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LOCAL A SETS FOR PROFINITE GROUPS

M. F. HUTCHINSON

Let E be a subset of the dual ό of a profinite group
G. It is shown that if E is a local A set then the degrees
of the elements of E must be bounded. It follows that G
contains an infinite Sidon set if and only if G has infinite-
ly many elements of the same degree. This characterisa-
tion is the same as one previously obtained for compact
Lie groups.

Preliminaries. Let G be a compact group with normalized
Haar measure λβ. For p e [ l , <*>[ the Banach space of pth power
integrable complex-valued functions on G is denoted (LP(G), || | |p).
The dual object G of G is taken to be a maximal set of pairwise
inequivalent continuous irreducible unitary representations of G.
For each σeG let da be the degree or dimension of the representa-
tion space of σ and let Xσ denote its trace. The Fourier transform
of / 6 L\G) is the matrix-valued function f on G defined by

- ( f(x)σ(x~ί)dXG(x) (σeG).
JG

If E is a subset of G let SE(G) denote the set of all trigono-
metric polynomials on G whose Fourier transforms are supported
by just one element of E. For p e ]1, °o [ call E a local Λp set if
there exists a positive constant K such that

il/iίp ^ *II/Hi

for all feSE(G). Call E a local central Λp set if there exists a
positive constant K such that

for all σeE. Further, E is a local A set if there exists a positive
constant K such that

\\f\\p<:κp^\\f\\2

for all feSE(G) and all pe]2, co[. A local Λ set is local Λp for
every p e ] l , oo[. See §37 of [4] for a general introduction to the
theory of lacunary sets.

If G is profinite and {Na}aeA is a neighborhood base at the
identity consisting of open normal subgroups of G then each σeG
has kernel containing some Na by Lemma (28.17) of [4]. Thus we
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may write

G = U (G/NX
aeA

if we identify a representation of a quotient of G with a represen-
tation of G. We say G is tall if for each positive integer n there
are only finitely many elements of G of degree n. Structural char-
acterisations of tall profinite groups are given in [7], We will show
that a profinite group G admits an infinite (local) Sidon set if and
only if G is not tall.

The main theorem*

LEMMA 1. Let H be an open subgroup of a compact group G
having index [G: H] = t and let {xx = 1, x2f , xt) be a set of left
coset representatives for H. Then we have

(1) \ Λx)dXG(x) = ί ^ Σ Ϊ f(xth)d\H(h)
JG ι=l J//

for every continuous complex-valued function f on G.

Proof. It is easily verified that the right hand side of (1) de-
fines a positive left invariant normalized measure on G.

LEMMA 2. Let G and H be as in Lemma 1. If σeG and
\Xσ(h)\ — da for all heH then

for all p e [1, <*>[.

Proof. By Lemma 1 we have

^tA \lσ{h)\pdXH{h)

= t-w,

from which the lemma follows at once.

LEMMA 3. Let G and H be as in Lemma 1 and let f be a
continuous complex-valued function on G which vanishes outside H.
Define a continuous function g on H by setting g{h) = f(h) for all
heH. Then for p e [1, oo[ we have
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Proof. This follows immediately from Lemma 1.

LEMMA 4. Let G be a compact group and let E c G be a Λp set
for some p e ] l , oo[. Suppose that for each σeE there is an open
subgroup Ha of G of index ta and a representation τ e Hσ such that
σ is equivalent to the induced representation τG. Then we have

sup{£σ: σ e E) < °o .

Proof. For each σ e E define a continuous function fσ on G by
setting

(X(z) for xeHσ
MX)~ (0 for xeG-Ha.

Now for each p eG we have

υelίσ

where np(υ) denotes the multiplicity of υ in the representation of
Ha obtained by restricting the domain of p. Since we have

by Lemma 1, the orthogonality relations for Ha then show that
fo{p) vanishes for all p e G for which nP(τ) = 0. By Frobenius re-
ciprocity, these are all p except σ = τσ and so we have that fσ e SE(G).
Using Lemma 3 and a standard inequality for Lp spaces (see (13.17)
of [5]) we have

II f II „ f-l'P II 7 II
\\J a lip — Lσ II Λ r | | j >

Now if E is a local Λp set then there is a positive constant K such
that

l! for all σeE

so the above calculation shows that

t]r1/p ^ ιc for all σeE

and this can only happen if

snp{tσ: σeE} < °o .

LEMMA 5. (Jordan, Blichfeldt). Let G be a finite complex linear
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group of degree n. Then G has an abelian normal subgroup A
such that

[G: A] <

Proof. See p. 177 of [3] and observe that

where π(m) denotes the number of primes not exceeding m.

THEOREM. Let G be a pro finite group and let EaG be a local
A set. Then we have

sup{dσ: σ eE) < oo ,

Proof. For each σeE we may apply Lemma 5 to the finite
group G/ker σ to obtain an open normal subgroup Aa of G such that
Aa Z) ker σ, Aσ/ker σ is abelian and

[G:Aσ]<&</loed<> .

