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MAPPING PROPERTIES, GROWTH, AND UNIQUENESS
OF VIETA (INFINITE COSINE) PRODUCTS

KENNETH B. STOLARSKY

The natural logarithm of z can be written as an infinite
product involving iterated square roots of z. A Vieta product
is defined to be a more general infinite product involving z
raised to arbitrary fractional powers. Restricted to the unit
circle, Vieta products generalize infinite cosine products stud-
ied by Salem and others in connection with PF-numbers.
Vieta products are shown to have conf ormal mapping, monoto-
nicity, and growth properties very similar to those of the
natural logarithm. By using certain properties of Eulerian
polynomials, the exponents of z in a Vieta product are shown
to be unique in a strong sense.

1* Introduction* Let τ{n) = 2rn. As a simple corollary to his

results [2] on logarithmic means, B. C. Carlson obtained

(1.1) lna = ( s - l 2

•"i 1 + Xτin)

for x > 0. This representation immediately implies that In x grows
more slowly than any power of x, and also that

(1.2) In x~ι — —In x , In x2 = 2 In x .

Our aim is to give an extensive, though far from exhaustive,
exposition of the properties of infinite products of the form

(1.3) C = Ca(z) = (s - 1) fi τ-^-7-

where z is a complex variable and a — {an} is a sequence of strictly
decreasing positive numbers such that

oo

Our main results are that (i) such products have conf ormal mapping,
growth, and monotonicity properties very similar to those of the
natural logarithm, especially when the an decrease geometrically,
and that (ii) the function Ca{z) uniquely determines the sequence
{an}. The latter follows from Theorem 3, a somewhat stronger
assertion.

Throughout, we shall point out various open questions.
Henceforth let A be the collection of all positive, strictly
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decreasing functions defined on the positive integers whose elements
a — an = a(n) satisfy (1.4). We call the function Ca(z) of (1.3) the
Vieta product of α. It is easily seen that Ca converges for all a e A,
and that

(1.5) Cβ(aτι) = -CM .

Let the fractional powers in (1.3) have their principal values. Then
Ca(z) is holomorphic in the slit plane (that is, the complex plane
with the closure of the negative real axis deleted).

In some sense (1.1) is four centuries old, since Vieta's formula

(1.6) Π cos (0/2*) =

can be rewritten as

(1.7) iθ = (eί0 - 1) °°
=i 1 + exp (iθ2-n) '

and θ can be replaced by —ilτix. M. Kac [9] relates (1.6) to expan-
sions of real numbers in base 2 and uses it as the starting point of
his well-known introduction to statistical independence. Infinite
cosine products of the form

(1.8) XI cos anθ

have been intensively studied in connection with Pisot-Vijayaraghavan
numbers [12]. In fact, the product on the left of (1.6) plays an
exceptional role in Theorem 2, p. 40 of [22]. For more about these
products and their relation to certain digital problems, see [13].

From the point of view of [12] it is of interest to consider Ca(x)
as defined on the "spiral staircase" Riemann surface that is the
natural domain of In z. Since

(1.9) Π cos (aJ/2) = i[2 sin (θ/2)]C~\eiθ) ,

some of the problems discussed in [12] concerning Fourier-Stieltjes
transforms of singular functions are related to the asymptotic be-
havior of Ca(z) as z continuously winds about the branch point z0 = 0.

We prove in §2 an identity generalizing (1.1). In §3 we show
that under certain restrictions (including ax ^ 1/2) the Ca(z) yield
one-to-one conf ormal mappings of the slit plane onto a narrow strip.
Thus they provide us with mappings qualitatively very similar to
the mapping determined by lnz; see Theorem 1. The proof uses
certain monotonicity properties of the Vieta products. In §4 we
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examine (see especially Corollary 4.1 of Theorem 2) how Ca(x) grows
for x real, x —> + co.

