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ON EQUISINGULAR FAMILIES OF ISOLATED
SINGULARITIES

A. NOBILE

Basic properties of a definition of equisingularity for
families of (algebraic, analytic or algebroid) varieties,
singular along a given section, are studied. The equisingu-
larity condition is: given a family p: X-> Y, with a sec-
tion s, it is required that the natural morphism E -* Y be
flat, where E is the exceptional divisor of the blowing-up
of X with center the product of the ideal defining s and
the relative Jacobian ideal.

The following results hold: (a) This condition is invari-
ant under base change (b) It implies equimultiplicity, the
validity of the Whitney conditions and topological triviality
along s (c) If Y is reduced, the condition holds over a dense
open set of Y, whose complement is a subvariety of Y (d)
If Y is smooth and the fibers of p are plane curves, this
definition agrees with Zariski's.

Introduction* In this article, we discuss some basic consequ-
ences of a possible definition of equisingularity, for families of iso-
lated singularies of algebraic, algebroid and analytic varieties (cf.
Definitions (1.1) and (1.4)). Our basic definition is closely related to
one suggested by Hironaka years ago. In fact, around 1964, in his
pioneering work on the Whitney conditions, he did the following:
given a family of isolated singularies π: X —> Y (say, to simplify,
with Y smooth), he took the blowing-up Z of X with center IJ,
where the ideal / defines the singular locus of X, and J is the
Jacobian ideal of π, and after that the normalization Z of Z. If E
is the subspace of Z corresponding to IJ&Έ, be required that the
composed morphism h: E —> Y be flat (cf. [5]). Since then, some
interesting topological results were obtained with these techniques
(cf. [9]); however, apparently no careful study of a theory of equi-
singularity based on these ideas has been attempted. Here we
study some basic results related to the definition that is obtained
when, in Hironaka's process, the normalization is omitted. We call
this "condition gf". This seems a reasonable requirement, if we
are interested in having good functorial properties and in accepting
nonreduced spaces (e.g., infinitesimal deformations). More precisely,
in §1 we present the basic definitions, and we prove that this theory
has some of the fundamental "nice" properties that a good theory
of equisingularity should have (equimultiplicity, topological triviality,
openness, etc). The proofs of § 1 are simple applications of known
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theorems. In § 2, we check that this notion "behaves well" under
base change. In § 3 we present the less trivial result of this paper,
namely that for families of plane curves (with smooth parameter
space), our definition coincides with Zariski's (i.e., with the require-
ment that Whitney's conditions hold). A certain family of surfaces,
introduced by Brianςon and Speder in [1], can be used to give an
example which shows that condition g? is, in higher dimension,
strictly stronger than Whitney's conditions. There is a § 0, where
the basic terminology and notation is explained.

It should be noted that the functorial properties shown in § 2
hold without the requirement that the parameter space be smooth
or reduced, hence the basic definitions apply to nonreduced spaces;
in particular one can introduce a theory of deformations of a singu-
larity, satisfying condition g7. More precisely, given an algebroid
isolated singularity Xo = Spec(-B0), Bo = k[[xlf , xn]]/G, with G an
ideal, k a field as in (0.1), then the correspondence A -> E(A), where
E(A) is the set of isomorphism classes of families ά?~ — (TΓ, X, Y, s),
(cf. (1.2), here Y = Spec(A), A artinian in ΐ f (cf. (0.4)) and π: X-*Y
a deformation of Xo), which satisfy condition g% naturally extends
to a functor & —•(Sets). Here, by "an isomorphism", we mean an
isomorphism that respects the section.

It can be proved that this functor always admits a hull, or
versal deformation. This result, as well as other finer results on
infinitesimal equisingular def ormatior s (in the sense of condition gf),
will be presented in another paper.

()• Notations and terminology*
(0.1) In this paper k denotes an algebraically closed field of

zero characteristic. All rings are commutative, with identity, and
ring homomorphisms respect the identities.

