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In this paper, topological techniques are used to estab-
lish existence results for some boundary value problems arising
in diffusion theory. Questions of uniqueness are also treated.
Our topological arguments are based on the topological trans-
versality theorem rather than the Leray-Schauder theory. An
important feature of our approach is that some of the results
obtained cannot be deduced by a direct application of the
latter theory. Further applications of topological transversal-
ity to diflFerential equations will be given in forthcoming parts
of the paper.

O* Introduction* In this paper, we treat questions of existence
and uniqueness for the solutions to certain systems of differential
equations each of which models a steady state, one dimensional
diffusion process. Conservation of mass considerations lead to the
following system of differential equations for the unknow concen-
tration C = C(x) of the diffusing substance and the velocity v — v(x)
of the diffusing medium (see [1]):

-(£>(*, C{x))C'(x))' + (v(x)C(x))' = f(x, C{x), C'(x)), 0 g x ^ 1 ,

-D(0, C(O))C'(O) + v0C(Q) = L, C(l) = <?! ,

«'(*) - -J(x, C(x)) ,
«(0) = ^0

Here D(x, C) is the diffusion coefficient which we suppose to be
continuously differentiate and to satisfy,

(1) 0 < ε ^ D(x, C) on [0, 1] x [0, oo) .

Also, cu v0, L are given constants with ct, L ^ 0, and the source
term /(#, C, C) is continuous and satisfies,

(0 ̂  f{x, C, C')^A + B{\C\° + |CT) ,
(2)

(on [0, 1] x [0, oo) x (
where A, B ^ 0, 0 ^ a < 1. Also,

= max|A(*)l
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for any h in C[0, 1], Finally, we assume that J(x, C) is continuous
and satisfies:

( 3 )

for each x in [0,1], J(x, C) is nonincreasing for C in [0, °o)

and, \J(x,C)\ ^ A, + B^C^

on [0,1] x [0, oo) for some β ^ 0 and a + β < 1 .

It is clear on physical grounds that {0*) should have a positive
solution. We shall prove: If the diffusion process satisfies (1), (2)
and (3), then {0*) has at least one positive solution. Furthermore,
if / is independent of C and fc ^ 0, the system (&*) has a unique
solution.

A specialization of problem {0*) was treated in [6]; namely,
the case D constant, v0 = L = 0, and / = /(#) independent of C and
C". Part of our existence argument follows the approach in [6].
Uniqueness for the special case of (0*) noted above is also esta-
blished in [6]; the analysis there uses an abstract uniqueness theorem
based on the Schauder fixed point theorem. Our uniqueness analysis
is different.

Our existence argument uses topological transversality (Perti-
nent results are summarized in § 1.) For this purpose, we establish
a priori bounds on all possible solutions (C, v) to (^*) and to a
related one parameter family of problems (&λ) introduced in § 2.
The sublinear growth restrictions on / and / are crucial for this—
see the example in § 5. On the other hand, the remaining assump-
tions on D(x, C), f(x, C, C), and J(x, C) are dictated by the physi-
cal situation.

In § 6, we consider a variant of problem (^*) and establish
existence results under much weaker growth rate restrictions on /
and J. On the other hand, / and J are assumed to satisfy certain
inequalities whose physical significance is only partially clear.
However, there are reasonable choices for / and J which do satisfy
these restrictions; for instance, see [7].

We will use the following notation. For each u 6 Cx[0, 1] define,
H^Hi = max([[tt||, lltt'H), where [[w[| = max{[iφ)|: 0 ^ x ^ 1}. Also,
K1 will denote the cone of nonnegative functions in C^O, 1] and Kh
the functions in K1 with \\u\\, <i R.

1* Topological preliminaries• We begin with a brief review
of the topological results to be used throughout this paper. For
further details see [2] and [3]. Let C be a convex subset of a
Banach space E, X a metric space, and F: X~+C a continuous map.
We say that F is compact if F(X) is contained in a compact subset
of C F :is completely continuous if it maps bounded subsets in X
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into compact subsets of C. A homotopy {Ht: X-+ CJo^j is said to
be compact provided the map H: X x [0,1] -* C given by H{x, t) =
Ht(x) for (as, ί) in X x [0, 1] is compact.

Let UaC be open in C. A compact map F: U~*C is called
admissible if it is fixed point free on the boundary, dΐl, of £/\ The
set of all such maps will be denoted by J3Zlπ(Ό, C).

