ON THE HANDLEBODY DECOMPOSITION ASSOCIATED TO A LEFSCHETZ FIBRATION

A. Kas

The classical Lefschetz hyperplane theorem in algebraic geometry describes the homology of a projective algebraic manifold M in terms of "simpler" data, namely the homology of a hyperplane section X of M and the vanishing cycles of a Lefschetz pencil containing X. This paper is a first step in proving a diffeomorphism version of the Lefschetz hyperplane theorem, namely a description of the diffeomorphism type of M in terms of "simpler" data.

Let \tilde{M} be the manifold obtained from M by blowing up the axis of a Lefschetz pencil. There is a holomorphic mapping $f: M \to \mathbb{CP}^1$ which is a Lefschetz fibration, i.e., f has only nondegenerate critical points (in the complex sense). Using the Morse function $z \to |f(z)|^2$ on $\tilde{M} - f^{-1}(\infty)$, one obtains a handlebody decomposition of $\tilde{M}-f^{-1}(\infty)$ which may be described as follows: Let $X=f^{-1}(a)$ be a regular fiber of f. Choose a system of smooth arcs $\gamma_1, \dots, \gamma_{\mu}$ starting at a and ending at the critical values of f such that the γ 's are pairwise disjoint except for their common initial point. The γ 's are ordered such that the tangent vectors $\gamma'_1(0), \cdots, \gamma'_n(0)$ $\gamma'_{\mu}(0)$ rotate in a counter clockwise manner. To each γ_{i} one may associated a "vanishing cycle", i.e., an imbedding ϕ_i : $S^n \to X \pmod{X=2n}$ defined up to isotopy, together with a bundle isomorphism $\phi'_i: \tau \to \nu$ where τ is the tangent bundle to S^n and ν is the normal bundle of S^n in X corresponding to the imbedding ϕ_j . ϕ'_j together with the well known bundle isomorphism $\tau \oplus \varepsilon \simeq \varepsilon^{n+1}$ determines a trivialization of the normal bundle of $e^{2\pi i j/\mu} \times \phi_j(S^n)$ in $S^1 \times X$. This trivialization allows one to attach a *n*-handle to $D^2 \times X$ with the core $e^{2\pi i j/\mu} imes \phi_j(S^n)$. If this is done for each $j, j=1, \cdots, \mu$, the resulting manifold is diffeomorphic to M-(tubular neighborhood of $f^{-1}(\infty)$).

Using the bundle isomorphism ϕ'_j and the tubular neighborhood theorem one may identify a closed tubular neighborhood T of $\phi_j(S^n)$ in X with the tangent unit disk bundle to S^n . One may then define a diffeomorphism, up to isotopy, $\delta_j: X \to X$ with support in T. δ_j is a generalization of the classical Dehn-Lickorish twist. δ_j is the geometric monodromy corresponding to the *j*th critical value of f. It follows that the composition $\delta_{\mu^o} \cdots \circ \delta_1$ is smoothly isotopic to the identity $\mathbf{1}_X: X \to X$. A smooth isotopy is given by a smooth arc λ in Diff(X) joining the identity to $\delta_{\mu^o} \cdots \circ \delta_1$. The choice of λ , up to homotopy, determines the way in which one closes off \widetilde{M} -(tubular neighborhood of $f^{-1}(\infty)$) to obtain \widetilde{M} .

Thus the diffeomorphism type of \tilde{M} is determined by the invariants $\phi_1, \phi'_1, \dots, \phi_{\mu}, \phi'_{\mu}$ and $\{\lambda\}$, the homotopy class of λ . Conversely, given a compact oriented 2n dimensional manifold X, imbeddings $\phi_j: S^n \to X, j=1, \dots, \mu$, and bundle isomorphisms $\phi'_j: \tau \sim \nu_j$ such that $\delta_{\mu} \circ \dots \circ \delta_1$ is smoothly isotopic to 1_x , and a homotopy class $\{\lambda\}$ of arcs in Diff(X) with initial point 1_x and end point $\delta_{\mu} \circ \dots \circ \delta_1$, one may construct a 2n+2 dimensional manifold \tilde{M} and a Lefschetz fibration $f: \tilde{M} \to \mathbb{CP}^1$. It is shown that in the case n=1, apart from certain exceptions, \tilde{M} is uniquely determined by $\phi_1, \dots, \phi_{\mu}$, i.e., the bundle isomorphisms $\phi'_1, \dots, \phi'_{\mu}$ and the smooth isotopy class $\{\lambda\}$ are superfluous.

Introduction. The classical Lefschetz hyperplane theorem 0. in algebraic geometry describes the homology groups of an algebraic manifold M in terms of those of a hyperplane section X and in terms of the "vanishing cycles" of X. This paper was inspired by the Morse theoretic proof of the Lefschetz hyperplane theorem due to Andreotti and Frankel [1]. Their approach is to blow up the base locus of a generic Lefschetz pencil so as to obtain a manifold \widetilde{M} and a "Lefschetz fibration" $f: \widetilde{M} \to P^{1}(C)$. They then use the Morse function $|f|^2$ to describe \tilde{M} , at least up to homotopy type, and finally they show how to relate the homology groups of M to those of \tilde{M} . Now according to Smale's handlebody theory [11], it should be possible to use the Morse function $|f|^2$ to determine the full diffeomorphism class of \tilde{M} , not just its homotopy type. In order to do this we must describe the framings of the imbedded spheres (vanishing cycles) corresponding to the critical points of $|f|^2$. In general, the framing associated to a critical point of index n+1, has an ambiguity measured by $\pi_n(SO(n+1))$. In our situation, we can improve this to $\pi_n(SO(n))$. This completely determines the framing in certain cases, most notably if M is a complex surface.

In this paper, we describe a set of invariants associated to a Lefschetz fibration $f: M \to P^1$, which allows one, in principle, to give a handlebody decompositions of certain complex surfaces.

There is a certain amount of overlap between some of the ideas of this paper and certain papers of B. Moishezon and R. Mandelbaum (cf. e.g., [6], [7], [10]).

1. The framings associated with a Lefschetz fibration. Let M be a smooth manifold of dimension ≥ 2 and let $f: M \to S^2$ be a smooth mapping. A point $p \in M$ will be called a critical point of f if the differential $df_p: T(M)_p \to T(S^2)_{f(p)}$ is not surjective. Now let M be a closed compact oriented smooth manifold of even dimension,

say dim M = 2n + 2, $n \ge 0$, and assume that $f: M \to S^2$ is a surjective mapping with a finite number of critical points. We will identify S^2 with the extended complex plane $C \cup \infty$. If $z \in S^2$ is a regular value of f, then $f^{-1}(z)$ is called a regular fiber of f. It is clear that up to diffeomorphism, the regular fibers of f are independent of the regular value z.