It seems natural to ask whether there is an a Φ τ for which
Ga is the product of In z with a rational function. This is ruled out
by Theorem 3 of § 5, a uniqueness theorem for Vieta products. Such
uniqueness theorems are very well known for power and Dirichlet
series, and are established for a different kind of infinite product
by J. F. Ritt [11]; see also [6]. The proof we present uses the
Eulerian polynomials. Especially curious is the analytic function
Gt(a) that the proof attaches to Ca(z); it is a sort of exponential
generating function for certain "jumps" associated with Ca(z). We
leave open the problem of when Vieta products exist for "approxi-
mately logarithmic" functions.

2* Elementary considerations* We first establish an identity
with a parameter s from which (1.1) and (1.6) follow by setting
s — 2. Then we examine the Taylor expansions of Vieta products
about 1.

Let

V(z,s) = (zs - i X s s

• +zs~1 l + zί/s+ - - +z{s

(2.1) x

n=0 Z — 1

where s ^ 2 is an integer. For s = 2 this reduces to twice the right
side of (1.1). It is easy to establish convergence, so V{x) > 0 for
x > 1. Clearly V(x) grows more slowly than any power of x, and

(2.2) V{x~ι) - - V(x) , V(x8) = sV(x) .

PROPOSITION 2.1.

(2.3) V(z) - slnz .

We first establish the following.

LEMMA. Let U be a connected neighborhood of the strictly posi-
tive real axis. Let 0 < r < 1 and let f(z) be holomorphic on U. If
/(I) - 0 and

(2.4) f(χ') = rf{x)

for all x > 0, then



212 KENNETH B. STOLARSKY

(2.5) / ( s ) = / ' ( l ) l n s , zeU.

Proof. For z fixed and n large, (2.4) and Taylor's theorem with
remainder yield

rnf(z) = /[exp (rn In z)]

(2.6) = /[I + rn In z + O(r2%)]

= /'(l)[rMn* + O(r2*)] + (l/2)/"(5)O(r* )

where .5 < £ < 2. Formula (2.5) follows for z real upon dividing
both sides of (2.6) by r* and letting % —• °°. The result follows by
analytic continuation.

To prove the proposition, take r = s~x to see that (2.5) is valid
for / = V. To determine V'(l), note that by (2.1) and (2.5) we
have

In V - In In x = In [(xs - l)/ln x]

( 2 ' 7 ) + Σ In [8/(1 + a? ""+ 1 + + x(s-1)g-n+1)] .

As x ~> 1 the right hand side approaches In s, since every term of
the infinite sum approaches 0. This proves (2.3).

Upon replacing z by eiθ, formula (2.3) reduces to the trigono-
metric identity

(2.8) s i n ^ 2 > = fi {(sin °L)l(s sin J-)\ .
sθ/2 »=i iV 2sn/l\ 2sn/)

This in turn reduces to Vieta's (1.6) when 8 = 2.
Proposition 2.1 is in fact valid for any product

(2 9) V*(x) == Q(

provided P, Q = Qs are "nice" functions satisfying Q(l) = 0, Q'(l) = s,
and

(2.10) Q&) - sQ(z)P(zs)/P(ί) .

However, I know only the case Q(z) = z* — 1.
We now examine Ca(z), where

(2.11) an = ( k - l)k~n

and k ^ 2 is an integer.

PROPOSITION 2.2. Let x > 1. If there is a constant q such that

(2.12) Ca(x) = « In x + o(ln a;) ,
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then k = 2.

Proof. Upon applying (2.12) to the identity

(2.13) Ca(xk) = 2(xk - lXs*-1 + l ) " 1 ^ - ly'C^x)

we obtain

(2.14) k + o(l) = 2

as x —» coy so fc = 2.
In general, however, C = Ca(s) does strongly resemble a

logarithm in small neighborhoods of 1. Clearly C(l) = 0, and
C(l) = 1 follows from (1.3) upon dividing both sides by z — 1 and
letting z —> 1.

