfaces.

1. Notation and definitions. We denote by z = (z, ¢t), with
xeR* and te R(n = 2), an arbitrary point in R*+!, by H, the s-
dimensional Hausdorff measure ([11]), by BV(2) the set of Lebesgue
integrable functions f(y) over the open subset 2 of R™, whose gradient,
in the sense of distributions, is a vector measure with finite total
variation. That is,

BY(Q) = {f e L@): | | DFI < + o}
where

|, 1271 = sup {| @ divowdy: g e[Ci@I, 1911} .

We refer to the quantity Sgl Do, involving the characteristic function
@, of a Borel set EC R™, as the perimeter of E in 2; when 2 = R™,
we simply write g]D@EI, the perimeter of H.

If the boundary 02 of 2 is locally Lipschitz, then ([23]) each

function f e BV(Q) has a trace belonging to L'(02). The functional
(0.1) is therefore well-defined on sets E having finite perimeter in

R+, of course, S |Dp;| means the perimeter of E in the half-space
t<0
Q = {(z, t): t < 0}, while S @,dH, corresponds to the trace over 0L0.
t=0
Setting for T < 0

Sy ={(x, ©): T <t <0},
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by A< S, we intend that there exists 6 > 0 such that A< S,,,. We
call G (a set of finite perimeter in R"*) a local minimum for the
functional &7 defined by (0.1) —a pendent drop —if there exists
T < 0 such that

(i) Gec S,

(ii) for each F' of finite perimeter, with |F| =G| and F A
G < Sy, the inequality .& (G) < & (F') holds, where:

FANG=F—-G)UG—F) and |F|=H,,(F).
2. Free-gravity problem. Consider the functional

@.1) SAE) = LOiD%I + u§ pudH,

t

in the class
o = {Bcit<0:|Dpsl <+, B = V]

where V > 0 is a fixed constant and ve R.

When |v| < 1, the isoperimetric inequality ([8], [18]) implies at
once the existence of a unique minimum for &%, in %. Such a
minimum £ is the intersection of the half-space {¢ < 0} with a ball,
centered at the point ¢, on the t-axis and having radius R,; radius
and position of the center are to be determined in such a way that
the measure of the intersection is V and the cosine of the contact
angle is v. That is

(22) B, = (@ ekt <0, 0] < oft) = (B — (t — c))")

where R, ¢, are to be determined through the relations

— (0)
2.3 Ej=V; v=- 00
(2.3) B2 g VT + 0X0)

The minimum height of the solution E, is given by
—(1 + )Yy

29 G <a)ng‘:1 a1 - sﬁ)n/eds>

ynt1 "

We remark moreover that every ball of volume V, lying in {t < 0},
is a solution of the problem in the case v = 1, while for v = —1 no
solution can occur.

3. e-gravity problems. We prove in this section that the funec-
tional
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@) ) = |Dosl +»|_pedH, + | _psdH, + | tpseriz
Sy =0 ¢=T Sy

attains its minimum in the class

(3.2) &y = {EcsT:S|D¢E|< +oo, |E]=V}

for every ¢ > 0.
With respect to the minimization of .#,, we may restrict ourselves

to rotationally symmetric sets. Indeed, if for Fe &, we define
1/n
o) = (co;‘Sst(w: t)dw)
E* = {(x, t) e R, |z | < o(b)}
then we derive from Lemma 2 in [20]:
F(E) £ F(E)

equality holding if and only if E*®* = E, that is, the set E is already
symmetric. We define

(3.3) “r ={E“Ee &, .

LEMMA 8.1. For |v| =1, the functional #. defined by (3.1) has
a finite lower bound on .

Proof. Clearly we have
|, D25l > | puam,
t<0 t=0

for any Fe &,, from which we obtain

0= 12 1Dp.l + 221 puam,
2 Ji<o 2 Ji=o

= (1= 22N Dl + (v = LE2)|_ puam,

and then

(3.4) FAE) > 1 — SID%I +eTV
which concludes the proof.