DEFINITION 1.1. The smooth mapping $f: M \to S^2$ will be called a Lefschetz fibration if each critical point p of f admits a coordinate neighborhood with complex valued coordinates (w_1, \dots, w_{n+1}) , consistent with the given orientation of M, and if f(p) has a coordinate neighborhood with a complex coordinate z, consistent with the orientation of S^2 , such that locally, f has the form:

$$f(w) = z_0 + w_1^2 + \cdots + w_{n+1}^2$$
.

DEFINITION 1.2. Two Lefschetz fibrations

$$f_1: M \longrightarrow S^2$$
, and $f_2: M \longrightarrow S^2$

are said to be equivalent, if $f_2 = g \circ f_1$ where g is an orientation preserving diffeomorphism of S^2 .

Let X denote any regular fiber of the Lefschetz fibration $f: M \to S^2$. Notice that up to diffeomorphism, X only depends on the equivalence class of the Lefschetz fibration $f: M \to S^2$. Notice also, that X has a unique orientation consistent with the orientations of M and S^2 .

We wish to describe a handlebody decomposition of M associated to the Lefschetz fibration $f: M \to S^2$. We will assume that a handlebody decomposition of X is already known.

We first recall some standard facts about handles and handlebodies. Let N be a manifold with boundary and let $n = \dim N$. Let

$$\Phi: S^{k-1} \times D^{n-k} \longrightarrow \partial N$$

be a smooth imbedding. Form the union $N_1 = N \cup_{\phi} D^k \times D^{n-k}$ where we identify each point of $S^{k-1} \times D^{n-k} \subset \partial(D^k \times D^{n-k})$ with its image under Φ . N_1 is a manifold with boundary and corner points. Let V denote the unique manifold (possibly with boundary) obtained from N_1 by "straightening the corners" of N_1 (cf. [2]).

DEFINITION 1.3. V is called: the manifold obtained from N by attaching a k-handle along Φ .

It is easy to see that, up to diffeomorphism, V depends only on the smooth isotopy class of Φ . Let Φ_0 denote the restriction of Φ to $S^{k-1} \times 0$. It follows easily from the tubular neighborhood theorem [9], that Φ is determined, up to smooth isotopy, by a bundle isomorphism:

$$\Phi': \varepsilon^{n-k} \longrightarrow \nu$$

where ε^{n-k} is the trivial n-k bundle on S^{k-1} , and ν is the normal bundle of S^{k-1} in ∂N under the imbedding Φ_0 . Thus the isotopy class of the imbedding Φ is determined by:

(i) A smooth isotopy class of imbeddings

$${\mathcal P}_{\scriptscriptstyle 0} : S^{k-1} \longrightarrow \partial N$$
 ;

(ii) For each Φ_0 in (i), a smooth isotopy class of bundle isomorphisms:

$$\Phi': \varepsilon^{n-k} \longrightarrow \mathcal{V}$$
.

Notice that (i) is a "knot invariant". As for (ii), the distinct bundle isomorphisms, up to smooth isotopy, are classified by the group $\pi_{k-1}(S0(n-k))$. Φ' is called a framing of Φ_0 .

Let $F: M \to \mathbb{R}$ be a Morse function, and let $c \in \mathbb{R}$ be a critical value such that $F^{-1}(c)$ contains a single critical point p, where Fhas index λ at p. For each real number $a \in \mathbb{R}$, let $M_a =$ $\{x \in M | F(x) \leq a\}$. Then for $\varepsilon > 0$ sufficiently small, $M_{c+\varepsilon}$ is diffeomorphic to the manifold obtained from $M_{c-\varepsilon}$ by attaching a λ -handle along $\Phi: S^{\lambda-1} \times D^{n-\lambda} \to \partial M_{c-\varepsilon}$. To construct Φ explicitly, one may choose (by Morse's lemma) a system of coordinates x_1, \dots, x_n in Mcentered at p, such that $F(x_1, \dots, x_n) = c - x_1^2 - \dots - x_2^2 + x_{\lambda+1}^2 + \dots + x_n^2$ (cf. e.g., [8]). Then if $\xi = (\xi_1, \dots, \xi_\lambda) \in S^{\lambda-1}$, $\eta = (\eta_{\lambda+1}, \dots, \eta_n) \in$ $D^{n-\lambda}$, $\Phi: S^{\lambda-1} \times D^{n-\lambda} \to F^{-1}(c-\varepsilon)$ is defined by setting

$$\boldsymbol{\varPhi}(\boldsymbol{\xi},\boldsymbol{\eta})=(\boldsymbol{x}_1,\,\cdots,\,\boldsymbol{x}_n)$$

where

$$(x_1, \cdots, x_{\lambda}) = \sqrt{\varepsilon + |\eta|^2} \xi$$

 $(x_{\lambda+1}, \cdots, x_m) = \eta$.

Similarly, if $F^{-1}(c)$ contains several nondegenerate critical points p_1, \dots, p_{μ} of indices $\lambda_1, \dots, \lambda_{\mu}$, then $M_{c+\varepsilon}$ is diffeomorphic to the manifold obtained from $M_{c-\varepsilon}$ by attaching μ handles, where the *j*th handle is a λ_j -handle attached along $\Phi_j: S^{\lambda_j-1} \times D^{n-\lambda_j} \to F^1(c-\varepsilon)$, $j = 1, \dots, \mu$, and where the images of the Φ_j are disjoint.

DEFINITION 1.4. A handlebody decomposition of a manifold M is given by:

(i) a sequence $M = M_N \supset \cdots \supset M_0$, where each M_j is a sub-

manifold of M;

(ii) diffeomorphisms
$$\Phi_j: S^{\lambda_j-1} \times D^{n-\lambda_j} \to \partial M_k$$
, and

$$\begin{split} & \varPsi_{j+1}: M_{j+1} \longrightarrow M_j \cup_{\phi_j} D^{\lambda_j} \times D^{n-\lambda_j} , \\ & \varPsi_0: M_0 \longrightarrow D^n . \end{split}$$

A Morse function $F: M \to R$ together with a gradient-like vector field for F, determine a handlebody decomposition of M (cf. [6]).