Set

(2.15) S = S(«) = Σ anZ"n~l

1 + ^α

Logarithmic differentiation of (1.3) followed by subtraction of C"(l)
yields

(2.16) [C\z) - C'(l)] = Γ ^ w - ^ w „ σ ( 1 ) I _ C(z)S(z) .
L z — 1 J

Upon expanding both bracketed terms into Taylor series we obtain

(2.17) cs = Σ c(w)(i)(z - i r - f - L _ — L _ ] .
m=2 Lm! (m — 1)! J

By (2.17) and the Leibniz formula,

(2.18) —*ϊ-C{k+1)(l) = (CSYk)(l)
k + 1

k I k\

Since S(0)(l) = 1/2, equation (2.18) with fc = 1 yields

(2.19) C(2)(l) = - 1

so every Ga(z) agrees with In z up to second derivatives at z — 1.
The higher order derivatives have a more complicated appearance;
for example

C(3)(l) - (3/4X3 - Σ αi)

(2.20) C(4)(l) = (-3/2X5 - 3 Σ «i)

C(5)(l) = (5/16X105 - 86 Σ a\ + 3(Σ «2O2 + 2 Σ «i)
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3* Vieta products as conformal maps* We begin by describ-
ing some very well-known properties of the logarithm, and then
examine the extent to which they can be extended to arbitrary
Vieta products. The function w = In s, where s = x + iy and w =
u + iv9 gives a conformal map from the z plane to the w plane.
The region R in the z plane exterior to the unit circle U and bound-
ed by U and the upper and lower lips L19 Lλ of the ray x <* — 1
maps in a one-to-one manner onto the strip σ of width 2π in the
right half of the w plane, bounded by the segment / of the v axis
given by — π <; v ^ π9 and the lines Mx and M2 given by v = π and
v = — π respectively. The boundaries I, M19 M2 correspond to U,
Ljy L2 respectively. This mapping "squeezes out angular variation";
in R the argument varies from — π to π9 while (for \z\ large) its
image is contained in

(3.1) -e^zrgw ^e

for any ε > 0. At the same time R is "contracted inwards uniform-
ly"; & point r units from the origin is taken to a point about log r
units from the origin, regardless of its argument. Since

(3.2) Ins ι = - I n s ,

the interior of the unit circle is mapped similarly onto the reflection
of σ in the ^-axis.

Easiest to extend is the "uniform inwards contraction property",
that asserts in particular that the gross behavior of the modulus
of Ca(z) is determined by the modulus of s.

PROPOSITION. Let r > 0 be real, and —π<θ-£π. Set

(3.3) q = qa(x7 0) = Ca{r)IGa{rei0) .

Then

(3.4) g | r - ; l l l ^ + exp(jgαι)l ^ | g | ^ J ^

where K is an absolute constant.

Proof, The upper bound is trivial. For the lower bound, note
that

5) = r ~ 1 TT 1 + r"» exp (iθam)

and that the square of the absolute value of each term in the
product is
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1 - 2rβ»(l + rα^)-2(l - cos aj)

(3.6) ^ 1 - (1 - cos αm0)/2
= cos2 (αm0/2) .

Since

(3.7) cos 0 ^ 1 - 02/2

we have the left inequality of (3.4) with

(3.8) Π (1 - α2

w0
2/8)

in place of K. Now Σ # m is at most 1 and am is at most 1/2 for
m ^ 2, so the infinite product (3.8) is bounded below by an absolute
constant. This completes the proof.

Now set z — rei0 where r > 0 and —π<θ<±π, and let

(3.9) δ(r, 0) = 1 - 2r cos θ + r2 , δ(w, r, 0) = 1 + 2rα- cos 0αΛ + r2β* .