DEFINITION 1.1. A map F in *9Γdu(U, C) is inessential if there
is a fixed point free compact map G: U-+C such that G\dU=F\dU.
A map F is .stlu(U9 C) which is not inessential is called essential.

THEOREM 1.2. Let p be an arbitrary point in U and F be in
<'-%'Ίιυ(U9 C) be the constant map Fix) — p for x in U. Then F is
essential.

Theorem 1.2 is an elementary consequence of the Schauder fixed
point theorem.

DEFINITION 1.3. Two maps F and G in J%Γ9U(Ό, C) are called
homotopic (F ~ G) if there is a compact homotopy Ht: U-^C for
which F — Ho, G — Hlf and Ht is admissible for each t in [0, 1].

The following simple characterization of inessential maps is
important.

LEMMA 1.4. A map F in J%Γdu(U, C) is inessential if and only
if it is homotopic to a fixed point free map.

Proof. If F is inessential and G is a fixed point free map such
that F\dU = G\dU, then a compact homotopy joining F and G is
given by Ht{x) = tF(x) + (1 - t)G(x).

Suppose Ho: U—>C is a fixed point free map and that Ht: U-+C
is an admissible homotopy joining HQ to F. We will show that
each Ht (and in particular Hx — F) is an inessential map. To this
end, consider the map H: U x [0, 1] —> C and define a set B a Ό by
the condition B — {xe U: H{x, t) = x for some t in [0, 1]}. Assuming
without loss of generality that B is nonempty, note that B is closed
and disjoint from dΐl. Take an Urysohn function λ: Ό —> [0, 1] with
λ(α) = 1 for aedU and λ(&) = 0 for beB and put Ht*(x) = H(x, X(x)t)
for (x, t)e U x [0, 1]. It is now easily seen that {H*: U-^C}0^tsl is
a fixed point free compact homotopy such that Ht*\3U = Ht\dU for
each £ 6 [0,1]. Consequently, each Ht is inessential and the proof
is complete.

As a consequence of Lemma 1.4 we have,
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THEOREM 1.5. Let F and G be in .βfdu(U, C) be homotopic
maps, F ~ G. Then one of these maps is essential iff the other is.

2* Existence* Integration of the first equation in ( ^ ) yields,

- D(x, C)C + v{x)C - L = [f(τ, C(r), C\τ))dτ .
Jo

If

- < • ' =

we obtain,

T βm(x) Λm(a;) Cx

Je ^ Λ f(τ, C(τ), C\z))dτ .D(x,C) D(x,C)lo

A further integration from # to 1 yields,

C(x) = cLe-w(x)

( Λ\ f1 s,rn{t)-m{x) ( Ct \
+ n^ ry^ L + f(τ' C(τ)' C ' ^ d τ \ d t

J*JJ(t, U(t)) y Jo )

We define an operator T: K1-^ K1 by

(ΓC)(αO - cj-^

Evidently, ϊ7 maps JΓ1 into its interior if cΣ + L > 0 so any fixed
points are strictly positive. Assume momentarily that ct + L > 0.

A priori bounds in K1 on positive fixed points C of Γ are
obtained: First, for ί ^ x,

m(t) - mix) =
D{z, C(z))

i* D(z, C{z))

^ max |-v 0 + [j(τ, 0)dτ\\t dz

"[0,11 ( Jo ) J D(Z, C(Z))

So, by (1),

m(t) - m(x) ^ G(ί - x)
for a fixed constant G. Since m(l) = 0, use of this result in (4)
together with (1) and (2) yields,
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( 5 )

for constants Gt and G9 independent of C in K1. Below G2, Gif

also denote constants independent of C in K1. Since,

C'{x) = ^ ^ L - —^—{L + [f(τ, C(τ), C'(τ))dr\
D(x, C(x)) D(x, C(x)) I Jo )

we find,

(6) HC'll £ I N I I | C | 1 + -±-{G$ +
£ S

for positive constants GZf G4. Now,

|i;(α?)| ^ \vQ\ + \°" \J(τ, C{τ))\dτ ^ G5

Jo

for positive constants G6, Ge by (3). So,

( 7 ) IMl2*G. + G. | |C| |>.