Now let $f: M \to S^2$ be a Lefschetz fibration with regular fiber X, where dim X = 2n, dim M = 2n + 2. We will assume that 0 and ∞ are regular values of f. Define $F: M \to \mathbb{R} \cup \infty$ by $F(p) = |f(p)|^2$. Then it is easy to verify that outside of $f^{-1}(0) \cup f^{-1}(\infty)$, F has only nondegenerate critical points, each of index n + 1 (cf. [1]).

DEFINITION 1.5. The Lefschetz fibration $f: M \to S^2$ is said to be normalized if the critical values of f are precisely the μ roots of unity.

Every Lefschetz fibration is equivalent to a normalized Lefschetz fibration. Explicitly, if $a_1, \dots, a_{\mu} \in S^2$ are the critical values of f, and if $a \in S^2$ is a regular value of f, choose arcs γ_j from a to $a_j, j = 1, \dots, \mu$, which do not intersect except at a. Construct an orientation preserving diffeomorphism between a regular neighborhood of $\bigcup_{j=1}^{\mu} \gamma_j$ and the disk of radius $1 + \varepsilon$ such that a_j is mapped to $e^{2\pi i j/\mu}$. Let $g: S^2 \to S^2$ be an extension of this diffeomorphism. Then $g \circ f: M \to S^2$ is a normalized Lefschetz fibration.

Now assume that $f: M \to S^2$ is a normalized Lefschetz fibration, and let $D_t \subset S^2$ denote the disk of radius t centered at the origin. Then $f^{-1}(D_t) \cong X \times D^2$ for t < 1, while for t > 1, $f^{-1}(D_t)$ is diffeomorphic to the manifold obtained from $X \times D^2$ by attaching μ (n + 1)-handles by means of imbedding $\Phi_j: S^n \times D^{n+1} \to \partial(X \times D^2) =$ $X \times S^1, j = 1, \dots, \mu$, where the Φ_j have disjoint images.

LEMMA 1.6. The imbeddings Φ_j may be chosen so that $\Phi_j(S^n \times 0) \subset f^{-1}(z_j)$ for some $z_j, j = 1, \dots, \mu$.

The proof of Lemma 1.6 will be given together with the proof of Theorem 1.7.

Let $\phi_j: S^n \to X$ be the imbedding defined by Φ_j restricted to $S^n \times 0$, and the identification $f^{-1}(D_t) \cong X \times D^2$, for t < 1. Let ν_i denote the normal bundle of S^n in X corresponding to the imbedding ϕ_j , and let ν denote the normal bundle of S^n in $F^{-1}(1 - \varepsilon)$. Clearly we have $\nu \cong \nu_1 \oplus \varepsilon$. Let τ denote the tangent bundle of S^n .

THEOREM 1.7. There exists a bundle isomorphism $\phi'_j: \tau \to \nu_1$. The framing $\phi'_j: \varepsilon^{n+1} \to \nu$ coincides with the isomorphism. A. KAS

$$\varepsilon^{n+1} \xrightarrow{\sim} \tau \bigoplus \varepsilon \xrightarrow{\phi'_j \bigoplus 1} \nu_1 \otimes \varepsilon \xrightarrow{\sim} \nu$$
.

Moreover ϕ'_j is determined, up to smooth isotopy, by the local behavior of the function f at the critical point p.

The proof of Lemma 1.6 and Theorem 1.7 are based on the following easy lemma.

LEMMA 1.8. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a smooth function, and let $a = (a_1, \dots, a_n)$ be a regular point of f. Let f(x) = f(a) + L(x - a) + R(x - a) where L(x) is a linear function and $|R(x - a)| \leq k|x - a|^2$ for |x - a| sufficiently small. Then for $\varepsilon > 0$ sufficiently small, there exists a smooth function $F: \mathbb{R}^n \times I \to \mathbb{R}$ satisfying:

(i) F(x, 0) = f(x);

(ii) F(x, t) = f(x) for $|x - a| > \varepsilon$;

- (iii) F(x, 1) = f(a) + L(x a) for $|x a| < \varepsilon/2$;
- (iv) $x \to F(x, t)$ has no critical points in $\{|x a| < \varepsilon\}$.

Proof. We may assume that x = 0, and f(a) = 0. Let $\rho_{\varepsilon}(s)$ be a smooth function such that

$$ho_{\epsilon}(s) = egin{cases} 1, \ s < \epsilon/2 \ 0, \ s > \epsilon \end{cases}$$

Let $F(x, t) = (tL(x) + (1 - t)f(x))\rho_{\epsilon}(|x|) + f(x)(1 - \rho_{\epsilon}(|x|))$. It is obvious that F satisfies conditions (i), (ii), and (iii). To check condition (iv), we restrict our choice of $\rho_{\epsilon}(s)$. Let $\rho(s)$ be a smooth function such that $\rho(s) = \begin{cases} 1, s < 1/2 \\ 0, s > 1 \end{cases}$. Then set $\rho_{\epsilon}(s) = \rho(s/\epsilon)$. Let M be a constant such that $|\rho'(s)| \leq M$. Then $|\rho'_{\epsilon}(s)| \leq M/\epsilon$. Letting $\vec{V}f = (\partial f/\partial x_1, \cdots, \partial f/\partial x_n)$, and defining $F_t(x) = F(x, t)$ we have:

$$ec{
abla}F_t(x) = -t
ho_{\epsilon}(|x|)ec{
abla}R(x) - tR(x)
ho_{\epsilon}'(|x|) \,rac{ec{x}}{|x|} + ec{
abla}f$$

where $\vec{x} = (x_1, \dots, x_n)$. The first term on the right is small for small values of ε since $\vec{V}R(x) \to 0$ as $x \to 0$. As for the second term, we have $|R(x)| < k\varepsilon^2$ and $|\rho'_{\varepsilon}(x)| \leq M/\varepsilon$ for $|x| < \varepsilon$. Finally, $\vec{V}f(0) \neq 0$ since 0 is a regular point. Therefore for ε sufficiently small $\vec{V}F_t(x) \neq 0$ for $|x| < \varepsilon$.

Proof of Lemma 1.6 and Theorem 1.7. Assume, for simplicity, that j = 1. Since the Morse function F is the composition of the Lefschetz fibration $w \to f(w)$, and the function $z \to |z|^2$, we can find, by Lemma 1.8, an arc of Morse functions $F_i: M \to R$ such that

(i) F_t coincides with F on $\{w \in M || f(w) - 1| > \varepsilon\}$

(ii) $F_0 = F$

(iii) $F_1(w) = 2 \operatorname{Re} f(w) - 1$ on $\{w \in M | | f(w) - 1 | \leq \varepsilon/2 \}$.