By putting each term of the product Ca(z) into polar form, we find
that

(3.10) Ca(z) = pa(z)exp[iφa(z)]

where

(3.11) pa(z) = δ(r, ΘY* Π 2δ(n, r, θ)~^
n-l

and

(3.12) Φa(z) = tan-i-SJ™?— - ± tan- r-βin
r cos 0 — 1 »=i 1 + r"n cos i

here the inverse tangent is defined for 0 ^ 0 ^ π by

arctan u n > 0
(A) tan"1 w = .

[π + arctan u u < 0

and for - π < 0 < 0 by

ίarctan u u ^ 0(B) tan-1 % = ,
{—π + arctan u u > 0

where arctan u denotes the principal value of the inverse tangent.
From (3.11) and (3.12) we obtain

(3 13} r

dlnP — d± - r ( r ~ c o s g) _ y ^>rg»(rg» + cos θan)K ' } dr 30 δ(r, 0) - i δ(w, r, 0)

and
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(3 14) dlnp _ fy _. rsinθ , y <xnr
an sin θan

dθ dr δ(r, θ) - i δ(n, r, θ) '

We now study arg Ca(z). From (3.13) and Σ a<» — 1 w e obtain

(3 15) d0«Qs) = r cos fl - 1 y ajχa* cos flαw + 1)
dθ δ(r, θ) iέί δ(nf r, 0)

If r = 1 this derivative is zero; in fact, by (1.9) the unit circle maps
onto a segment of the imaginary axis containing the origin. Now
the infinite sum on the right of (3.15) equals

(3 16) f a» + y αwr"Kl - ra»)(l - cos θan)
άi ra* + 1 άi (1 + ra«)δ(n, r, θ)

and since cos θan ^ 0 for n ^ 2, we have

(3.17) !&M = Oir-1) + O(r-aή + θ(± anr~**
dθ Vw=2

Since Σ <̂ Λ converges and r~α% —> 0 as r —> °o, it is clear that the
above derivative is o(l). Hence the Vieta product mapping will
"squeeze out angular variation" in general. It is, however, not im-
mediately clear when the analogues of Mx and M2 (the images of
the upper and lower lips of x <; — 1) will have bounded imaginary
parts. We establish this in the case

(3.18) an = cλe-c^

where cx is positive and c2 is at least In 2.

LEMMA. IfaeA where an is of the form (3.18), then there are
constants hly h2 such that

(3.19) ^(ln r)"1 ^ Σ α»r-β ^ Λ2(ln r)" 1 .
ί t=l

Proof. It is easily established by elementary calculus that the
numbers bn = anr~a% increase to a maximum value as n approaches

(3.20) cr1 In In r + 0(1)

and then decrease. Thus we find that the maximum value exceeds
a constant multiple of (In r)~\ We also see from this behavior that
the sum is at most

(3.21) Γ c.e-^ exp [-(In r^e'^dt + O(lnr)-1

Jo

S oo

exp [ — (In 7ήc1u]du + O(ln r)" 1 ,
0
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and the result follows.
From (3.17), (4.9), and —π < θ ^ π we have

(3.22) φa(z) = O(ln r)- 1 , pM = O[(ln r)( ln2)/c*]

so finally

(3.23) Im Ca(z) = O[(ln r)
[-C2+1I12]/C2] .

We shall use (3.13) and (3.14) to obtain more knowledge of the
behavior of Ca(z) as r and θ are varied individually. Results
italicized below are of key importance in establishing Theorem 1.

However, we shall first discuss logarithmic concavity on the real
axis. In the course of doing this we shall discover (see (3.31)) that
Ca{r) is strictly increasing for r > 1, and hence for r > 0 by (1.5).
Note that the function

(3.24) q = q(r) - In In r ,

defined for r > 1, satisfies

(3.25) q" + r - y = - ( r In r)~2 < 0 .