(0.2) The word: "scheme" means algebraic scheme over k.
(0.3) The category of complex analytic spaces will be denoted

by An.
(0.4) The symbol ^ will denote the category of fc-algebras

which are of the form k[[Xlt , Xn]]/G, with G an ideal, with the
usual &-algebra homomorphisms (which are necessarily local).

(0.5) Sometimes, to simplify the notation, a sheaf of ideals in
a sheaf of rings is simply called an ideal. If X is a scheme, or an
analytic space, and ^~ is a sheaf of ideals in &x, the symbol

f) denotes the blowing-up of X with center J7~.

1* Basic definitions and results*
(1.1) In this paper we shall deal with families of singularities,

in the algebraic, complex analytic and formal cases. In the algebraic
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case, the basic definition that we adopt is the following one (cf.
[5]).

DEFINITION 1.2. A family of singularities is a system
Op, X, Y, s), where p: X —> Y is a flat morphism of schemes, s is a
section, and all the fibers Xy — p~ι(y), y e Y, are reduced and equi-
dimensional.

If, moreover, Xy is smooth off s( Y) we say that ^~ is a family
of isolated singularies.

(1.3) There are obvious analogous definitions working in the
categories An and ^ \ Working with analytic spaces there is also
a notion of a germ of a family of singularities, substituting in

1.2 X and Y by germs of spaces, etc. Given an analytic family
of singularities in the sense of 1.2, and a point y e Yf there is an
induced germ of family of singularities at y, which will be denoted
by J^y. Given ^ as in 1.2 and a morphism Y' —> Y, the pullback
of ^~ over Yr is defined in an obvious way.

(1.3) We recall the definition of the Jacobian ideal of a family.
Again we discuss the algebraic case, the other two being similar.
Let <β~~ be a family of singularities (notations as in (1.2)). Locally
over Y, we may assume that p is induced by the inclusion of rings
A -> B = A[X0, . . . , XJ/L, L = (/lf , / J an ideal of A[X0, -.., XJ.
Let r = dim Xy (y any closed point of Y)9 and J the ideal of 5
generated by the (n — r)x(n — r) minors of the Jacobian matrix
(dfi/dxj), i — 1, , m, j = 1, , w. This ideal is independent of the
representation B = A[X]/L, and, by taking a covering of Y by
aίfine open sets Spec(̂ 4) as above, we get a sheaf of ideals ^ of
^ , called the sheaf of Jacobian ideals of ^

(1.4) The if-ideal of j ^ denoted by H(&~) is the product
άf~^, where ^Γ is the ideal defining s(Y) and ^ the Jacobian
ideal of j ^ . Given the family _ ^ the ίί-transform Z of X (or,
more precisely, of &~) is the monoidal transform of X with center
H{^)9 its exceptional divisor is called the ίf-divisor of ^ . We
have morphisms:

(1.4.1) E >Z >X > Y.

Let h: E —> Y be the composition. We say that the family of isolated
singularities ^ satisfies "condition g"', or that it is equisingular,
if h is flat (cf. [5], pg 9).

(1.5) In this paragraph we work in the analytic category. We
assume Y smooth. It is well known that the flatness of h implies:
all the fibers of Ered —> Y have the same dimension. In [9] it is
proved that this equidimensionality condition implies: the pair
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(X — s( Y), Y) satisfies the Whitney conditions A and B. By the
results of [6], it follows that X is equimultiple along Y.

(1.6) Another nice property of "condition ί?" is the following
one: given a family of analytic spaces ^ (notations as in 1.2),
then U = {y e Γ/condition g* holds at y} is the complement of a
closed subspace W of Y. If Y is reduced, then U is dense in Y,
In fact, let E be the iϊ-divisor of J^, h: E —> Y the surjective
morphism of (1.4.1), and G — {zeE/h is flat at x) (note that E — G
is a closed analytic set). Then, condition g7 does not hold at y if
and only if y e h(E — G) = W. Since h is proper, W is a closed
analytic set. If Y is reduced, the surjective morphism h will be
flat over an open dense set of Y, hence Y — W will be dense.