Since F_1 can be connected to F_0 by an arc of Morse functions, the handlebody decomposition associated with F_1 differs from that associated with F_0 by a smooth isotopy. Now if we use local complex coordinates (w_1, \dots, w_{n+1}) in a neighborhood of the critical point p_1 such that: $f(w_1, \dots, w_{n+1}) = 1 + w_1^2 + \dots + w_{n+1}^2$, then $F_1(w) = 2 \operatorname{Re} f(w) - 1 = 1 + 2 |u|^2 - 2|v|^2$ where w = u + iv, $u, v \in \mathbb{R}^{n+1}$. Then $\Phi_1(S^n \times 0) = \{(u, v) | u = 0, 1 - 2 | v|^2 = 1 - \epsilon\} \subset f^{-1}(\sqrt{1 - \epsilon})$, which proves Lemma 1.6.

To prove Theorem 1.7, consider the function: $g: S^n \times \mathbb{R}^{n+1} \to \mathbb{R}$ defined by $g(\xi, \eta) = \xi \cdot \eta$. $g^{-1}(0)$ is the total space of the tangent bundle to S^n ; thus if ν_1 is the normal bundle of $S^n \times 0$ in $g^{-1}(0)$, then ν_1 is naturally isomorphic to $\tau = \tau_{S^n}$. Since g is a fibration, the normal bundle to $g^{-1}(0)$ in $S^n \times \mathbb{R}^{n+1}$ is trivial. Restricting these bundles to $S^n \times 0$, and using the standard metric on $S^n \times \mathbb{R}^{n+1}$, we get the splitting of bundles on S^n , $\varepsilon^{n+1} \cong \tau \bigoplus \varepsilon$. An easy computation shows that this coincides with the splitting induced by the standard imbedding of S^n in \mathbb{R}^{n+1} . Now consider the diagram:

The diagram does not commute, but it does "commute to first order" on $S^n \times 0$. More precisely, this diagram induces a commutative diagram of bundle maps which proves Theorem 1.7.

DEFINITION 1.8. $\phi_j(S^n) \subset X$ is called a vanishing cycle for the Lefschetz fibration $f: M \to S^2$. The bundle isomorphism $\phi'_j: \tau \to \nu$ will be called a normalization of ϕ_j . The pair $\tilde{\phi}_j = (\phi_j, \phi'_j)$ will be called a normalized vanishing cycle. The sequence of normalized vanishing cycles, $(\tilde{\phi}_1, \dots, \tilde{\phi}_{\mu})$ will be called an admissible sequence of normalized vanishing cycles.

Note that the bundle isomorphism $\phi': \tau \to \nu$ preserves or reverses orientations according to the factor $(-1)^{n(n-1)/2}$. Thus, e.g., if X is a real oriented surface, then a normalized vanishing cycle is completely determined by an imbedded circle. If X is an oriented 4 manifold, the "core" of a normalized vanishing cycle is an imbedded S^2 with self intersection -2.

Consider the case where dim M = 4, and therefore X is an oriented surface. A vanishing cycle is then an imbedded circle in X, and the normalization of each vanishing cycle is unique. If

 $f: M \to S^2$ is a Lefschetz fibration, then for a sufficiently large disk $G \subset S^2$, $f^{-1}(G)$ is diffeomorphic to the manifold obtain from $X \times D^2$ by attaching a finite number of 2-handles using attaching maps $\Phi_j: S^1 \times D^2 \to X \times S^1$, $j = 1, \dots, \mu$, where $\Phi_j(S^1 \times 0)$ is an imbedded circle γ_j , in a fiber $X \times c_j$ of $X \times S^1$. Now there is a natural way to trivialize the normal bundle of γ_j in $X \times S^1$ corresponding to the fact that the normal bundle of γ_j in X is trivial, and the normal bundle of X in $X \times S^1$ is trivial. However, our Theorem 1.7 states that the framing $\Phi'_j: \varepsilon^2 \to \nu$ is obtained by identifying the normal bundle of γ_j in X with the tangent bundle τ of γ_j and then using the isomorphism

$$arepsilon^2\cong au\oplusarepsilon$$
 .

If one also pays attention to orientations, it is not hard to see that, relative to the "natural" framing, $\Phi'_{j}: \varepsilon^{2} \to \nu$ has framing -1. In other words, if we identify ν with ε^{2} by the "natural" framing, then $\Phi'_{j}: \varepsilon^{2} \to \nu$ is given by the mapping $S^{1} \to SO(2) \cong S^{1}$ of degree -1. This explains the well known fact (??) in algebraic geometry that relative vanishing cycles have self intersection number -1.

2. Invariants of a Lefschetz fibration. Let $TS^{n}(1)$ denote the closed tangent unit disk bundle to S^{n} . We wish to describe a diffeomorphism

 $\delta: TS^n(1) \longrightarrow TS^n(1)$

such that:

(i) $\hat{\sigma}$ is the identity on the boundary of $TS^n(1)$; and

(ii) δ is the antipodal map on $S^n \subset TS^n(1)$.

Let $(p, v) \in TS^{n}(1)$, where $p \in S^{n}$ and $v \in TS^{n}_{p}$ is a tangent vector of length ≤ 1 . Form the geodesic arc on S^{n} with initial point p, initial velocity v, and length $\pi |v|$, where |v| denotes the length of v. Let q be the end point, and w the terminal velocity of this arc. Then we put $\delta(p, v) = (q^{*}, w^{*})$ where (q^{*}, w^{*}) is the image of (q, w) under the antipodal map.

Now let X be a closed manifold of dimension 2n; let $\phi: S^n \to X$ be an imbedding, and let $\phi': \tau \to \nu$ be a bundle isomorphism where τ is the tangent bundle to S^n , and ν is the normal bundle of S^n in X. By the tubular neighborhood theorem, ϕ' induces a diffeomorphism between $TS^n(1)$ and a tubular neighborhood of $\phi(S^n)$ in X. Thus we can apply δ to a tubular neighborhood of $\phi(S^n)$ in X, and after smoothing near the boundary, we can extend δ by the identity to a diffeomorphism of X which we denote

$$\delta_{\phi,\phi'} \colon X \longrightarrow X$$
.

Note that up to smooth isotopy $\delta_{\phi,\phi'}$ only depends on the smooth isotopy class of the imbedding ϕ and the bundle isomorphism ϕ' .

DEFINITION 2.1. $\delta_{\phi,\phi'}$ is called the Dehn twist of X with center (ϕ, ϕ') .