In our case, (3.13) and (3.14) yield

(3 26) g 2 1 n P + r -2d 2 lnp . r-ι9lnρ = 0

dr2 dθ2 dr

and

(3.27) ϋέ + r Ά + r ^ = 0 .
3^2 a?'2 dr

Since

(3 28)
dθ2

9 2 l n p __ 7^[2r2 cos 2Θ — (1 + r 2) cos (̂ ]
~ δ(r, 6>)2

^ a£rg»[2r*» + (1 + r2α^) cos gα J
*=i δ(τir, r, ^)2

we see that at 0 = 0 the above derivative, for r > 1, is

r < r + ^
(r - I ) 3

(3.29) r < r + ^ + Σ g l r " ' > 0
( I) 3 & (1 + «)«

Set

(3.30) Q(r) = In ̂ (r) = In Ca(r) , r > 1 .

We have, by (3.26) and (3.29), the inequality
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(3.31) (rQΎ = Q" + r-ιQ' < 0 .

Thus rQf is decreasing, so if Q'(r) is ever nonpositive, it must remain
nonpositive. This would imply that Q(r) is bounded above. But this
contradicts (4.25). Hence Q(r) is strictly increasing for r > 1, and
from (3.31) we see that Q"(r) is negative for r > 1. Thus p{r) is
logarithmically concave. An open problem is to determine for what
a we have actual concavity.

We now show that for

(3.32) a, ^ 1/2

the function Ca(z) has other monotonicity properties in common with
In z. By (3.14) the quantity In p is strictly increasing as θ increases
from 0 to π and strictly decreasing as θ decreases from 0 to —π.
Now consider ln^ for r > 1 and 0 ^ θ <^ π. Since

(3.33) A( L+Jt ) = LzZ! < o
da \r- + 2ar + V (r2 + 2ar + If

we have from (3.13) and 0 ^ θan <; π)2 that

(3.34) r i 1 ^ > ^ L _ - Σ

3 - 1 +
Σ

3r - 1 + r 1 + r2

^ > o
»=i 1 + rlan 1 + r

since the last sum in (3.34) is a weighted average of terms at least
as large as (1 + r)~L, at least one of which strictly exceeds that
quantity. Thus In p is strictly increasing along every ray in the
upper half plane that emanates from the origin. Since Ca(z) is real
for z = x > 0, we easily see that it has a strictly positive imaginary
part when the same is true for z eR and that Ca(z) assumes con-
jugate values at conjugate points. Thus In p is strictly increasing
along every ray through the origin. It now follows from (3.13) and
(3.14) that the argument of Ca(z) is strictly increasing in θf and
strictly decreasing in r.

To show that Ca(z) is one-to-one when (3.32) is valid, it clearly
suffices to show this for z in the upper half plane H. Let D denote a
bounded simply connected open set in the complex plane. We require
two lemmas, the first of which follows from the principle of the
argument.

LEMMA. Let fiz) be a nonconstant holomorphic function on D,
and J a positively oriented Jordan curve contained in D. If f(z) is
not one-to-one on the interior of J, then there is a point z0 in D such
that the winding number of f(J) with respect to f(zQ) exceeds one.
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LEMMA. Let j(t), where 0 ̂  t ^ 1 and j(0) = j(l)f describe a
positively oriented piecewise smooth closed curve in the open right
half plane K. Say there is a point p0 in K such that the winding
number of J with respect to p0 exceeds 1. Then there does not exist
a ί0 with 0 < t0 < 1 such that arg j(t) is nondecreasing for 0 ̂  t ^ t0

and \j(t)\ is nonincreasing for t0 tί t <i 1.

Proof. Choose 0 ̂  ^ ̂  1 so that as J is traversed, (i) arg [j(t) — p0]
has a net increase of 2πm (where m ̂  1 is integral) as t increases
from 0 to t19 and (ii) the same holds for t increasing from t, to 1.
Trivially t0 is not interior to both intervals [0, ί j and [tl9 1]. Now
either arg j(t) or | j(t) | will exhibit monotone behavior in the interval
to which tQ is not interior. But this is an obvious impossibility.

THEOREM 1. // (3.32) holds, the function Ca(z) is one-to-one on
the slit complex plane.