2* Functorial properties*
(2.1) In the paragraphs 2.2 and 2.3 we review some basic facts

on monoidal transforms, which we could not find in the literature.
Our goal is to prove Theorem 2.4, which says that equisingular
families in the sense of condition g7 "behave well" with respect
to base change.

LEMMA 2.2. Let p: X' —> X he a morphism of schemes, I a
sheaf of ideals of 6?x, V = I^x>, Z = &(X, I), E the exceptional
divisor; assume g~\E) (where g: X' x Z —> Z is the projection) is a
divisor in X'xxZ. Then, there is a canonical isomorphism XrxZ~>
Zf = <5&(Xr, Γ), and g~\E) corresponds to the exceptional divisor
of Zf.

Proof. The surjection (®I*)®^£V -*(BInέ?x> induces a closed
immersion q: Z' -> X'XX Z, which makes the (solid) diagram:

commutative. Since g~\E) is a divisor, the universal property of
the monoidal transform implies the existence of the dotted arrow
qr. It is clear that q and qf are inverse to each other, and that
g~\E) becomes the exceptional divisor of Zf.

REMARK 2.3. If /: X—> Y is a morphism of schemes, DczX is
an effective divisor, X — D — Y (induced by /) and the composition
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flcI->Γ are flat, then / is flat, and D is a relative Cartier
divisor (cf. [8]).

THEOREM 2.4. Let J^ — (p, X, Y, s) be an equisingular family,
Y' -> Y a morphίsm of schemes, ^ f the pull-back of Jβ~ to Yf.
Then, ^ f is equisingular.

Proof. Let /J" = (p, X, Y, s), π: Z—> X the iϊ-transform of X,
E its exceptional divisor. By 2.3 and 1.4, E is a relative divisor of
Z over F, then (cf. [4], pg 332), its pull-back E' to f x l i s a
divisor. By 2.2, the diagram

Ef >E

h'\ \h

Y' > Y

is cartesian. Since h is flat, In! is flat, i.e., J^~' is equisingular.

REMARK 2.5. In the definition of equisingularity (1.4), we are
dealing with a family of isolated singularities, in the sense of (1.1).
However, the "isolated singularities" condition is implied by the
other requirements of (1.4). Precisely, let J^ = (p, X, Y, s) be a
family of singularities with Y connected, yQ e Y a closed point, as-
sume that Xo = p~\y0) has a single singular point, at s(yQ) and (with
notations as in (1.4)) that h is flat. Then, for each y e Y, Xγ has
an isolated singularity at s(y).

To see this, note that in the proof of 2.4 we did not use the
fact that the fibers have isolated singularities, hence the same argu-
ment shows that the property: "h flat" is stable under base change.
So, we may assume Y to be integral. Clearly, it suffices to show:
let S = Spec(^>j2/0), J^ = (p, Xlf S, s,) the pull-back of ^ over S, t
the general point of S, then pϊ\t) has a singularity at st(t) (here
we assume Xo is actually singular at s(y0), otherwise the statement
is trivial). The ϋ-ideal of ^ looks, near yo^S, as IJ (with I de-
fining sy(S), J the relative Jacobian). At y0, I and / are nonunits.
On the iϊ-transform Z19 they become invertible, in particular J de-
fines a divisor D. If we assume, by contradiction, that pϊx{t) is
nonsingular, then the stalk of J at sλ{t) is the unit ideal. But then
Drίίd (a union of irreducible components of the H-divisor Ex) maps
into a proper subscheme of S, an impossibility since Eλ —> S is flat.