LEMMA 3.2. Let {E,}be a sequence of sets in &r such that FAE)<
const. Vh. If —1< vy =<1, then a subsequence of {E,} converges in

LY(R"") to a limit set K¢ %}T.
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Proof. The existence of a subsequence of {E,}, convergent in
Li,.(R™*"), follows easily from (3.4) together with a known compactness
result ([24]). Now, we have for almost all ¢ < 0:

(3.5) S%h @, t)de < S]D%h] < const .

We can thus find a ball B,  R*, such that every set in the sequence
lies in the cylinder B; X (T, 0). Hence, convergence of the previous
subsequence actually takes place in L'(R"*).

LEmMMA 3.3. If |v| £ 1, then the functional 7, is lower semi-
continuous with respect to L'(S;)-convergence.

Proof. Let E,— E in LYS,), and suppose there exists o >0
such that the inequality

(3.6) F(E)> F.(E,) +0

or equivalently

[, 1D2sl < | 1Doal 5 _(0r~ prpam,
Sy Sp t=0

(3.7
+ St T(cpE — @g,)dH, + ¢ Ss HPps — Pp)dz — 0
= T

holds, for infinite indices 2. Combining (3.7) with the estimate

SaSTIfIdH” = SST(s)lDfi + ¢(9) SsTl‘fldz

(which holds for every f € BV(S;) and é € (0, — T'/2), provided we define
S.(6) = {z € S;: dist(z, 8S;) < 6},

see [9]), we then obtain

Doz, < | 1D2sl + | Desl
Sy Sp(0)

SsT-ETw) T

+(00) = <D)| |95 — pn,lde — 0

from which we derive a contradiction, letting A — +c and then
610, and taking into account the lower semicontinuity of perimeter
functional (see [5]).

According to the previous lemmas, we can state the following
existence result:

THEOREM 3.4. For every T <0, V>0, —1 < v =1 and for every
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e >0, the functional 7. defined by (3.1) has a minimum E. in the
class &r, which is a rotationally symmetric set, so that we can
write:

(3.8) E. ={(=,t)e Sy x| < po.(t)}
for a suitable function o.€ BV((T, 0)).

4, Some properties of ¢-solutions. We study in this section
the behaviour of the solutions E., found in Theorem 3.4, as ¢ tends
to zero.

From now on, we shall assume that T = T(v, V) is a negative
number, smaller than the minimum height Q,(», V) of the solution
E, in the absence of gravity (see (2.4); the data v and V will be held
fixed). Moreover, we shall write S instead of S,.

ProproSITION 4.1. If |v| < 1, then

(4.1) E.— E, in LYS)
(4.2) Tl —— F(H,)
as € — 0.

Proof. Let AcCS be a fixed set of volume V. We have for every
e >0

F(B) < F(A) < const. ,

so that (8.4) implies that the perimeters of the E.’s are uniformly
bounded.

Now, the sets E, are all included in a fixed cylinder, as we have
pointed out during the proof of Lemma 38.2. This fact, together
with the compactness result already mentioned, entails the convergence
in L*(R*+?) of the E.’s to some set F € &,. We claim that F minimizes
functional &, defined by (2.1). Indeed, by the assumption T < Q,
we have E,€ &,;, and moreover we have

(43) FAE) S FAE) — ¢| s @) — 2r (@)

owing to the minimality of E.’s.
Letting ¢ — 0 in (4.3), we obtain from the lower semicontinuity
of #, with respect to L'-convergence

FAF) = F(E) .