Proof. It suffices to show this for \z\ > 1. Fix a small ε > 0.
Let J* be the positively oriented Jordan curve that starts at — ε"1 +
iε and moves parallel to the x axis until it touches the unit circle,
then goes clockwise around the part of the unit circle lying in H
until it reaches 1, then moves along the x axis to (ε~2 + ε2)1/2, where-
upon it proceeds counterclockwise in a circle about 0 of this radius
until it returns to its starting point. For ε sufficiently small this
curve will enclose any preassigned point z in H such that \z\ > 1.
Clearly the image of J* by Ca(z) is a curve that passes through the
origin. By the monotonicity properties italicized above we see that
from the origin it moves along the u axis to some point u0, and then
along a curve joining u0 to some point uγ + ίvt in such a way that
its argument is nondecreasing. From uλ + ivx it moves to a point H
on the imaginary axis in such a way that its modulus is always
decreasing. Once on the imaginary axis, it goes straight down to
the origin. If Ca(z) were not one-to-one, this image, by the first
lemma, would wind at least twice about some point. But this is
ruled out by the second lemma, and the proof is completed.

Let Ea{z) denote the inverse of Ca(z); thus

(3.35) Eτ(z) = ez .

An open question here is to determine those a e A for which Ea(z)
can be extended to an entire function.

4* Growth of Vieta products. The main result here is
Theorem 2, an estimate on the size of a Vieta product. Note there
is no claim that the "main terms" exceed the error terms. A slight
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modification of the argument will produce lower bounds; the Proposi-
tion following Theorem 2 asserts that every Vieta product tends to
infinity along the real axis.

Let A* be the set of all a e A that are restrictions of a twice
continuously differentiable function a(t) defined for all t > 0 such
that

(4.1) a\t) < 0

and

(4.2) a"(t) > 0

for t > 0. It is convenient to introduce the function

(4.3) S(x, a, M) = In
Lx — 1

We can now state a general result on the growth of Vieta products.

THEOREM 2. Let x ^ l and α e A * . If M is a positive integer

such that

(4.4) 0 < δ < a(M) In x < 1

then

(4.5) S(x, a, M) = 1/2 In x Σ cc(m) + 0[E(x, M9 δ)]
m>M

where

E(x, M, δ) = In2 x Σ «2(m) + 0(1)
(4.6)

We shall apply this to the special cases

(4.7) α(ΐ) = Cle-C*

and

(4.8) α(ί) = Clί-
6

where c:, c2 are positive constants, and 6 is a constant exceeding 1.
Clearly each a belongs to A* for the appropriate normalizing constant
cx. Carlson's product (1.1) corresponds to (4.7) in the special case
Ci = 1 and c2 = In 2.

COROLLARY 4.1. Lβί x be a large real number. For the a of
(4.7) there are positive constants dly d2 such that
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^ ^ ( l n α ) ( l n 2 ) / C 2(4.9) dx(ln x)w* £ (x -
xa

Proof. Choose M to be the greatest integer in c^1 In In x. Then
every term on the right of (4.5) and (4.6) is bounded, and the result
follows.

COROLLARY 4.2. Let x be a large real number. For the a of
(4.8) there is a positive constant cz — csφ) such that

(4.10) Ca(x) ̂  exp [c8(ln x)ι/b] .