Use of (5) and (7) in (6) yields,

(8) HC'll ^ G7 + GsdlCII* + IIC'IΠ +

for positive constants G7, Gs, • , Gn. If p, q > 1 and 1/p + 1/q — 1,
we have,

( 9 ) HC'I
V

Fix p such that

which is possible because a + β < 1. Let 1/g = 1 — 1/p. Then one
easily checks that βq < 1 and consequently in view of (8) and (9)
there is a constant 7, 0 < 7 < 1, such that

(10) I I C ' I I ^ G L + ^ d l C I I ^ + H C ' I I O .

It follows easily from (5) and (10) that there is an R > 0 such
that

(11) T(C) = C implies \\C\\, < R .

Now consider the family of problems
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+ (Xv(x)C)' = xf(x, C(x), C\x)) ,

D(0, C(O))C'(O) + XvoC(O) = λ L , C(l) - λcx ,

*'(*) = - J(x, C(x)) ,

v(0) = λv0 ,

for 0 :S λ 5g 1. Since this family of problems arises from {&) by
replacing v by λv, / by Xf, v0 by λv0, L by XL and cx by Xclf one
sees at once that solutions to (.^) satisfy (4) with m replaced by
λm, L by λL, Cx by XcL and / by Xf. After these replacements are
made, the right side of (4) defines an operator,

Tλ:K
ι >K\

for which,

(12) Tλ(C) = C implies \\C\l < R ,

with the same constant R which appears in (11).
We now regard Tλ: Kk —• K\ This map is fixed point free on

Ijsclli = 22 and T(x, X) = Tλx: Kk x [0, 1] -> Kι is a compact homotopy.
(It is easy to check that ||T;ι(C)"|| is bounded independent of X for
C in a bounded set in JSΓ1.) Since To is the zero map, which is
essential, the Topological Transversality Theorem 1.5 implies that
Tx — T is essential. Consequently, T has a fixed point, i.e., {0s)
has a solution.

This proves the following theorem when cx + L > 0.

THEOREM 2.1. Assume (1), (2), and (3) fcoZd. 27&ew the system
{0*) has at least one nonnegative solution, which is strictly positive
if cL + L > 0.

As a corollary of the proof, we note the following result essen-
tially obtained in [6] for a specialization of {0*).

THEOREM 2.2. Assume that (1) holds, that f is independent of
C and C (i.e., (2) holds with a = 0), and that J{x, C) is nonincreas-
ing in C for each x. Then {0*) has at least one solution.

Proof. The bound (5) above reduces to | |C|!<£(?!. For such
C, we easily find that

Ii7(α?)I £\vo\ + max \J(x,C)\
[0 l]x[0 GL\

and hence that (7) holds with β = 0. Then | |C ' | | ^ G' follows for
some Gf <°o. The proof is concluded as above.
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To remove the additional restriction on clf L ^ 0 that cx + L>0
made above, we reason as follows. If Cn is a solution to (&) with
cx = 1/n and L = 0, say, then using the estimates above it follows
easily that || Cn\\1 ̂  M <oo for a fixed constant M. A compactness
argument now yields a solution to (^*) when cx = L = 0. Thus,
Theorem 2.1 is established.

3* Uniqueness. The following uniqueness result holds for
The notation used in § 2 is maintained. Recall that any solutions
to {0*) must be nonnegative.

THEOREM 3.1. Assume that (1) holds, that f = f(x, C) is inde-
pendent of C", and that both f(x, C) and J{x, C) are continuously
differentiate and nonincreasing with respect to C. Then (0*) has
at most one solution.

Proof. Suppose that (Cif vt) for i — 1, 2 are two solution pairs
to ( ^ ) . Then,

-D(x, C<)Cl + vfl< = [f(t, Ct(t))dt + L .
Jo

Thus,

-D{x, CdCl + D(x, C2)Cί + vA - v2C2 = [[f(t, Q - f{t, Q ] dt
Jo

or

~D(x, C^IC - C2]
f - [D(x, d) - D(x, C2)]Q + v^C, - C2)

where pit) is a bounded function determined by the mean-value
theorem. Also,

(14) D{x, CM) - D{%, (?,(*)) = Dc(x, φ(x))[CM - CM] ,

and,

Vl(x) - vM = -\'[J(ί, Cm - J(t, C2(t))] dt

I
= - \Jc(t, ΨitWAt) - CM] dt,

Jo

where φ(x) and ψ(t) are bounded functions determined by the mean-
value theorem.

Define,
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Δ(x) = C&) - C2(x) .