(2.6) Of course there are results analogous to those presented
in this section for the categories An and r£\

3* The case of plane curves* In this section we prove that
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for families of plane curves (with smooth parameter), Definition
1.4 agrees with Zariski's definition of equisingularity. For sim-
plicity, we shall work with complex analytic spaces.

THEOREM 3.1. Let J^ — (p, X, Y, s) be an analytic family of
singularities, where Xy is a plane curve, for all y e Y, and Y is
smooth. Then, J^~ satisfies condition & if and only if it is
Zariski equisingular.

Proof. As remarked in 1.5, condition g" implies the validity
of Whitney conditions along s(Y), which is equivalent to Zariski
equisingularity (cf. [11] Theorem 8.1).

To see the converse, we need some auxiliary results. Several
times we shall use germs (of spaces and families); to simplify the
notation we shall sometimes write just X (resp. ά^) to denote the
germ (X, x) (resp. the germ of a family _^Q.

Recall that given a germ of a plane curve (C, 0), there is a
versal deformation g: (X, 0) ->(£/, 0) (cf. [10], Chapter III, in that
paper what we call "versal" is called mini-versal). The smooth
space U contains a smooth subspace Dμ = {ue U/x is in the discri-
minant D of g, and m(u) = m(0)} (m = multiplicity of a point of D).
If /: Xμ-+ Dμ is the pull-back of g, then / admits natural section
σ (to define it, note that the fibers g~\u), u e Dμ have a unique
singularity, su, with same Milnor number as (flr̂ O), 0), σ is defined
by σ(u) = su), and %? = (/, Xμ, Dμ, σ) is a (Zariski) equisingular
versal deformation of C. In the paragraphs (3.8) to (3.16) we shall
prove the following.

PROPOSITION 3.2. There is a reduced subspace F of Dμ, such
that the pull-back &Ί = (q, G, F, s) of & to F has the following
property: & satisfies condition g7 and if (X', x) —> (Sf s) is a de-
formation of (C, 0), with reduced space S, then it satisfies condition
£? if and only if morphism (S, s)—>(U, 0) (obtained by versality of
g) factors through F.

We shall also need:

PROPOSITION 3.3. // J^ — (p, X, Y, s) is a deformation of a
germ of a plane curve C, with Y smooth, one-dimensional, then ^
is Zariski equisingular if and only if it satisfies condition g7.

(3.4) We prove 3.3 in (3.7). With 3.2 and 3.3, Theorem 3.1
easily follows, with the following well-known argument (see [10],
pg 358, Proof of 2.9). To show that "Zariski equisingularity
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implies condition £?", clearly it suffices to show: for any germ of
plane curve (C, 0), we have Dμ = F (notations of (3.2)). Were F g Dμ,
then there would be a curve A c Dμ, such that A n F = {0}. The
pull-back of Xμ-*Dμ to Λ(' = normalization of Λί, is Zariski equisingu-
lar, hence by (3.3) it satisfies condition if. But the resulting
morphism A' ~^U does not factor through F, a contradiction to (3.2).

Before proving the propositions, we need:

LEMMA 3.5. Let ^ be a family of plane curves as in (3.1),
which is Zariski equisingular, let Z -> X be the H-transform of X,
/ the composition Z —> X~> Y, and be Y. Then, f~\b) is iso-
morphic to the H-transform of Xb9 parametrized by a point, with
the section defined by s(b) (and hence f~\b) is reduced).