Uniqueness of the solution E, allows to conclude that F = E,, thus
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proving (4.1).
From (4.3) we derive also
F(Ey) = liminf &7 (E,) < limsup () £ F(E,)

&0 s

which yields (4.2).
LeEMMA 4.2, There holds for |v| < 1:

(4.4) lims P dH, :g PrdH, .
>0 t=0 t=0

Proof. Let ¢, — 0 be such that, for the corresponding solutions
E, = E. , there exists

£

lim S Pr,dH, = a .
htoo Jt=0

Denote by B,, h = 0,1, 2, ---, the intersection of the half-space {t <0}
with a suitable ball in R**!, centered on the ¢-axis and chosen in
such a way that

(4.5) S P dH, = S P, dH, Vh=1
t=0 t=0
g @BOdH,,L =da .
t=0

In view of the isoperimetric inequality ([8], [18]) we have, for every
h=1:

| ipp iz Doyl
t<0 t<0
and hence
T (B = SKOlD(thl + v St:ogDBhdHﬂ + & SStC,DE,L(Z)dz ;

letting h -» + o and recalling (4.2) we obtain
Sl = F(By) .

Now, E, is the unique minimum of .57, so that E, = B, and

im| a8, = | sdH,
t=0 t=0

h-rtoo

from which (4.4) follows at once.
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LEMMA 4.3. There holds for |v| <1

“.6) lim | 1D, = | 1D

@1 lim S opdH, = 0.
t=T

pan
Proof. From (4.3) we have
1095 + v | _ond, + ¢\ tos,@de < 71B) = FiE
and then, from (4.4)
lirreljup SS]D¢EE] = SS]DL?E(,[ ,
while
|,1DPs| < timint | |Des,|

follows from (4.1) and lower semicontinuity of the perimeter func-
tional.

REMARK 4.4. An obvious consequence of the previous results is
the (pointwise a.e.) convergence of the functions defining the
rotationally symmetric solutions E., E,. We recall (see Theorem 3.4)
that such functions p.: [T, 0] — [0, + ) are defined through the
relations

E. ={xt)eS:|z|<p)}, ¢=0.

Since modifications of any set of finite perimeter by sets of zero-

measure do not affect its perimeter, we may assume the existence

of both the one-sided limits of p., at every point in the interval

(T, 0). Such limits do coincide, except for a countable set of points.
We have actually the following stronger result:

THEOREM 4.5. The convergence p.— 0, 18 uniform on (T, 0).

Proof. We shall prove the statement in the theorem by showing
that every subsequence of {p.}.., admits a subsequence uniformly
convergent to p, on (T, 0).

Let ¢, — 0; for the corresponding sequence p, = p., we have, in
view of (4.1)

lim , | j02(t) - px(®)/dt = 0.,

h—+o0
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Hence, a subsequence (not relabeled) of {po,} satisfies, for almost all
telT, 0]:
(4.8) hljﬂ i) = 048) .

Assume by contradiction there exist ¢ > 0 and a monotone sequence
{t,} [T, 0] such that

[04(t1) — po(t)| >0

lim th = tO .
h—+o0

(4.9)

If {t,} is not decreasing, then choose ¢ € (T, 0) such that
(4.10) t <t
(4.11) Tim ,®) = 0,®)

(in the opposite case, i.e., {f,} not increasing, choose ¢ s.t. (4.11) holds
with T > t,).
There follows that, for sufficiently great &
Dos,| + | __IDos,|
173 T<t<t

[, 1Peal={ __1Dosl+|

=, Do + ouloit) — oI+ | Do,

iy, <t T <t<

On the other hand, form (4.9), (4.11) and from the continuity of p,,
we derive

|0t — @) Z 0 — (ots) — 0@)| + |0E) — 2E)]) = g
provided that t is close to ¢, and h is great. Therefore,

|Dos 2| 1Dps1+0,(2) +| 1Dy,

1< 2 T<t<t

and letting 2 — + o we obtain

limint { |Dps, | 2| 1Dsl +0,(2) +( 1Des
h—o N t<0

t< 2 T<t<?

which contrasts with (4.6) as ¢ approaches ¢,.

5. Regularity of e-solutions. The main result in this section
is the following.

THEOREM 5.1. Let t,e(T,0). If
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lim inf p.(¢) > 0

totg

then there exists a neighborhood U of t, such that o.< C*U).

Proof. In view of Remark 4.4 we can find a neighborhood W
of ¢, such that

(5.1) il?vf o.t) =m.>0.