Then (13), (14), and (15) give,

—D(x, CJΔ' - Dc(x, φ{x))ClΔ + vtΔ = cX* Jc{t, ψ(t))Δ(t) dt
Jo

+ [fc(t, p(t))J(t) dt ,
Jo

or,

(16) Δf + h{x)Δ - k(x)[Zp(t)Δ(t) dt + l(x) [*q(t)Δ(t) dt
Jo Jo

where

( 1 7 ) h(χ) = Cl(x)Dc(x, φ(x)) - vM ^
D(x, C^x))

is bounded,

because C2(x) ^ 0,

p(x) = —Jc(x, f(x)) ^ 0 ,

and,

Q(β) = - / c ( ^ , /o(a?)) ^ 0 .

We will show that (16) together with Δ(ϊ) = 0 implies that
J = 0 which proves uniqueness. Observe first that (14) and (17)
show that h(x) is continuous on any interval on which ΔΦO. Suppose
Δ(0) Φ 0. Then we may assume Δ(0) > 0 and since Δ(l) = 0,

a?0 = inf {xe[0, 1]:

is defined. Clearly, 0 < xQ ^ 1, Δ(x0) = 0, and Δ > 0 on [0, α?0). Let,

/£(α?) = exp(\"h(f) d t ) > 0 .

Then,

(μ(x)ΔY = M«)[*(») 50

βί>(*)^(*) dt + Z(a?) ^q(t)Δ(t) d t ] ,

and integration from x to α?0 gives,
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-μ{x)Δ(x) =

] dt ̂  0 .(u)Δ(u) du

So Δ(x) ̂ 0 on [0, xo)f a contradiction. Thus, Δ(0) = 0 must hold.
Since Δ(0) = 0, (16) yields,

\J(x)\ = (V(ί)
Jo

dt

^ ("l λ(ί) I I J(t) I dt + Γifc(ί)Γp(tf) IΔ(σ) I ώσ dt
Jo Jo Jo

+ [Zl(t)[tq(σ)\J(σ)\dσdt .
Jo Jo

Interchange the order of integration in the last two integrals, and
use the boundedness of h, k, p, and q to obtain,

(18) \ J ( x ) \ ^

for a fixed constant B < oo.
A standard induction argument using (18) shows that,

for n = 1, 2, and α? in [0, 1], Thus, Δ(x) = 0, and uniqueness is
established.

4* Related results* Consider {0*) when f(x9 C, Cf) satisfies,

(19) 0£f(x,C, Cr)SA

on [0,1] x [0, oo) x (—ooy DO) for some constants A, B ;> 0. Thus,
we allow linear rather than sublinear growth in C. We assume
that the difussion coefficient satisfies (1) and that,

(20) J(x9 C) is continuous on [0,1] x [0, <>o) and nonincreasing in C.

Let,

(21) M = max ί-v0 + (V(r, 0)dτ\ ,
26[o,il I Jo )

and

(22) linf^OifMδO,
v P (supZ?(x, C) if M<0 .

Then m(ί) — m(x) ̂  Jlί(ί — *)/^ from the formulas preceding (5).
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Use of this inequality in (4) and some routine calculations lead to
| |C| | <; G, + G2\\C\\, where G1 is a positive constant and,

S I oM(t-x)/μ

~ ίdt
x e

or

(23) V +

If G2 < 1, then,

(24)

is an apriori bound for fixed points of T defined as in § 2. Arguing
as in the proof of Theorem 2.2, it follows that,

(25) | | C r | | ^ G ' < ° o .

Likewise, if TX:K-+K (with Tλ defined as in §2), then (24) and
(25) are also a priori bounds for fixed points of Tλ for 0 ^ λ ^ 1.
Thus, we conclude, as in § 2, that T must have a fixed point.

THEOREM 4.1. Assume (19) and (20) hold and that,

M

has at least one nonnegatίve solution.

We further specialize to the case when D = D(x) is independent
of C and J(x, C(x)) = J(x) is independent of C. In this situation,
the estimates above show that,

(TC)(aO = c1β-w(x)

i — Γ — L + /(r, C(τ), C'(τ))dτ dt ,

satisfies,

II Γ(CX) - T(C2)1| ^ G 2 | | C t - C2H ,

with G2 given by (23). Use of Banach's fixed point theorem gives,

THEOREM 4.2. Assume that D and J are both independent of
C and that (19) and (26) hold. Then (0>) has a unique nonnega-
tive solution.

Remark. In (26) if M<0 and μ = swpD(xf C)= + °o, we interpret
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the left side to be J3/2ε, its limiting value as μ --» °°.