Notice that if dim X = 2, then $\delta_{\phi,\phi'}$ is the classical right handed Dehn twist, i.e., $\delta_{\phi,\phi'}$ maps the cylinder

to

Now let $f: M \to S^2$ be a Lefschetz fibration with regular fiber X, and let $p \in M$ be a critical point of f. The part of M which lies over the boundary of a small disk about f(p) is then a fiber bundle over S^1 with typical fiber X. It is well known that such a fiber bundle is diffeomorphic to $X \times I/(x, 1) \sim (h(x), 0)$ where $h: X \to X$ is a diffeomorphism which is uniquely defined up to smooth isotopy. h is the geometric monodromy of the fibering $f: M \to S^2$, associated with the critical value f(p). Assume now that p is the only critical point with critical value f(p). Then as in §1, we may construct an imbedding $\phi: S^n \to X$, and normalization $\phi': \tau \to \nu$.

THEOREM 2.1 (cf. [3], page 148). The Dehn twist $\delta_{\phi,\phi'}: X \to X$ is the geometric monodromy of M about f(p).

Proof. This theorem is proved in [3], but we will give another proof which is more consistent with our point of view. Let I =[-1, 1] and fix an imbedding $\iota: I \to S^1$, e.g., $t \mapsto e^{i\iota t}$. Now given a Lefschetz fibration $f: M \to S^2$ with critical value f(p), choose a small circle γ about f(p); then $f^{-1}(\gamma) = Y$ is the manifold obtained from $X \times S^1$ by surgery. The surgery is performed as follows: look at $\phi' \times \iota: TS^n(1) \times I \to X \times S^1$. $TS^n(1) \times I$ may be identified with $S^n \times D^n$ in a standard way (this involves straightening corners). The surgery consists of removing $S^n \times D^n = \phi' \times \iota(TS^n(1) \times I)$ and sewing it back in by the automorphism of the boundary $S^n \times S^n$ given by $(\xi, \eta) \to (\eta, \xi)$. Y is given a differentiable structure by identifying Y with $(X \times S^1 - \phi(S^n) \times \{1\}) \cup D^{n+1} \times S^n$ where $(\xi', \eta') \in (D^{n+1} - 0) \times S^n$ is identified with a point of $X \times S^1 - \phi(S^n) \times \{1\}$ by the following map: first send (ξ', η') to $(\xi, \eta) = (\xi' | \xi' |, |\xi' | \eta') \in S^n \times D^{n+1}$; then send (ξ, η) to $(u, v) \times t \in TS^n(1) \times I$, and finally send this point to $\phi'(u, v) \times$ c(t). We may write

 $Y = (X imes S^{\scriptscriptstyle 1} - \phi(S^{\scriptscriptstyle n}) imes \{1\}) igcup_{{\scriptscriptstyle h}} TS^{\scriptscriptstyle n}(1) imes I$

where $h: TS^n(1) \times I - S^n \times \{0\} \to X \times S^1 - \phi(S^n) \times \{1\}$ is given as follows: if $(u, v) \times t \in TS^n(1) \times I - S^n \times \{0\}$, then $h((u, v), t) = \phi'(u', v') \times \iota(t)$ where (u', v') are given by:

$$egin{aligned} u' &= rac{t}{\sqrt{t^2 + |v|^2}} & u + rac{1}{\sqrt{t^2 + |v|^2}}v \ v' &= rac{|v|^2}{\sqrt{t^2 + |v|^2}} & u - rac{t}{\sqrt{t^2 + |v|^2}}v \end{aligned}$$

Thus the vector $\begin{pmatrix} u'\\v' \end{pmatrix}$ is the product of the vector $\begin{pmatrix} u\\v \end{pmatrix}$ by the matrix:

$$egin{pmatrix} \displaystyle t & 1 \ rac{1}{\sqrt{t^2+|v|^2}} & rac{1}{\sqrt{t^2+|v|^2}} \ rac{|v|^2}{\sqrt{t^2+|v|^2}} & rac{-t}{\sqrt{t^2+|v|^2}} \ \end{pmatrix} = egin{pmatrix} 1 & 0 \ 0 & |v| \end{pmatrix} egin{pmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{pmatrix} egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \ imes egin{pmatrix} & \left(1 & 0 \ 0 & |v|
ight)^2 \ \end{pmatrix} & imes egin{pmatrix} & \left(1 & 0 \ 0 & |v|
ight)^2 \ \end{pmatrix} & imes egin{pmatrix} & \left(1 & 0 \ 0 & |v|
ight)^2 \ \end{pmatrix} \end{pmatrix}$$

where $\theta = \operatorname{arc} \sin t/\sqrt{t^2 + |v|^2}$. These formulae show how the projection $X \times S^1 - \phi(S^n) \times \{1\} \to S^1$ extends to a fibration $f: Y \to S^1$ where f is defined on $TS^n(1) \times I$ by $f((u, v), t) = \iota(t)$.

The mapping $h: TS^n(1) \times I - S^n \times 0 \to TS^n(1) \times I - S^n \times 0$ given by $(u, v, t) \mapsto (u', v', t)$ has the following geometric description: Given $u \in S^n$ and $v \neq 0$, v tangent to S^n at u, define (u', v') so that u' lies on the great circle through u in the direction v and the angle between u and u' is $\theta + \pi/2$. v' is tangent to the great circle, has the same length as v and points backwards towards u. For fixed t, as v approaches $0, \theta = \arccos \sin t/\sqrt{t^2 + |v|^2}$ approaches $\pi/2$ for t > 0 and $-\pi/2$ for t < 0. Thus $h|_{S^n \times |t|}$ is the identity for t < 0 and the antipodal map for t > 0. For |v| = 1, $\theta = \theta(t)$ goes from $-\pi/4$ to $\pi/4$ as t goes from -1 to 1.

Now to calculate the geometric monodromy of $f: Y \to S^1$, we construct a flow on Y. This is accomplished by constructing a smooth map $g: X \times [\varepsilon, 2\pi + \varepsilon] \to Y$ such that $g(x, s) \in f^{-1}(e^{is})$ and $g_s: X \to f^{-1}(e^{is})$ is a diffeomorphism (the flow is $g_*(\partial/\partial s)$). The geometric monodromy is given by $g_{2\pi+\varepsilon} \circ g_{\varepsilon}^{-1}$.