Hence, there exists a ball B lying in the plane {, = 0} and centered
at (0, ---, t,), which satisfies

E.N(Rt X B) ={®,y,t)e R (y,t)e B,
0<m < fly,t) = (0X) — |y )"}
where y = (&, -+, ,) € R*™ and fi(y, t) = ¥.(y, {) = m,/2. Function

f. belongs to BV(B) and, owing to the minimum property of p., it
minimizes the functional

(5.2)

L(w) = SBVT TTDul + SaB‘“ — fdH,, + ¢ S tudydt
B
in the funection class
H = {ueBV(B):u = 4, | (u— vodydt = | (£ — vdyds] .
B B
We then conclude that f, minimizes the functional
L(w) + xeﬁ udyds
B

in the function class
K, ={ueBV(B): u = .}

as well, for a suitable multiplier \. € R, whose existence is granted
by the results in the Appendix. From known regularity results
(see e.g., [10]) we obtain f,eC**(B),0 =< a <1, thus proving the
theorem.

REMARK 5.2. As a consequence of the theorem we can state,
that if lim inf, ., 0.(t) > OV, € (a, b) (T, 0), then p. € C*(a, b) and there
exists a real mumber A, such that

5.3 O Y __m=l 4 v b) .
-3 <1/1+p§2> pV'1+ o o bele, b)

Now, let [a, b] be a sub-interval of (Q,, 0) (we recall that @, denotes
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the height of the apex of the drop below the contact plane, in the
absence of gravity; see (2.4)). In view of Theorem 4.5 we conclude,
that for small ¢ each function p. is greater then a positive constant,
independent of ¢, in the whole interval (a, b). This fact allows the
proof of the following result, concerning the convergence of the A.’s
defined in the preceding remark.

PROPOSITION 5.3. There holds

(5.4) lim 4, = —2% = 4,

e—~0 0

with R, defined by (2.2), (2.8).

Proof. As in the proof of Theorem 5.1, we can find a ball BC
{x, = 0} (with radius independent of ¢) and a function +r positive on
B, such that

(5.5) {B N{y =0} (a,b)

fi=2y on B
and f. minimizes the functional
(5.6) S VIT Dul + S lw — f.dH, , + sS tudydt + xsj udydt
B B B B
in the class {u e BV(B): u = ).
About the multipliers . we know the estimate (see (A6), (A7)
in the Appendix):

CB) =\ = Cily, B) + Sa]{jcidﬂn—1
V.

+ ¢(B)

where
V.= S (f. — y)dydt .
B

We may then assume X\, — A, from which we conclude that the
function f;, limit of the f.’s, minimizes functional (5.6) with ¢ = 0.
From (5.3) we have therefore:

6. The existence theorem. So far we obtained a minimum %,
of the functional .7 defined by (3.1), for every ¢ > 0. In order to
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get the existence of a pendent drop it suffices to show, that when ¢
is small enough, there exists ¢. € (T, 0) such that liminf, ., o.(t) = 0.
Indeed, in this situation the set

G.=E.N{t >t}

clearly yields the minimum value for .&,, when compared with the
subsets of the strip S having finite perimeter and volume equal to
‘G.]. In other words, following the definition given in §1, we can
assert that G. is a local minimum of functional (0.1), with £ = .

To this end, we compare the boundaries of solutions E. with
surfaces of constant mean curvature (see [4]).

We begin by noting that if p/(f) > 0, then there exists, in a
suitable neighborhood U of the point # = p.(¢), the inverse function
u(r) of p.; moreover, from (5.3) we deduce

1 [/ »
,'.n—l\—l/l + u

6.1) )=~%—4<wa

On the contrary, if p/(f) < 0, then the following equation holds
instead of (6.1)

(6.2)

In either case, denoting by 4, () the angle between the tangent line
to u, and the 7r-axis, measured counterclockwise from the r»-axis
itself, we can combine (6.1) and (6.2) in the single equation

y=%+4@ew.

7.’!&»-1

——1——(9’”“ sin 4, () = —eu(r) — 4. .