5* Comments on existence and uniqueness* The uniqueness
result established in § 3 is sharp in the sense that uniqueness need
not hold if / depends on C or if fc S 0 fails. To see this consider,

C" + C = XC ,

0 C(l) = c l f
(27) *'(*) = o

t>(0) = 1 ,

where λ is a parameter. (Thus, D = 1, Vo = 1, J Ξ O in (^).) If
Ci = 0 the resulting eigenvalue problem from C has only positive
eigenvolues. Let λ = λx be the first eigenvalue of this eigenvalue
problem and let yx be a corresponding eigenfunction. Then (27)
with c, = 0 has all multiples of yx as solutions. Note here that
f(x, C) = λjC satisfies /<? > 0.

On the other hand, if λ <£ 0 (27) has at most one solution
regardless of the choice of cx. Finally, Theorem 4.2 applies with
B = λ, Λf = — 1, and ε = μ = 1 to guarantee that (27) has a unique
solution for

0 ^ λ < 2/(e - 2) .

To obtain nonuniqueness when / depends on C set f(x, C, C') =
λjC — C, ô — 0, and specify the other parameters as above. Then

V(X) ΞΞ 0 ,

and nonuniqueness holds as above.
Consideration of the eigenvalue problem above shows that in

general a priori bounds cannot be obtained for solutions to (^*)
when f(x, C, C") grows linearly in C and C", as opposed to the
sublinear growth imposed in § 1. Thus, with the hypotheses of
Theorem 2.1 general topological existence theorems requiring a
priori bounds cannot be used to establish existence for a problem
whose source's growth in C and C" is greater than sublinear. Such
methods do apply in certain cases as indicated in § 4.

On the other hand, existence of solutions can be established for
sources f(x, C, C) which exhibit highly nonlinear growth in C and
up to quadradic growth in C" provided f(x, C, C") has certain addi-
tional properties. Some results of this kind are given in the next



64 A. GRANAS, R. B. GUENTHER AND J. W. LEE

section. Related results may be found in [7] for the case of
Dirichlet boundary conditions when / = f(x, C) is independent of
C and f(x, C) and J(x9 C) are assumed suitably smooth.

6* Further existence results* Consider the following variant
of ( ^ ) :

-(D(x)C\x)Y + (v(x)C(x)Y = f(x, C(x), C\x)\ 0 £ x ^ 1 ,

αC(0) - βC'(0) = Lo, aC(X) + &C'(1) - Lx ,
[ v'(x) = -J{χ, C{x)) ,

v(Q) = v0 .

Here α, β, a, b, LOt Lλ ;> 0, α, α > 0, and v0 are given constants. We
assume D(x) > 0, /(a;, C, C), and J(aj, C) are continuous on [0,1],
[0,1] x [0, oo) x (— oo, oo), and [0,1] x [0, oo), respectively. Assume
also that,

( i ) ' There is a constant M ^ 0 such that, f(x, C, 0)+CJ(α, C)<i
0 f or C ^ M;

(ii)' There are nonnegative functions A(x, C) and B(x,C),
which are bounded on bounded sets, for which,

\f(x, C, CO I rg A(x, C)C'2 + B(x, C) ,

for (a?, C, C) in [0,1] x [0, oo) x ( - oo, oo);
(iii)' /(a?, 0, 0) ^ 0 on [0, 1].

THEOREM 6.1. Assume that (i)', (ii)', (iii)' hold. Then (&>') has
at least one nonnegative solution. This solution is strictly positive
if LQ, Lλ > 0 and strict inequality holds in the conditions (i)' and
(iϋ)'.

The proof will be given in several lemmas. If (C, v) solves
')f then a short calculation shows that C solves,

(28) C'-gfβ, C,O
αC(0) - βC'iϋ) = Lo, aC(l) + bC'(l) = L,

where

g(χ, C, C)

f(x, C, C) + (D'(x) -vo+ (V(ί, C(ί)) dt)C + CJ(ar, C)
JOO

D(x)

Conversely, if C solves (28) and v is defined as in (&*'), then (C, v)
solves
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We will derive a priori bounds for the family of problems,

C" = Xg(x, C, CO ,

" aC(Q) - βC\0) = L09 aC(l) + bC'(l) = L, ,

for λ in [0, 1] and C(x) ^ 0.
We extend the definitions of / and J to include C < 0 and

preserve (i)', (ii)', and (iii)' by setting f(x, C, C") == f(x, \C\, C ) and
j(xy C) = J(x, \C\) for C < 0. Also assume for the moment that
f(x, C, 0) + CJ(α, C)< 0 in (i)', that /(α?, 0, 0) > 0 in (iii)', and that
LQ, Lλ > 0.

