EFFECTIVE DIVISOR CLASSES AND BLOWINGS-UP OF P^2

JEFFREY A. ROSOFF

Let $X_n \xrightarrow{\pi} P^2$ be the monoidal transformation of the (complex) projective plane centered at distinct points P_1, \dots, P_n of P^2 . We recall that the Néron-Severi group of X_n is freely generated by the divisor class [L] of the proper transform L of a line in P^2 and by the classes $[E_i]$ of the "exceptional" fibers E_i over P_i ; the intersection pairing is given by

 $[L]^2 = 1; \quad [L] \cdot [E_i] = 0; \quad [E_i] \cdot [E_j] = -\delta_{i,j}.$

Let $\mathcal{M}(X_n)$ denote the monoid of elements F in the Néron-Severi group with the property that F contains an effective divisor. In this paper we

(1) construct a finite generating set for $\mathcal{M}(X_n)$ for $n \leq 8$, and give a particularly simple geometric description of the generators when $P_1 \cdots P_n$ are in "general position";

(2) show that, for $n \ge 9$, $\mathscr{M}(X_n)$ need not be finitely generated, despite the finite generation of the whole Néron-Severi group;

(3) prove the related result that if a nonsingular surface X contains an infinite number of exceptional curves of the first kind, then X is necessarily rational.

We will let K_{X_n} denote the cannonical class on X_n ; it is given by $K_{X_n} = \pi * K_{P^2} + \Sigma[E_i] = -3[L] + \Sigma[E_i]$. We observe that, for $n \leq 9$, the anti-cannonical class $-K_{X_n}$ contains an effective divisor (which will also be denoted by $-K_{X_n}$ when no confusion is possible), since $H^0(X_n, \check{\omega}_{X_n})$ can be regarded as the (complex) vector space of homogeneous forms in 3 variables of degree 3 vanishing at the points $P_1 \cdots P_n$.

LEMMA 1. Let X be any nonsingular rational surface, and let C be a curve on X with $p_a(C) \ge 1$. Then $[C] + K_X$ is an effective class.

Proof. The short exact sequence of \mathcal{O}_x -modules

 $0 \longrightarrow \mathcal{O}_{X}(-C) \longrightarrow \mathcal{O}_{X} \longrightarrow \mathcal{O}_{C} \longrightarrow 0$

yields, using Serre-duality and the rationality of X, dim $H^{0}(X, \mathscr{O}_{X}(C) \otimes \omega_{X}) = \dim H^{2}(X, \mathscr{O}_{X}(-C)) = \dim H^{1}(C, \mathscr{O}_{C}) = p_{a}(C).$

Recall that, for $n \leq 8$, the points $P_1 \cdots P_n$ of P^2 are in general

position if no three P_i are collinear and if no six of them lie on a conic.

THEOREM 1. Let $X_n \to \mathbf{P}^2$ be the monoidal transformation of \mathbf{P}^2 centered at $P_1 \cdots P_n$, with $n \leq 8$ and $P_1 \cdots P_n$ in general position. Then $\mathscr{M}(X_n)$ is finitely generated, the generators being the classes of divisors on the following list:

(Note:	g(n)	= num	ber of	generators	of	$\mathcal{M}($	$(X_n)).$
--------	------	-------	--------	------------	----	----------------	-----------