Identifying Y with

$$X imes S^{\scriptscriptstyle 1} - \phi(S^{\scriptscriptstyle n}) imes \{1\}igcup_h TS^{\scriptscriptstyle n}(1) imes I$$

we first define g on $X \times [\varepsilon, 2\pi + \varepsilon] - \phi'(TS^n(1/2)) \times [2\pi - \varepsilon/2, 2\pi + \varepsilon]$ by setting $g(x, s) = (x, e^{is})$. We extend g by a mapping $\tilde{g}: TS^n(1) \times I \to TS^n(1) \times I$ such that on $TS^n(1) \times I - TS^n(1/2) \times [-1/2, 1]h \circ g = \text{id.}$ To construct \tilde{g} , choose a smooth function $\zeta(|v|, t)$ such that: (i) $\zeta(|v|, t) = \theta(|v|, t)$ on $\{t \leq -1/2\} \cup \{|v| \geq 1/2\}$ and (ii) for fixed t, $\zeta(|v|, t) \to -\pi/2$ as $|v| \to 0$. Now define \tilde{g} just as we defined h, but use ζ instead of θ . Specifically,

$$\widetilde{g}((u, v), t) = \begin{cases} ((u, v), t) & \text{if } v = 0 \\ ((u', v'), t) & \text{if } v \neq 0 \end{cases}$$

where u' lies on the great circle through u in the direction v, the angle between u and u' is $\pi/2 + \zeta$, and v' points backwards towards u along this geodesic and has the same length as v.

To calculate the monodromy $g_{2\pi+\varepsilon} \circ g_{\varepsilon}^{-1}$, it is clear that the monodromy is concentrated on $TS^{n}(1) \subset X$, i.e., it is the identity outside of $TS^{n}(1)$. Notice that g_{ε} is defined by the following diagram:

$$egin{aligned} X &= X - S^n igcup_{ ext{ld}} TS^n(1) \ g_arepsilon & igcup_{ ext{ld}} igtup_{ ex$$

where $h_t = h|_{TS^{n}(1) \times t} \cdot g_{2\pi+\varepsilon}$ is defined by:

$$egin{aligned} X &= X - S^n igcup_{\mathrm{id}} TS^n(1) \ g_{2\pi + arepsilon} & igcup_{\mathrm{id}} & igcup_{\mathrm{id}} \ f^{-1}(e^{iarepsilon}) &= X - S^n igcup_{\hbar_1} TS^n(1) \;. \end{aligned}$$

Thus the geometric monodromy $g_{2\pi+\varepsilon} \circ g_{\varepsilon}^{-1}$ is concentrated on $TS^{n}(1) \subset X$ and there it is equal to $\tilde{g}_{1}^{-1} \circ h_{1}$. This mapping sends a point $(u, v) \in TS^{n}(1)$ to (u', v') where u' lies on the great circle through u tangent to v, |v'| = |v|, and the angle between u and u' is $\phi(|v|, 1) - \zeta(|v|, 1)$. This angle is a decreasing function of |v|, equal to π for |v| = 0and equal to 0 for |v| = 1. This map is therefore isotopic to the Dehn twist $\delta_{\phi,\phi'}$.

Let $f: M \to S^{\circ}$ be a normalized Lefschetz fibration with fiber X, and critical values $e^{2\pi i j/\mu}$, $j = 0, 1, \dots, \mu - 1$. Let E denote the subset of the disk of radius $1 + \varepsilon$ obtained by removing the sets $E_j, j = 1, \dots, \mu$ where E_j is described in polar coordinates (r, θ) by:

$$E_j = \{(r,\, heta)| 1-arepsilon < r \leqq 1+arepsilon,\,rac{2\pi j}{\mu} - arepsilon < heta < rac{2\pi j}{\mu} + arepsilon
ight\} \;.$$

Identifying $f^{-1}(E)$ with $X \times E$, one may construct a vector field σ on $f^{-1}\{|z| = 1 + \varepsilon\}$ such that $\sigma = (0, \partial/\partial\theta)$ outside of the E_j , while on E_j the flow along σ maps the fiber over $\theta = 2\pi j/\mu - \varepsilon$ to the fiber over $\theta = 2\pi j/\mu + \varepsilon$ by a Dehn twist δ_j , $j = 1, \dots, \mu$. In particular, if we let X_{θ} denote the fiber over θ , then the flow along σ defines diffeomorphisms,

$$h_{ heta}\colon X_{0} \longrightarrow X_{ heta}$$
 such that,
 $h_{2\pi} = \delta_{\mu} \circ \cdots \circ \delta_{1}$. Since f has no critical

values outside the unit circle, the fibration defined by f may be trivialized over the complement of E. In particular each fiber X_{θ} is then identified with $X = X_0$, and $\theta \to h_{\theta}$ may be regarded as an arc in Diff(X) joining the identity to $\delta_{\mu} \circ \cdots \circ \delta_1$. Any two such trivializations of the fibering f are related by a diffeomorphism

 $D^2 \times X \longrightarrow D^2 \times X$

of the form: $(z, x) \to (z, g_z(x))$. The function $D^2 \to \text{Diff}(X)$ given by $z \to g_z$ gives a homotopy between the arcs $\theta \to h_{\theta}$, corresponding to the two trivializations. Thus the homotopy class of the arc $\theta \to h_{\theta}$ is an invariant of the normalized Lefschetz fibration $f: M \to S^2$.

THEOREM 2.3. The normalized Lefschetz fibration $f: M \rightarrow S^2$ is uniquely determined by:

(1) a sequence of normalized vanishing cycles $(\tilde{\phi}_1, \cdots, \tilde{\phi}_n);$ and

(2) a homotopy class of arcs $\theta \to h_{\theta}$ in Diff(X), where $h_0 = \text{id}_X$ and $h_{2\pi} = \delta_{\mu} \circ \cdots \circ \delta_1$, where $\delta_j = \delta_{\tilde{\varphi}_j}$ is the Dehn twist of X with center $\tilde{\varphi}_j$.

Proof. This theorem is essentially a direct consequence of Theorem 1.7, and our above discussion. More precisely, the manifold M and the fibration f are constructed as follows: starting with $D^2 \times X$, one attaches μ (n + 1)-handles along the centers $\Phi_{j_0}: S^n \to \varepsilon_j \times X$, $\varepsilon_j = e^{2\pi i j/\mu}$, where Φ_{j_0} coincides with $\phi_j: S^n \to X$, and the framing of Φ_{j_0} is given by the prescription of Theorem 1.7. The boundary of the resulting manifold fibers over a circle, with fiber X, and by Theorem 2.1, one may construct a vector field on this boundary whose flow gives rise to the diffeomorphism $\delta_{\mu} \circ \cdots \circ \delta_1$. The smooth arc $\theta \to h_{\theta}$ in Diff(X) joining id_X to $\delta_{\mu} \circ \cdots \circ \delta_1$ is then used to identify the boundary with $S^1 \times X$, and we finally use this identification to close up the manifold by attaching a copy of $D^2 \times X$.