Proof. Choose M to be the greatest integer in (In x)ι/b. Then

x-aw) j s bounded^ a n d every other individual term on the right of
(4.5) and (4.6) has order of magnitude

(4.11) (In x)ι/b ,

so the upper bound of (4.10) follows.
In each case, the idea was to let M be the greatest integer in

(4.12) a-\l/lnx)

where or 1 is the function inverse to a.
To prove Theorem 2, write

(4.13) S(x, a, M) - -S&, a, M) + S2(x, a, M)

where

(4.14) $ = Σ In (1 + χ-a{m))

and

S2 = - Σ In LI - 1/2(1 - x~a{m))]

(4.15) = 1/2 Σ (1 - <rα»ln*) + O Σ [e-"™]nx - If
m>M m>M

= 1/2 In x X aim) + O X a\m) In2 x .
m>M m>M

Here we have made use of the fact that there are absolute constants
hL, h2 > 0 such that

(4.16) I In (1 + u) - u\ < hxu
2

for

(4.17) -1/2 ^u^O

and

(4.18) max {(*-' - 1 + 0, (<r* ~ I)2} < M 2
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for 0 ^ t. Next,

(4.19) S, = S, + St

where

(4.20) 0 > S3 = Σ {In (1 + x~a™) - or"-} ^ (e~δ - I)" 1

and

(4.21) S4 = Σ £~*w - Γ V α ( ί ) d * + O(αrβί3 f )) .
J

Here the right side of (4.20) was obtained by majorizing the series
for the logarithm by a geometric series. To estimate the integral
on the right of (4.21) we observe that there is a continuously
differentiate function g(u) such that

(4.22) g(a(t)) = -α'(ί) .

By making the change of variable u = α(ί), the integral becomes

(4.23)

By the intermediate value theorem the integral equals

Γ^-αdn __ Λ.-«(1)1 ~-a{X)

(4.24) _ H _ ϊ 1 ^ _ ^

where 1 ^ M1 ^ M; the upper bound of (4.24) follows from (4.1)
and (4.2). The estimate (4.24) also applies to the sum on the right
of (4.20) with x2 in place of x. The theorem now follows from
(4.15), (4.20), (4.21), and (4.24).

PROPOSITION. For a e A we have

(4.25) Ca(x) > oo as x > co .

Proof. Set M = 0. By

(4.26) ~ln(l-u)>u

and (4.15) we have

(4.27) S2 ^ .5 Σ * (1 ~ x~a{m)) ^ .5(1 - e~u)N(u, x)

where the asterisk indicates the summation is limited to

(4.28) UIQIL x) ^ a(m) , 2 ^ m ,

and JW(M, a;) is the number of m for which (4.28) is valid. For any
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fixed u > 0 it is clear from (1.4) that

(4.29) N(u, x) • °o as x > co ,

and (4.25) follows.

5* Uniqueness* Let L = Lz be the differential operator

(5.1) L = *τ-
dz

Let T — Ta be the operator that replaces z by za; for example
T3 sin z — sin z*. It is straightforward to show that

(5.2) Lsf(z«) = asTL*f(z) , s = 1, 2, 3, • •

for all infinitely differentiable functions f(z).
Set Ai(z) = z, and for n ^ 1 let

(5.3) A«^z) =

The polynomials Aλ(z) = z, A2(z) = z + z\ Az(z) — z + 4z2 + z\
are called the Eulerian polynomials. They may also be defined by

(5.4) An = An(z) = «(« - l)^.(^)

where

(5.5) λn± = Σ fl»(2)-ζ-

For surveys of their properties see [1, 3, 7, 8]. They satisfy the
reciprocal property

(5.6) z^A^z-1) - An(z)

and the recurrence

(5.7) An+1 = (n + l)«Am + s(l ^)f
dz

From (5.7) we see that

(5.8) An(X) = nl

and (by establishing recurrence relations for the individual coefficients
of the An) that the coefficients of the polynomial An are nonnega-
tive; see [1]. Somewhat deeper is the fact that for k ^ 1 we have

(5.9) A24(-l) = 0 , i W - D = (- l )"- 1 ^

where
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(5.10) Tk = (-l)fc-]

and

(5.11) β2, = ( - l ) * - ^ £ ζ(2λ;)

where ζ(s) is the Riemann zeta function; see [7], p. 2 and pp. 84-90,
and [10], pp. 16-20. The elucidation of the asymptotic behavior of
the Eulerian polynomials has been carried out by Evans [4]. He
proves and applies the identity

(5.12) An(z) = n\ (z — l)n+1 Σ (lnz + 2πim)~n~1

valid for all complex z Φ 0 (the point z — 1 is a removable singularity;
note (5.8)).