n	g(n)	Divisor	Description			
1	2 E_1		Exceptional curve			
		$L-E_1$	Proper transform of a line through P			
2, 3, 4	4 2, 6, 10	$E_i(1 \leq i \leq n)$	Exceptional curve			
	Respt.	$L - E_i - E_j (1 \leq i < j \leq n)$	Proper transform of the line through P_i and P_j			
5	16	E_i (1 \leq i \leq 5)	Exceptional curve			
		$L - E_i - E_j (1 \leq i < j \leq 5)$	Proper transform of the line through P_i and P_j			
		$2L - \sum E_i$	Proper transform of the conic through all $\{P_i\}$			
6	27	E_i (1 \leq i \leq 6)	Exceptional curve			
		$L - E_i - E_j (1 \leq i < j \leq 6)$	Proper transform of the line through P_i and P_j			
		$2L - \sum_{i \neq k} E_i (1 \leq k \leq 6)$	Proper transform of the conic through all $\{P_i\}$ except P_k			
7	56	E_i (1 \leq i \leq 7)	Exceptional curve			
		$L - E_i - E_j$ (1 $\leq i < j \leq 7$)	Proper transform of the line through P_i and P_j			
		$2L - \sum_{i eq k, \mathfrak{l}} E_i (1 \leq k < \mathfrak{l} \leq 7)$	Proper transform of the conic through all points $\{P_i\}$ except P_k and P_i			
		$3L - 2E_j - \sum_{i \neq j} E_i (1 \le j \le 7)$	Proper transform of a cubic through all P_i and with a double point at P_j			
8	2 41	E_i $(i=1\cdots 8)$	Exceptional curve			
		$L - E_i - E_j (1 \le i < j \le 8)$	Proper transform of the line through P_i and P_j			
		$2L - \sum_{i \neq j, k, 1} E_i (1 \le j < k < \mathfrak{l} \le 8)$	Proper transform of the conic through all $\{P_i\}$ except P_j , P_k and P_i			
	$3L-2E_k-\sum_{\substack{i\neq j,k\\j\neq k}}E_i(1\leq j,k\leq 8,$	Proper transform of a cubic through all points $\{P_i\}$ except P_j , and with a double point at P_k				
	$\begin{array}{c} 4L \!-\! 2E_{j} \!-\! 2E_{k} \!-\! 2E_{\mathfrak{l}} \\ -\! \sum\limits_{i \neq j,k,\mathfrak{l}} E_{i} (1 \!\leq\! j \!<\! k \!<\! \mathfrak{l} \!\leq\! 8) \end{array}$	Proper transform of a quartic through all $\{P_i\}$ with double points at P_j , P_k and P_i				
		$ \sum_{\substack{j \neq j, k \\ i \neq j, k}}^{5L-E_j-E_k-2} (1 \leq j < k \leq 8) $	Proper transform of a quintic through all $\{P_i\}$ and with double points at all but P_j and P_k			
		$6L - 3E_k - 2\sum_{i \neq k} E_i (1 \le k \le 8)$	Proper transform of a sextic with a triple point at P_k and with double points at P_i , $\forall i \neq k$			
		$3L - \sum_{i=1}^8 E_i$	Anti-cannonical curve			

420

REMARK. For n = 6, we see that the generators of the monoid for the cubic hypersurface in P^3 are the classes of the classical twenty-seven lines on X_{θ} . More generally, the classes of the divisors listed above are, for $2 \leq n \leq 7$, precisely the classes of all rational curves on X_n with self-intersection -1. [1, Th. 26.2].

Before proving the theorem, we will first prove

LEMMA 2. Let X_n be as in the theorem. Suppose that C is any curve on X_n for $1 \leq n \leq 7$, or that C is a curve on X_s whose class is not represented above for n = 8. Then for any divisor \mathscr{L} on the above list, dim $H^2(X_n, \mathscr{O}_{X_n}(C - \mathscr{L})) = 0$.

Proof. [Case 1: $n \leq 7$]. A look at the proposed generating set of $\mathscr{M}(X_n)$ shows that, given \mathscr{L} as above, there is an effective nontrivial divisor D such that $-K_{X_n} = [\mathscr{L}] + [D]$. Therefore $0 = \dim H^0(X_n, \omega_{X_n} \otimes \mathscr{O}_{X_n}(\mathscr{L})) = \dim H^0(X_n, \omega_{X_n} \otimes \mathscr{O}(\mathscr{L} - C))$, and the result follows by duality.