1.’”—1

(6.3)

We also need the following results (see [4]):

LeEMMA 6.1. Let u(r), v(r) be functions defined over 0Za=<r=b,
s.t.

("7t sinap,(r))" = (X" sin 4, (1)
If sinqpr(a) = sin (@), then sinqpr(b) = sin (), and equality holds
if and only if u = v + const in [a, b].
LEMMA 6.2. For every H > 0 and for every a such that

n —1
nH

(6.4) 0<a<

there exists an unique b with
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6.5 n—lp<l

(6.5) 7 <0<z

and an increasing function v:[a, b] — R for which

(6.6) L (otsin g, () = nH (re(a, b))
.

(6.7) sin 4, (@) = sin (b)) = 1.

Moreover, there holds

(6.8) 2(b) — v(a) < Lg) .

The proof of Lemma 6.1 is quite obvious, so we outline only
that of Lemma 6.2. We point out that the surface obtained by
rotating the graph of function v(r) in the lemma (which is part of
an ellipse roulade when n = 2, see [4]) about the vertical axis, has
constant mean curvature H.

Integrating (6.6) yields

(6.9) V) = 1/1—g£_—__’%%_)

where g(r) = Hr + Br' ™.
For the constant of integration B we have, in view of (6.7)

B=ga""'— Ha"=b""'— Hb" >0
and letting ¢ = (n — 1)/nH we get from (6.9)

3 1 ([°__dr R
6.10) () —v(@) = 1/7\&1/1 =R Sﬂ/l - 9@')) '

Defining

a(r) = (r —a)L — g(r)™
Br) = b —r)A — g(r)™*

and noting that a'(») > 0 > g'(r), we have from (6.10)
v(d) — v(@) =V 2(Wal)Ve —a +VBE)VD —¢).

Now, functions

Val) e —a) =( —a)l —gl)™ 0<a<e
VOB =0 = (b — o)l — gle) e<b< %

are decreasing and we can conclude

o) — (@) < LI’;) .
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We are now in position to prove the following

THEOREM 6.3. If T < @, — 3¢(n)R, and 0 < e < e(T), then there
exists t. € (T, 0) such that

lim inf o (t) = 0 .

t—t,

Proof. Assume by contradiction the existence of a sequence
{e,} converging to zero, such that

lim inf 0,(s) > 0

for every te(T, 0) and every h, with p, = o,,.
In view of Remark 5.2, for every h we have p, € C*(T, 0); more-
over p, satisfies the Euler equation

6.11 o Y __mn=1 .,y
(6.11) (2 p;f) o/ Tror T
in which

) lim 4, = — 2%
(6.12) Jm 4, z

(see (5.4)). Now,let T, =T + (Q — IN/8and T, = T + (2(Q, — T))/3,
and denote by t,<(T,, T,) a point such that p;(t,) # 0. For the sake
of definiteness, assume p;(¢,) > 0, since in the opposite case one can
proceed analogously.

Let a, = p,(t,) and H, = (—¢,T — 4,)/n; there follows from Theorem
4.5 and (6.12) that

(6.13) lima, = 0; limH, — -+,
b0 h— 400 R,

so that, in view of Lemma 6.2, we can find (for sufficiently great h)
b,e((n — 1)/nH,, 1/H,) and v,:[a,, b,] = R satisfying (6.6), (6.7) to-
gether with »,(a,) = ,.

An application of Lemma 6.1 to u,, v, (u, denotes the inverse
function of p,) allows the conclusion that u, is defined over the whole
interval [a,, b,], and verifies there

u(1) L v(r) Vrela, b, .

Finally, as a consequence of the choice of 7T, we have from (6.8)

c(n) 1
oa(b) = S T, < Qu + o(m) (- — Bo)

h h

and therefore, for great h
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vi(by) < Qo -

Now, in the interval (T, @, the sequence {p,} tends uniformly to
zero (Theorem 4.5), so contradicting the fact that

0,(u,(b,)) = b, > ”M;ILI o Lp,>0.