The normalized vanishing cycle $\tilde{\phi}$ was defined (Def. 1.8) as a

100

pair (ϕ, ϕ') where $\phi: S^n \to X$ is an imbedding, and $\phi': \tau_{S^n} \to \nu$ is a bundle isomorphism. ϕ and ϕ' are defined up to smooth isotopy. The distinct bundle isomorphisms $\tau_{S^n} \to \nu$ are classified, up to isotopy, by the group $\pi_n(SO(n))$. Thus for those values of n for which $\pi_n(SO(n)) = 0$, ϕ' is uniquely determined. This is true, in particular, for n = 1 and 2.

Given an admissible sequence $(\tilde{\phi}_1, \dots, \tilde{\phi}_{\mu})$, let M_1 be the manifold with boundary obtained by attaching μ (n + 1)-handles to $D^2 \times X$ as in Theorem 1.7. The distinct homotopy classes of arcs $\theta \to h_{\theta}$ in Diff(X) joining id_x to $\delta_{\mu} \circ \cdots \circ \delta_1$ are classified by $\pi_1(\text{Diff}(X))$. Now a closed loop in Diff(X) gives rise to a fiber preserving diffeomorphism of $S^1 \times X$, and a homotopy class corresponds to an isotopy class of such fiber preserving diffeomorphisms. Let $\{\theta \to h_{\theta}\}, \{\theta \to h'_{\theta}\}$ be two homotopy classes of arcs in Diff(X) joining id_x to $\delta_{\mu} \circ \cdots \circ \delta_1$ and $g: S^1 \times X \to S^1 \times X$ be a diffeomorphism representing their difference. If g can be extended to a fiber preserving diffeomorphism of M_1 , then the Lefschetz fibering, $f: M \to S^2$ associated to h_{θ} is equivalent to the Lefschetz fibration $f': M' \to S^2$ associated to h'_{θ} .

THEOREM 2.4. If X is an oriented surface of genus > 1, then every Lefschetz fibration $f: M \to S^2$ with fiber X is uniquely determined, up to equivalence, by an admissible sequence of vanishing cycles. In case X has genus 1, the theorem is still true provided that $f: M \to S^2$ has at least one vanishing cycle $\phi: S^1 \to X$ which is not homologous to zero.

Proof. It is clear that there is a unique normalization for any vanishing cycle in a surface (cf. the remarks on orientation, following Def. 1.8). The theorem in the case of genus (X) > 1 follows from the fact that Diff(X) is contractible (cf. [4]). The case, genus (X) = 1, follows from results of Moishezon [10] (Lemma 8 on page 179 and Lemma 7 on page 164).

It follows from Theorem 2.4, that to each equation of the form:

$$\delta_n \circ \cdots \circ \delta_1 = \mathbf{1}$$

in the mapping class group of the oriented surface X, where \hat{o}_j is the right-handed Dehn twist of X, centered at some circle γ_j in X, one may associate a 4-manifold M and a normalized Lefschetz fibration $f: M \to S^2$ whose critical values are the μ roots of unity and whose vanishing cycles are $\gamma_1, \gamma_2, \dots, \gamma_{\mu}$. Let $g: S^2 \to S^2$ be an orientation preserving diffeomorphism which leaves invariant the μ roots of unity. Then $f' = g \circ f: M \to S^2$ is a normalized Lefschetz fibration with vanishing cycles $\gamma'_1, \dots, \gamma'_{\mu}$. Following [10], page 180, we will say that the admissible sequence $(\gamma'_1, \dots, \gamma'_{\mu})$ is equivalent to $(\gamma_1, \dots, \gamma_{\mu})$. This relation is generated by the elementary transformations:

 $T_j: (\gamma_1, \cdots, \gamma_{\mu}) \longrightarrow (\gamma'_1, \cdots, \gamma'_{\mu})$

where:

$$egin{aligned} &\gamma'_{j} = \delta_{j}^{-1}(\gamma_{j+1}) \ &\gamma'_{j+1} = \gamma_{j} \ &\gamma'_{k} = \gamma_{k} \quad ext{if} \quad k
eq j, \ j+1 \end{aligned}$$

(here the subscript j is computed modulo μ). The corresponding Dehn twists δ'_k are given by:

$$egin{aligned} &\delta_j' = \delta_j \circ \delta_{j+1} \circ \delta_j^{-1} \ &\delta_{j+1}' = \delta_j \ &\delta_k' = \delta_k & ext{if} \quad k
eq j \quad ext{or} \quad j+1 \;. \end{aligned}$$

EXAMPLE 2.5. Let $X = T^2$ be a surface of genus 1, i.e., a 2-dimensional torus. Let *m* denote a standard meridian circle, and let *l* denote a standard longitude on *X*. Let $(\gamma_1, \dots, \gamma_{\mu})$ be an admissible sequence of imbedded circles on *X*, such that no γ_j is homologous to zero. Then Moishezon has proved (cf. [10]) that $\mu \equiv 0$ (12) and $(\gamma_1, \dots, \gamma_{\mu})$ is equivalent to the sequence (m, l, \dots, m, l) (μ terms).

3. Some open problems. In this section we will discuss several problems on Lefschetz fibrations of 4-manifolds. Such fibrations arise naturally from Lefschetz pencils. Thus let M be an algebraic surface imbedded algebraically in a complex projective space P^{N} . Let H^{N-2} be a generic linear space of codimension 2 in P^{N}_{\cdot} , and let \widetilde{M} be the manifold obtained from M by blowing up the points of $M \cap H^{N-2}$. Then there is a Lefschetz fibration $f: \widetilde{M} \to P^1$ such that $f^{-1}(t) \cong M \cap L_t$, where $L_t \subset \mathbf{P}^N$ is a hyperplane containing H^{N-2} (such hyperplanes are naturally parametrized by P^{1}). For the details of this construction cf [1]. By Theorem 2.4, the differentiable structure of \widetilde{M} together with the Lefschetz fibration is completely determined by an admissible sequence of vanishing cycles. M is obtained from \tilde{M} by blowing down certain exceptional curves. These exceptional curves are holomorphic sections of the fibration $f: \tilde{M} \to \mathbf{P}^1$ with self intersection -1. Moreover if we assume that M is a minimal surface and that M is neither rational nor ruled, then M is obtained from \tilde{M} by blowing down all holomorphic sections of $f: \widetilde{M} \to P^1$ of self intersection -1. We do not know whether every continuous section with self intersection -1 is homotopic to

102

a holomorphic section. This leads to the following problem:

Problem 3.1. Is the differentiable structure of an algebraic surface M (minimal, not rational or ruled) determined by an admissible sequence of vanishing cycles arising from a Lefschetz pencil?