[Case 2: n = 8]. Again, we will use duality and show that dim $H^{\circ}(X_{s}, \omega_{x_{s}} \otimes \mathcal{O}_{x_{s}}(\mathscr{L} - C)) = 0$. Suppose the contrary. Then $K_{x_{s}} + [\mathscr{L}]$ must be an effective class for some \mathscr{L} , and we may clearly assume that $[\mathscr{L}] \neq -K_{x_{s}}$. Then either

$$[\mathscr{L}] = < egin{cases} [4L - 2E_i - 2E_j - 2E_K - \sum\limits_{i \neq i, j, k} E_i] ext{ some } i, j, k, ext{ or } \ [5L - E_i - E_j - 2\sum\limits_{i \neq i, j} E_i] ext{ some } i, j, ext{ or } \ [6L - 3E_k - 2\sum\limits_{i \neq k} E_i] ext{ some } k \ . \end{cases}$$

But by the general position of $P_1 \cdots P_8$, the first two choices for \mathscr{L} do not yield effective classes $[\mathscr{L}] + K_{X_8}$; hence $K_{X_8} + [\mathscr{L}]$ is of the form $[3L - 2E_k - \sum_{i \neq k} E_i]$.

Now, since C is unequal to any $E_i, C \cdot E_i \ge 0$ and we may write $[C] = m[L] - \sum_{i=1}^{s} b_i[E_i]$, with $m \ge 1$ and $b_i \ge 0$. If $K_{x_8} + [\mathscr{L} - C]$ is to be effective, we must have m = 1, 2 or 3. If m = 1, the general position of the $\{P_i\}$ forces all but two of the b_i to be 0 and the nonzero b_i to be 1, making $[K_{x_8} + \mathscr{L} - C] = [2L - \sum c_i E_i]$ with $\sum c_i \ge 6$. This class is not effective since no six of the $\{P_i\}$ lie on a conic. An analogous proof works for m = 2. If m = 3 we have, since $[C] \cdot [L - E_i - E_j] \ge 0$ for all i, j, three possibilities:

- (a) some $b_i = 3$, all others 0, or
- (b) all b_i are 0 or 1, or
- (c) some $b_i = 2$, all others are 0 or 1.

Neither (a) nor (b) can occur, as in these cases $K_{x_8} + [\mathscr{L} - C] = \sum c_i[E_i]$ with some $c_i < 0$, violating the effectiveness of $K_{x_8} + [\mathscr{L} - C]$

C]. Similarly, (c) can be dismissed unless [C] is of the form $[3L - 2E_i - \sum_{k \neq i,j} E_k]$, some *i*, *j*, which violates the hypothesis that [C] not be represented on the list of divisors in the theorem.

Proof of Theorem 1. Fix a projective embedding of X_n into P^N , some $N \ge 3$. Then we may speak of the "degree" of a divisor on X_n with respect to this embedding. It suffices to show that, for C an effective divisor on X_n , $[C - \mathscr{L}]$ is an effective class for some divisor \mathscr{L} listed in the theorem; the result will then follow by induction on "degree". Furthermore, for $n = 1, \dots, 7$ we note that $-K_{x_n}$ is a sum of classes of divisors listed, while for n = 8 the anti-cannonical class is included on the list of proposed generators. Hence, by Lemma 1, we may assume that C is a curve with $p_a(C) = 0$. Finally, we may assume that C is an irreducible curve whose class is not represented on the list in the theorem.

By Riemann-Roch, together with Lemma 2 and the rationality of X_n , we have, for \mathscr{L} any divisor on the above list except $-K_{x_8}$, $\dim H^0(X_n, \mathscr{O}_{X_n}(C - \mathscr{L})) - \dim H^1(X_n, \mathscr{O}_{X_n}(C - \mathscr{L})) = 1/2(C^2 - 2\mathscr{L} \cdot C - K_{X_n} \cdot C)$. Since $p_a(C) = 0$, the adjunction formula applied to Cyields $C^2 = -K_{X_n} \cdot C - 2$, so we have, for all divisors \mathscr{L} on the list in the theorem except for $-K_{X_8}$,

$$\dim H^{\mathfrak{o}}(X_{\mathfrak{n}}, \mathcal{O}_{X_{\mathfrak{n}}}(C - \mathscr{L})) - \dim H^{\mathfrak{o}}(X_{\mathfrak{n}}, \mathcal{O}_{X_{\mathfrak{n}}}(C - \mathscr{L})) \\= (-K_{X_{\mathfrak{n}}} \cdot C) - 1 - (\mathscr{L} \cdot C) .$$

Thus, it suffices to show that for some divisor \mathscr{L} in the above list except for $-K_{x_s}$,

 $(*) - K_{X_n} \cdot C > \mathscr{L} \cdot C + 1$.