From the minimality of E. there follows that the set of points
t.€(T, 0) such that liminf, , o.(t) =0 is a closed interval in (T, 0)
(of course, it may consist of a single point). Denoting by Q. the
maximum of such interval, we conclude that p. is positive and regular
in (Q., 0); Q. thus represents the minimum height of the pendent drop

(6.14) G. ={(, t):te(Q, 0), |x] < pO)} .

7. Regularity at the vertex. At this point we have proved
the existence of a local minimum of (0.1) for sufficiently small &;
nevertheless, we cannot say anything about the effective volume of
such solution, nor about the effective smallness of k.

It is however clear, that by a homothetic transformation of the
co-ordinate system we can expand (or contract) our solution so that
it becomes a local minimum of (0.1) (for a different &, of course)
among sets of prescribed volume V; or, so that it becomes a local
minimum of (0.1) for a prescribed value of £ > 0, in the class of sets
having its own volume (which remains unspecified).

Thus, we can obtain by this method pendent drops of fixed volume
in a weak gravitational field, or pendent drops of small volume in a
prescribed gravitational field.

The following considerations are devoted to the study of the
behavior of our solution near its minimum height Q..

Let t€(Q., 0), and denote by B(r) the ball centered on the t-axis,
passing through the boundary point (p.(z), 0, ---0, ) e R**' and
satisfying (see (6.14)):

(1.1) H,ul[(G. — B@) N{Q. <t <7}l = H,,[B) N{t < QI
R(7) will denote the radius of B(z).

Lemma 7.1, If
(7.2) limo(¢t) = L >0

tLQe
then there exists T € (Q., 0) such that
(7.3) Bo)n{R.<t<tjcGni@.<t<7t}.

Proof. It follows from (7.2) that
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(7.4) lim R(z) = + oo .

T Qe
If the assertion in the lemma were false, then we could find, in view
of (7.4) and the mean value theorem, a sequence {¢;} converging to
Q. from above, such that
(7.5) lim pl(t;) = 4o .

§otoo
Taking into account (7.2), (7.5), we derive from (5.3)

o) w1
VA + 076Gy o VIt orE)

when 7 > j,, since, as we shall see in the following remark, there
holds Q. + 4. < 0. Then we can easily conclude that p!'(¢) < 0Vt e
(@, t,). Hence, we can describe the boundary of G., lying in a
neighborhood of the point (Z, 0, ---0, Q) e R"*', as the graph of a
suitable function ¢ = u(x) which, in view of the results in §5, would
be analytic over its domain of definition; but this leads to a contra-
diction, since the (not-identically constant) function % should be
constant (=@Q.) over an open set.

COROLLARY 7.2. There holds

(7.6) lim p.(¢) =0 .

11

Proof. If not (see Remark 4.4), we get from the lemma the
existence of a ball B(r) satisfying (7.3). Defining

~ jGe for t=>¢
" |Bk) for t=<-<c

there follows from the isoperimetric inequality
H,.(G) = H,.(G); »G) < 716G,

a contradiction.

REMARK 7.3. The inequality eQ. + 4. < 0 we used in the proof
of Lemma 7.1 really holds for a local minimum G.. Assuming the
contrary, we derive from (5.8): p!'(¢) > 0 for every t<(Q., 0), and
then either 0G. is a (regular) graph in the ¢-direction, or there exists
= close to Q. s.t. the corresponding ball B(z) satisfies (7.3). In either
case, as we saw just before, we are led to a contradiction.

COROLLARY 7.4. There exists 0 > 0 such that 0G. N B;0, ---, 0, Q.)
is representable as a graph of an analytic function t = u(x).
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Proof. Assume the contrary; then it would be possible to find
a sequence {t;} of local maximum points for p., decreasing to Q.. On
the other hand, we have from (5.3)

n—1
pe(tj)

which is positive for j great enough.
The assertion about analiticity follows from the methods of §5.

ol (t;) = + eQ. + 4.

The preceding results, together with that of §5, can be sum-
marized in the following

THEOREM 7.5. If G is a local minimum of the functional F
defined by (0.1), then oG N{t < 0} is an analytic n-dimensional
manifold.