Proof. Clearly we may assume that, near s(b), XaCn+2, defined
by g = 0, geC{ul9 , un> x9 y}y Γ c . I , defined by x = y = 0, more-
over neither the #-axis nor the y-axis is tangent to p~\b): /(0, x, y) — 0
at the origin 0 = s(b). Zariski equisingularity implies: the irreduc-
ible components Xu •••, Xd of X (near 0) admit parametrizations:

(3.5.1) x = ί * , 2/ = Σ »f (w)ty , %* = w* , & = 1, , n ,

here, i = 1, , d, u = (ul9 , un) and a?(0) ^ 0. It is readily veri-
fied that (for a small neighborhood S c F o f 0) then open f~\S) of
the iϊ-transform of X is contained in Cn+4c (of coordinates (vl9 ,vΛ,
Wi, •• ,w4), and it has d components which admit parametrizations:

vk = uk, k = 1, , n

(3 5'2 )

z i ) i l ( )

4 - (ani(u) + α. i + J (u)+ -)" 1 (recall αΛ.(0) ^ 0)

(In fact, the "relevant" open of the H-transform is the analytic
spectrum of έ?8[fx/f9f x/y].) Now it becomes clear that f~\b) is the
curve with d components parametrized by the series obtained from
(3.5.2) by making ut = 0, i = 1, , n, which (as before) is the H-
transform of Xb, with the section defined by the point s(b).

(3.7) Proof of Proposition 3.3. Assume &~ is Zariski equisingu-
lar. Consider the H-transform Z ^> X, let E be the exceptional
divisor, and f = pg. Since Z is reduced (hence it has no embedded
points) and no component of Z maps into a point of the smooth
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curve F, / is fiat. Since (by Lemma 3.5) the fibers of / are re-
duced curves, and hence Cohen-Macaulay, by the flatness of / the
space Z is Cohen-Macaulay. Hence, the divisor £ c ^ is a Cohen-
Macaulay space, and the flatness of E over Y is equivalent to the
equidimensionality of the fibers. But this is insured by [2], Section
III, since J^, being Zariski equisingular, satisfies the Whitney con-
ditions. The other implication always holds, so Proposition 3.3 is
proved.

(3.8) We begin the proof of Proposition 3.2. Consider (using
the notations introduced before 3.2) the iϊ-transform Z—»Xμ of
the family 5 ,̂ let E be the iϊ-divisor. A priori, we do not know
whether E is flat over Xμ or not. By the theory of flattening
stratifications (see [3], pg. 156) there is a sub-germ Fr of Dμ such
that E' = E XDtι F' is flat over F', and any morphism of germs
v:T—>Dμ such'that EXDμT is flat, factors through Ff. Let
F = Fτ'eύ, then F has a similar universal property, but with respect
to morphisms v: T-* Dμ with T reduced. Consider the fl-transform
Zx - > F of Sfi = (q, G, F, s) = gf XD>ι F, with 27-divisor E,. We have
the following result, to be proved in (3.13).

LEMMA 3.9. In the following diagram, the squares are cartesian:

JJJ < JJJl

z
I

Xμ < "G

Ί I
Dμ+-^F

(3.10) By this lemma, &\ satisfies condition g\ Assume now
that a deformation of (C, 0), say 2f2 = (p', X', S, sf) (with S reduced
and (p-\tQ), s'(t0) ^ (C, 0)), satisfies condition g". Since all germs
(Xt, s'(t)), t e S have the same Milnor number, and since S is reduced,
any morphism S —> U (associated to Xr —> S by versality of X ~> U)
factors through Dμ. We claim:

LEMMA 3.11. There is a canonical isomorphism'.

EXDμS^E2J

where E2 is the H-divisor of 2f2.
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(3.12) This lemma is proved in (3.16). By (3.11), the morphism
S —> U factors through F. Conversely, ifS-^U factors through
F, by Theorem 2.4 p': X' -> S (or, more precisely, (pf, X\ S, s'),
where s' is induced by the section of 5^) satisfies condition g\

(3.13) To complete the proof of Proposition 3.2, we show
Lemmas 3.9 and 3.11. To prove 3.9, note that we have a com-
mutative diagram (cf. the proof of (2.2))

1
Z<

I
Dμ*

I . 1
Δ > /JX

\ /

F

here, Ef — E XDμ F Z' = Z XDμ F, and ί, j are closed immersions.
By using Lemma 3.5, it is easy to see that actually i and j are
homeomorphisms. If we prove that i is an isomorphism, it follows
that j is an isomorphism, concluding the proof. In fact, if i is an
isomorphism then Et is flat over F (since E' is flat, by assumption).
Then, by Remark 2.3, Zx is flat over F. Since, by (3.5), ί induces
an isomorphism of the fibers of Ef —> F and Ex —> F, the following
well-known result (cf. [7], 20E) immediately implies that j is an
isomorphism.