The proof of the validity of (*) is, for $n = 1, \dots, 5$, a simplified version of the cases n = 6, 7, 8; hence we include only the later cases.

Let $[C] = m[L] - \sum_{i=1}^{n} b_i[E_i]$. Since [C] is not represented on the above list, we intersect C with each element on the list to get

$$egin{array}{rcl} n=6:&(1)&m\geqq 1&(3)&m-b_i-b_j\geqq 0orall i\neq j\ &(2)&b_i\geqq 0orall i&(4)&2m-\sum\limits_{i\ne k}b_i\geqq 0orall k\ . \end{array}$$

Since $-K_{x_6} \cdot C = 3m - \sum_{i=1}^6 b_i$, our condition (*) to be fulfilled becomes

$$(^{stst}) < egin{bmatrix} 3m > \sum\limits_{i=1}^6 b_i + b_k + 1 ext{ for some } k, ext{ or } \ 2m > \sum\limits_{k
eq i,j} b_k + 1 ext{ for some } i, j ext{ or } \ m > b_k + 1 ext{ for some } k \ . \end{cases}$$

If m > 1, and if the third inequality of (**) fails, then, by conditions (2) and (3) above we have m = 2 and $b_k = 1 \forall k$, violating (4) above. If m = 1, then by (2) and (3) at most one b_i can be nonzero, and the first two inequalities of (**) hold.

n = 7 we have

$$\begin{array}{ll} (1) & m \geqq 1 \\ (2) & b_i \geqq 0 \forall i \end{array} \end{array} \begin{array}{ll} (4) & 2m - \sum\limits_{i \ne j \ k} b_i \geqq 0 \forall j \ne k \\ (5) & 3m - \sum\limits_{i \ne i} b_j - 2b_i \geqq 0 \forall i \end{array} ,$$

(3)
$$m - b_i - b_j \ge 0 \forall i \neq j$$

and condition (*) becomes

$$(**) < egin{bmatrix} 3m > \sum\limits_{i=1}^{j} b_i + b_k + 1 ext{ for some } k, ext{ or } \ 2m > \sum\limits_{i \neq j,k} b_i + 1 ext{ for some } j, k, ext{ or } \ m > b_j + b_k + 1 ext{ for some } j, k, ext{ or } \ b_i > 1 ext{ for some } i \ . \end{cases}$$

Assume that the fourth inequality of $(^{**})$ fails. If all b_i are 1, and if the third inequality of $(^{**})$ fails, then $m \leq 3$. By condition (4) we have $m \geq 3$, so m = 3 and $[C] = -K_{x_7}$, which we have already seen is a sum of proposed generators of $\mathscr{M}(X_7)$. If some b_i is 0, then conditions $(1)\cdots(4)$ and the first three conditions of $(^{**})$ become the same as in the case n = 6.

n = 8 writing condition (*) in terms of m and the $b_i(i=1, \dots, 8)$ and assuming that (*) does not hold, we have:

(a) $|3m - b_k - \sum_{i=1}^{8} b_i| \leq 1$ for all k

(β) $|2m - \sum_{i \neq j,k} b_i| \leq 1$ for all j, k

- $(\gamma) |m b_i b_j b_k| \leq 1 \text{ for all } i, j, k$
- (δ) $|b_i b_j| \leq 1$ for all i, j.