Let $f_1: M_1 \to S^2$ and $f_2: M_2 \to S^2$ be two Lefschetz fibrations whose regular fibers are oriented surfaces of genus g. Choose regular fibers $f_1^{-1}(a) \in M_1$ and $f_2^{-1}(b) \in M_2$, and a diffeomorphism $\alpha: f_1^{-1}(a) \rightarrow \alpha$ $f_2^{-1}(b)$. We may construct a new Lefschetz fibration $f_1 \#_{\alpha} f_2: M_1 \#_{\alpha} M_2 \rightarrow S^2$ as follows: Let $T_1 \cong f_1^{-1}(a) \times D^2$ be a tubular neighborhood of $f_1^{-1}(a)$ in M_1 , and let $T_2 \cong f_2^{-1}(b) imes D^2$ be a tubular neighborhood of $f_2^{-1}(b)$ in M_2 . Then $M_1 \#_{\alpha} M_2$ is the union of M_1 -int (T_1) with M_2 -int (T_2) where we identify the boundaries by the mapping $f_1^{-1}(a) imes S^1 o$ $f_2^{-1}(b) \times S^1$ which sends (x, z) to $(\alpha(x), \overline{z})$. The mapping $f_1 \# f_2$ is defined in an obvious way. $f_1 # f_2: M_1 #_{\alpha} M_{\gamma} \to S^2$ will be called a fiber connected sum of $f_1: M_1 \to S^2$ and $f_2: M_2 \to S^2$. In general $M_1 \#_{\alpha} M_2$ will depend on the diffeomorphism α . It is not hard to see that if $\alpha, \beta: f_1^{-1}(a) \to f_2^{-1}(b)$ are two diffeomorphisms, then $M_1 \#_{\alpha} M_2$ is equivalent (in the sense of Lefschetz fibrations) to $M_1 \#_{\beta} M_2$ if either $\alpha^{-1} \circ \beta: f_1^{-1}(a) \to f_1^{-1}(a)$ is in the image of the (geometric) monodromy group of M_1 , or if $\alpha \circ \beta^{-1}$: $f_2^{-1}(b) \to f_2^{-1}(b)$ is in the image of the (geometric) monodromy group of M_2 .

DEFINITION 3.2. We will say that a Lefschetz fibration $f: M \to S^2$ is irreducible if it is not equivalent to a fiber connected sum $f_1 \sharp f_2: M_1 \sharp_{\alpha} M_2 \to S^2$ where both f_1 and f_2 have at least one critical point. Algebraically, an irreducible Lefschetz fibration with regular fiber X is determined by an equation: $\delta_{\mu} \cdots \delta_1 = 1$ in the mapping class group of X such that $\delta_{\mu} \cdots \delta_1$ is not equivalent (in the sense given at the end of § 2) to $\delta'_{\mu} \cdots \delta'_{\nu+1} \delta'_{\nu} \cdots \delta'_1$ where $\delta'_{\nu} \circ \cdots \circ \delta'_1 = 1$ and $\delta'_{\mu} \circ \cdots \circ \delta'_{\nu+1} = 1$.

Problem 3.3. For a given surface X and integer $\mu > 0$, are there only finitely many (up to equivalence) irreducible Lefschetz fibrations $f: M \to S^2$ with μ vanishing cycles.

REMARK 3.4. The result of Moishezon (Example 2.5) states that if genus X = 1, then there is only one irreducible Lefschetz fibration $f: M \rightarrow S^2$ where the number μ of critical points, is 12. In this case, every element of the mapping class group of X is realized by a geometric monodromy, and therefore every Lefschetz fibration of genus 1 is equivalent to $M \# \cdots \# M$.

If the answer to problem 3.1 is "yes", we would like to use Lefschetz pencils to study the diffeomorphism types of algebraic surfaces. Specifically, let M be an algebraic surface, minimal, not rational or ruled, and let $f: \tilde{M} \to P^1$ be a Lefschetz fibration arising from a Lefschetz pencil on M. We have given a procedure for obtaining a handlebody decomposition of \tilde{M} . We would like to have such a decomposition for M. This could be done if it were possible to rearrange our handlebody decomposition, by sliding handles, so that the sections of $f: \tilde{M} \to P^1$ of self intersection -1 would occur as the cores of 2-handles.

Problem 3.4. Can the handlebody decomposition of $f: \tilde{M} \to P^1$ be altered so as to obtain a handlebody decomposition of M?

References

- 1. A. Andreotti and T. Frankel, The Second Lefschetz Theorem on Hyperplane Section, Global Analysis, Princeton University Press (1969), 1-20.
- 2. A. Douady, Arrondissement des Arrêtes, Sem. H. Cartan, 14 (1961/62), No. 3.
- 3. Deligne and Katz, Groupes de Monodromie en Géométrie Algébrique, Lecture Notes in Math. 340, Springer-Verlag.

4. C. J. Earle and J. Eells, The diffeomorphism group of a compact Riemann surface, Bull. Amer. Math. Soc., 73 No. 4 (1967), 557-560.

5. Harer, Kas and Kirby to appear.

6. R. Mandelbaum and B. Moishezon, On the Topological Structure of Non-Singular Algebraic Surfaces in CP³, Topology, **15** (1976), 23-40.

7. R. Mandelbaum, Special handlebody decompositions of simply connected algebraic surfaces, to appear.

8. J. Milnor, Morse theory, Annals of Math., 51, Princeton Univ. Press, (1963).

9. ____, Lectures on the h-cobordism theorem, Princeton Mathematical Notes, (1965).

10. B. Moishezon, Complex Surfaces and Connected Sums of Complex Projective Planes, Lecture Notes in Math., 603 Springer-Verlag.

11. S. Smale, Generalized Poincaré's conjecture in dimensions greater than Four, Ann. of Math., 74 No. 2 (1961).

Received November 1, 1978. During the preparation of this work, the author was partly supported by N.S.F., Grant MCS77-05583.

OREGON STATE UNIVERSITY CORVALLIS, OR 97331