By Clifford's theorem (see §14 of [3]), for each a there is an ir-
reducible 1-dimensional representation ζσ of Aσ and positive integers
ea and ta such that

where {xλ = 1, x2f , xtσ} is a set of left coset representatives of
the inertia group Sσ given by

Sa = {x 6 G: S - ζσ}

with [G: Sσ] = ta. Also for each σeE we have G ~τ1 where τσ is
an irreducible representation of Sσ satisfying τσ\Aa = eσ ζσ. Since E
is local Ap for every p e ] l , oo[y we have by Lemma 4 that

5 = {suVtσ:σeE} < ^ .

Also, since ξσ is 1-dimensional, we have for all x e Aa that

Thus, applying Lemma 2, we get for pe]l, oo[ that

Now define a continuous function fa on G by setting
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lAx) for xeSσ

JσK } (0 for

Arguing precisely as in the proof of Lemma 4 we have that fo e
SE(G) and, by Lemma 3, we have for pe[2f oo[ that

( 2 ) \\fχ = tϊ*-^\\χΐσ\\p^\\χTσ\\p.

In particular, we have

Taking p = 4cẐ /log dσ and observing that

dσ = tσdTσ^B d

we have from (1) and (2) that

Now, since E is local A, there is a constant K such that for each
σeE and all p e]2, oo[ we have

Again taking p = idl/log dσ, we then see that

dσ/6B ^ ιc(Ui/log dσ)
vt

and so we have

log dσ ^ lUB2fc2 for all σ e E .

It follows that

sup{ώσ: σ eE} < oo .

COROLLARY. Let G be a pro finite group. The following state-
ments are equivalent:

( i ) G is tall;
(ii) G contains no infinite local A sets;
(iii) G contains no infinite local Sidon sets;
(iv) G contains no infinite Sidon sets.

Proof. The implication (i) => (ii) follows immediately from the
theorem while the implications (ii) => (iii) and (iii) => (iv) are well
known (see § 37 of [4]). Finally, the implication (iv) => (i) is con-
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tained in Corollary 2.5 of [6].

Complements* A result similar to ours for compact Lie groups
may be found in Cecchini [1]. An immediate consequence of our
theorem is that if the dual G of a profinite group G is a local A
set then the degrees of the elements of G must be bounded. Parker
[11] has proved the same conclusion under the weaker assumption
that G is a local central A4 set. If we restrict G to be a pro-nil-
potent group (i.e., a protective limit of finite nilpotent groups) then
a good deal more can be said with the aid of the following lemma.

LEMMA. Let G be a finite nilpotent group and let σ e G. Then
we have

Proof. We show by induction on dσ that the tensor product
representation σ (x) σ splits into more than log dσ irreducible compo-
nents (not necessarily pairwise inequivalent). The assertion of the
lemma then follows immediately. The lemma clearly holds when
dσ — 1. Now suppose that dσ > 1. By Corollary 15.6 of [3] there is
a 1-dimensional representation p of a subgroup H of G such that
σ = pG. Let M be a maximal subgroup of G containing H. Then
M is normal in G with prime index q and τ — pM is an irreducible
representation of M satisfying σ ^ τG: Let {xλ = 1, x2, , xq} be a
set of coset representations for M. By Mackey's tensor product
theorem (see Theorem 44.3 of [2]) we have

σ 6δ σ = τG ® τG

By induction τ ®τ, and therefore (τ (x) τ)G, splits into more than
log dτ components. Thus, if m is the number of irreducible compo-
nents of σ(x)σ counted according to multiplicity, then

m > log dT + q — 1

> log dτ + log q

= log dσ .

PROPOSITION. Let G be a pro-nilpotent group and let EaG be
either a local central A± set for a local Λp set or some pe] l , c>o[.
Then we have

suj){dσ: ( J G £ ' } < OO .
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Proof. By our opening remarks every continuous irreducible
representation of G is essentially a representation of a finite nil-
potent quotient of G. Thus, if E is a local central A± set, then the
preceding lemma shows that sup{c£σ: a eE} is finite. If E is a local
Λp set then, since each σeG is induced from a 1-dimensional re-
presentation of an open subgroup of index dσ, Lemma 4 shows that
sup{c£σ: σeE} is finite.

EXAMPLE. Let G = Πϊ=6 -A* where for each n An is the alter-
nating group on n letters. By Theorem 2.5 of [7] G is tall so G
contains no infinite local A sets by our theorem. However G does
contain an infinite local central Λ4 set. For each An has an ir-
reducible representation σn of degree n — 1 obtained by restricting
to An the irreducible representation of Sn (the symmetric group on
n letters) afforded by the partition [n — 1, 1] of n. From p. 766 of
[9] we have that σn (x) σn splits into 4 irreducible components. Thus,
if πn is the projection of G onto An, then E = {σn°πn: n = 6, 7, •}
is an infinite local central A4 set for G. In addition, Corollary 4.2
of [10] shows that E is a central Sidon set. Thus G is a profinite
group which admits infinite central Sidon sets but no infinite Sidon
set. In view of Theorem 9 of [13] and §§ 3, 4 of [6] it is unlikely
that such examples exist when G is connected.

The results of this paper appear in [8]. The author is indebted
to his supervisor Dr. J. R. McMullen for his many suggestions and
encouragement.
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