LEMMA 3.14. Let A—+B be a local homomorphίsm of local

noetherian rings, M—>Nan epimorphism of finite B-modules, with
N flat over A. Assume M(&Ak —> N(&Ak (with k the residue field
of A) is injective. Then, u is an isomorphism.

So, to conclude the proof we must check that i is an isomorphism.
In veiw of Lemma 3.5, this is an immediate consequence of the
following algebraic lemma.

LEMMA 3.15. Let h\B—>Br be a surjective homomorphism of
A-algebrasy where A is a noetherian reduced ring. Assume that B
is A-flat, and that for any minimal prime ideal P of A, the in-
duced map: h(P)' B(&Ak(P) -> J5' ®Ak(P) (where k(P) is the field of
fractions of A/P) is an isomorphism. Then, h is an isomorphism.

Proof. It suffices to show that h is injective. First, note that
for any minimal prime ideal P, the induced mapfe (R) 1: 2?®A A/P—>
Bf ®A A/P is an isomorphism. Clearly it is onto, to see the injec-
tivity consider the commutative diagram:
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B®k(P)< B®(AjP)
A .

\h(P)

B'Q(A/P) .
A A

Since B is A-Ά&t, a is injective, hence h (g) 1 is injective. Now, let
P,, •••, Pr be the minimal primes of A. Consider the commutative
diagram:

I"
B' ^^ Π B'/PtB' .

We just saw that p is injective, and 7 can be identified to the
homomorphism:

where j: A —> ΠΓ=i (A/Pi) is the canonical injection (recall that A is
reduced). By the ^.-flatness of J5, 7 is injective, hence δh = py is
injective, hence h is injective. This proves Lemma 3.15.

(3.16) Proof of Lemma 3.11. Let Z, be the iϊ-transform of g2.
Then there is a closed immersion j: Z2—>Z XDμ S (cf. (2.2)). Using
Lemma 3.5 we see that j induces an isomorphism of the fibers
over the center s of the germ S (both fibers are naturally iso-
morphic to the M-transform of (C, 0)). Since Z2 is flat over S,
Lemma 3.14 implies that j is an isomorphism. Now it is clear
that we get the isomorphism of exceptional divisors of (3.11).

This completes the proof of Proposition 3.2.

(3.17) A natural question is the following: is "condition g7"
equivalent to "Whitney conditions", when we deal with a family of
singularities of dimension > 1 The answer is "no", as the following
example shows.

(3.18) EXAMPLE. Consider the family of singular surfaces
(parametrized by ί, with trivial section):

(3.17.1) f=zs + txiz + x* + y6

(cf. [1]). In [1] it is shown that this family satisfies Whitney con-
ditions along the ί-axis T. But consider now its iϊ-transform (to
simplify, we work algebraically, i.e., with Spec(A), A = C[x, y, z, t\j
(/)). Then, an affine of the iΓ-divisor is given by the spectrum of
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B = C[y/x, z/x, fjf,, Λ/Λl/Cf, y*x)

which can be written as:

B = k[t, x, y/x, z/x, (tz)/y* , W + 3s2)//]/(/, y*x) .

The fc[ί]-algebra JB is not flat: in fact, t{xyzz) = (tz/y*)>{y*x) = 0
in 5, however, it is not difficult to chech that xy3z Φ 0 in I?. Thus,
£ becomes a zero divisor in B, and i? is not A-flat. Hence, this
family does not satisfy condition g\
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