We can now establish a uniqueness result for Vieta products.
In what follows U shall denote an open set containing the unit
circle, and za shall denote the principal value of the fractional
power.

THEOREM 3. Let a, β e A and let r(z) be a function meromor-
phic on U. If

(5.13) ft —ϊ-T- = »•(*) Π 2

Zβm

then r(z) = 1 and

(5.14) am = βm , m = 1, 2, 3, • .

Proof. Logarithmic differentiation on Ϊ7 yields

(5-15) Σ ^ f ^ = Q(z) + Σ ^ f
m=i l -j- 2; m w=i 1 -f- zβm

where

(5.16) Q(z) - -zr\z)/r(z) .

Since Σ αm and Σ /5m converge, both sums in (5.15) are holomorphic
in the plane with the closure E of the negative real axis deleted.
Moreover, since both sums are bounded in any disc, the function
r(x) can have neither zeros nor poles in U, and Q(x) is holomorphic
in the plane with E — U deleted.

Apply the operator Ls to both sides of (5.15). By uniform con-
vergence, (5.2), and (5.3) we obtain
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(5.17)

= -L'Q(z) + Σ βΆs(-zη(l + z*)"-1

w = l

where a = am, β = /3m.
We now compute the jump in the values of the functions on

the left and right of (5.17) as the negative real axis is crossed
counterclockwise on the unit circle. With the aid of (5.6) we find
that each coefficient of a8 on the left contributes

As(-eiπa){l + j™)-8-1 - As(-e-ίπa)(l + β-"«)—-1

(5.18) = A8(-eΐ5rα)[(l + e***)—1 - (-eiκ")—\l + β-'««)—ι]

- A.(-β t o)[l + (-l) s](l + e«-)—1 .

Set

(5.19) u = um= -eiM

so u— > ~1 as m~^ co. Since L8Q(z) is continuous on U, we obtain,
upon equating the jumps,

(5.20) Fs{a) - Fs(β)

where

(5.21)

U

recall (5.4). Clearly the series converges for each s. We wish to
multiply both sides of (5.21) by t°/s\ and sum over all s >̂ 1.
Observe that

(K OO\ I Λ (η,\ I < ς t
yO.ώώJ \ J±S\IA/J \ ^ & I

by (5.8) and the remark following it. Hence for any bounded region
in the ί-plane and a suitably large integer m0 the resulting double
sum has the form

(5.23) Σ w Σ + Σ w Σ

where the second sum is majorized by a constant multiple of the
convergent series

(5.24) σ= Σ Σ α s m 8 = Σ , α | * L
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Here σ converges throughout the region since t is bounded and
a — am is very small for m ^ m0. This shows that the summations
over s and m may be done in either order, and it follows from (5.5)
and (5.20) that

(5.25) Gt(a) = Gt(β)

where

( 5 . 2 6 ) Gt(a) = Σ — ϋ - Γ X " ^ + 1 ~ u _ 2 Ί .
«=i 1 — u L e α — u e~at — u J

The series for Gt{ά) is analytic as a function of £ except for simple
poles at the zeros of Eγ{t) and E2(t) where

(5.27) JSί(ί) = eat + eί7rα , 2£2(ί) = e~at + eίjrα .

The pole of Gt{a) closest to but above the real axis is

(5.28) i π ( - l + α(l)"1)

from the corresponding statement for Gt{β) we deduce that α(l) =
β(l). By subtracting off the m = 1 terms from G^α), G /̂S) and
repeating the argument we find that α(2) = β(2), and so forth. This
proves the theorem.

We leave open the problem of the linear independence of three
or more Vieta products over the field of functions meromorphic on
U, and also the inhomogeneous problem for two products.
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