LEMMA 6.2. // C(x) ^ 0 solves (28);

0 < C(x) ^ max (L0/α, L2/α, M) = Mo .

Proof. If λ = 0, the result is easily checked (see (29) below).
If C(x) achieves its maximum at x = 0, then C"(0) <̂  0 and so C(0)<£
L0/α from the boundary data. Likewise, if C(») achieves its maxi-
mum at x — 1, then C(l) ^ LJa. If α?0 is an interior maximum,
then,

0 ^ C"(x0) = flr(ajf C(a?0), 0)

C(xo)y 0) + C(xp) J(X0, C(X0))

which implies that C(x0) ^ M by (i)'. Consequently, C(fic) ^ Λfo If
C(a?0) = 0 for some xQ in (0, 1), then C has a minimum at #0 and so,

o ^ C"(a 0 ) =-flr(»o, o, o) - -
D(x0)

by the strengthened form of (i)', a contradiction. Thus, C(x)>0 on
(0,1). This fact and the boundary data imply that C(0) and C(l)
are positive.

LEMMA 6.3. // C(x) ^ 0 is a solution of (28);, then

\C\x)\ ^ max (2ikΓ0, ^

where A1 = sup-A^a?, C) α^d j B ^ s u p ί ? ^ , C) over [0, 1] x [—Mo, MQ].
Here Ax(xfC) and Bx{xyC) are functions which bound \g(x,CfC

f)\
just as \f(x, C, Cf)\ is bounded in (ii)'. [Since (ii)' holds it is clear
that such functions exist.]

Proof. Since 0 ^ C(x) ^ Mo, the mean-value theorem implies
that |C'0B)| cannot be constantly greater than 2M0. So — 2M0 ^
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C'(x0) ^ 2M0 for some x0 in [0,1]. Now the reasoning used in [3,
Lemma 3.1] yields the bound for \C'(x)\ stated above.

Use of (6.2) and (6.3) in (28); establishes,

LEMMA 6.4. There is a constant M2 such that,

for any solution C(x) ;> 0 to (28)λ.

Define C& to be the convex subset of functions in C2 which
satisfy the boundary conditions & in (28). Define M = 1 + max
(-Mo, Mίf M2),

KX) <^ m, ]y \ot \y jo \ ML) t

L: C2 -> C2 and F: C1 -> C by

Ly(#) = 2/"(»), (Fw)(α?) = g(α?, w(α?), w'(a?)) ,

respectively. Then L is invertible with continuous inverse,

dt + l(x) ,

where G(x, t) is the Green's function for L together with the
homogeneous boundary conditions corresponding to (28) and

(29) l{χ) = (aLl "" a L ° ^ + (&Lί + aL°
(aβ + aa + &α)

is the solution to Ly = 0 satisfying the inhomogeneous boundary
conditions &. If j:C%-*Cι is the completely continuous embedd-
ing, then H: Ό x [0,1] -> Ci defined by H{u, X) = XL^Fj + (1 - λ)ί
is a compact homotopy. If Hλu = u, then λL~Tu + (1 — λ)ί = u so
λFu = Lu because Lϊ = 0. By definition of M, Hλ is fixed point
free on dU. By topological transversality, H1 will be essential if
Ho = I is essential. Since 1(0), 1(1) > 0 it follows that l(x) > 0 so I
is an interior point of U in C%. By Theorem 1.2 of § 1, i?0 is
essential. So JÊ  has a fixed point, that is, (28) has a solution C in
U. By (6.2), i/(a?) > 0. This proves that last part of (6.1).

Finally, we relax the conditions that strict inequality hold in
(i) and (iii) and that Lo, Lγ > 0. By replacing / by / + 1/w, J by
J - 1/n, Lo by Lo + 1/n, and Lλ by Li + 1/n, we obtain for each
n = l, 2, a problem of the form (28) which has a solution CΛ(#)^
0. The arguments used to prove (6.2) and (6.3) produce a constant
M' independent of n so that | Cn |2 <; Mf. A standard compactness
argument yields a solution C to (28). Clearly, C ^ 0. This com-
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pletes the proof of (6.1).
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