A. Appendix: FExistence of multipliers. For convenience of
the reader, we quote the proof of the following result, which we
used in the proof of Theorem 5.1.

THEOREM A.l. If f minimizes functional

I(w) = S;/ﬁﬁqﬂﬂ LBlu — fldH,_, + SBtudydt

wn the class
H = {u €BV(B): u = 4, SB(u — r)dydt = SB(f — p)dydt =V > 0}

(4 demotes a Lipschitz function over B), then there exists M€ R such
that f minimizes I(u) + xSBu dydt in the class K ={u € BV(B): u = }.

The method of proof appears in [16], and involves various steps.
LEMMA A.2. For any 7 >0 and M€ R, the functional
I,:u) = I(u) + %SBu%lydt a Ludydt
attains its unique minimum u,, € C"(B) in the class K.
Proof. From the inequality 2ab < ca® + b*/a(c > 0) we derive
Lw =z | VIFTDuF +| ju— fidH, ., — %—(SBt?dydt +1Bl)

that is, a lower bound for the functional and the necessary compactness
property.



EXISTENCE OF A PENDENT DROP 417

Lower semicontinuity and strict convexity of I, allow the
conclusion about existence and uniqueness of the minimum in K. Its
regularity can be obtained from a wellknown gradient estimate.

LEmMA A.3. The function

m = | (s — p)dyat

s continuous over R and satisfies

(A.1) lim A(\) = 0

A—++o0

(A.2) Lmh() = + o .

Proof. It is easy to show, that as ); tends to A, the sequence
of corresponding minima {u,,;} tends in L'(B) to a function v, which
minimizes I,;. Uniqueness implies therefore v = u, .

On the other hand, letting ¢ = maxy{—¢}, we have

= &) |, s = dydt < Lotun) = | tuidyde

—¢ g (U2 — ) dydt — © S Jrdydt
(A.3) ? i

=\ VIFD9T+ | v — fld, ., + 1| vaydt

— |, + s — 9dydt = o,(v, B + | | 7138,

and this yields (A.1).
As far as (A.2) is concerned, define for 6 =0 and @ e H"'(B),
P =0:

Uy = Uy,z + 0P
a0) = L) = | |u = f1dH,
so that
a(0) < a(d) + BSaBgodH,,_l .

Hence, the function «(6) + 6 Sa @dH, (0 = 0) attains its minimum at
B
0 = 0, from which we obtain

21 D2 qyat + 7 | w,pdydt
gB'l/l_:*‘——l—D—u;,z__lz— Y + 77 Buﬂ,1¢ Y

+ ’”S pdydt + Sa PdH, , + S todydt = 0 .
B B B



418 E. GONZALEZ, U. MASSARI, I. TAMANINI
In particular, choosing @ = 1 we have

7 SBuv,zdydt +\B|= —H, (3B) — Sktdydt
that is

7| (w.: — )dydt + x| Bl
A4
AV 2 i 0B~ | vt — 7| padt = e, B
B B
and hence (A.2).

Proof of Theorem A.l. In view of Lemma A.3, for every 7 >0
there exists ), s.t. S (s, — )dydt = V. Moreover, from (A.3), (A.4)
5 /
we have:

e+ | |f1aH, .

+
B = 4 ¢

(A.5) L=V oy <

hence we can assume M\,—>\ as 7 — 0. There follows that W2,
converges in L'B) to a function %, minimizing I,; in the class K.
From the relation

S udydt = S fdydt
B B
we derive I, ;(u,)=1,,(f), which concludes the proof of the theorem.

REMARK A.4. From (A.5) we easily derive the following estimates
concerning multipliers \:

—H, ,(3B) — gBtdydt

A6 N = Cy(B) =
(A.6) > Cy(B) .

a+\ Iriam,.,

/\\' é aB _I_ ¢

(A7) 4

| VIFIDGF + |vlan,  +| |riad,.

— B Jomp Jon + max,{—t} .
VvV
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