Let $b = \min \{b_i\}$, and $B = \max \{b_i\}$. Note that by (δ) , $0 \leq B - b \leq 1$. Let r of the b_i 's have value b, and 8 - r of the b_i 's have value B. We will obtain our contradiction on a case-by-case basis:

r = 0. Then by (α) m - 3B = 0 and $[C] = B(-K_{x_8})$, $B \in \mathbb{Z}$; since $p_a(C) = 0$ the adjunction formula yields $B^2 - B + 2 = 0$.

r = 8. Again by (α), $[C] = b(-K_{x_8})$.

r=1. By (β) , m-3B=0, and by $(\alpha) |3m-7B-2b| \leq 1$, contradicting B-b=1.

r = 7. Then m - 3b = 0 by β , which is again impossible by (α) and the fact that B - b = 1 for $r \neq 0, 8$.

r=2. Since B-b=1, (β) implies that 2m-5B-b=0, and (γ) implies that m-2B-b=0. Thus B-b=0, a contradiction. r=6. Again, (γ) and (β) imply that B-b=0.

r = 3, 4, 5. By (γ) , $|m - 3b| \leq 1$ and $|m - 3B| \leq 1$, so B - b = 0, a contradiction.

We now examine the case in which the points P_1, \dots, P_n , with $n \leq 8$, of P^2 are not in general position; in this case the classes of the divisors listed in Theorem 1 may contain reducible curves. For each $n \leq 8$, let $F_1 \cdots F_m$ be the classes of the formal sums of L and the $\{E_i\}$ listed in Theorem 1, and let $D_i \in F_i$ be an effective divisor with the property that the number of distinct components of D_i is maximal for effective divisors in F_i . (Such a divisor D_i exists since, for any effective divisor $D \in F_i$, # components of $D \leq \deg D = \deg E$ for any $E \in F_i$.) Write $D_i = \sum_j n_{i,j} E_{i,j}$ with $n_{i,j} > 0$.

LEMMA 3. Let P_1, \dots, P_8 be distinct points of \mathbf{P}^2 in arbitrary position, and let $X_8 \to \mathbf{P}^2$ be the monoidal transformation centered at the $\{P_i\}$. Let $D_i \in F_i$ be as above, for n = 8. Then there are only a finite number of divisor classes F on X_8 with the property that F contains curve C with $p_a(C) = 0$ and with the property that $\dim H^2(X_8, \mathcal{O}_{X_8}(C-D_i)) \geq 1$ for some i.

Proof. If dim $H^2(X_s, C_{X_s}^{\sim}(C - D_i)) \ge 1$, then, by duality, $K_{X_s} + [D_i] - [C]$ must contain an effective divisor, and so must $K_{X_s} + F_i$. Thus, as in the proof of Theorem 1, $K_{X_s} + F_i$ must be of the form

$$egin{aligned} [L] - [E_i] - [E_j] - [E_k], ext{ some } i, j, k, ext{ or } \\ 2[L] - \sum\limits_{i \neq i, j} [E_i], ext{ some } i, j, ext{ or } \\ 3[L] - 2[E_k] - \sum\limits_{i \neq k} [E_i], ext{ some } k \ . \end{aligned}$$

Hence, if $[C] = m[L] - \sum b_i[E_i]$, we must have $0 \leq m \leq 3$, and since $p_a(C) = 0$, the adjunction formula yields $(m^2 - 3m) - \sum_{i=1}^{8} (b_i^2 - b_i) = -2$. Clearly with $0 \leq m \leq 3$ there are only a finite number of solutions to this diaphantine equation.

Let $R_1 \cdots R_k$ be the divisor classes on X_s referred to in Lemma 3, and let $S_i \in R_i$ be an effective divisor with maximal number of distinct components. Write $S_i = \sum_j m_{i,j} Q_{i,j}$, with $m_{i,j} > 0$.

THEOREM 2. Let $X_n \to \mathbf{P}^2$ be the monoidal transformation centered at points $P_1 \cdots P_n$ of \mathbf{P}^2 , with $n \leq 8$ and with the points $\{P_i\}$ in arbitrary positions. Then $\mathscr{M}(X_n)$ is finitely generated, the generators being $\{E_{i,j}\}$ for $n \leq 7$, and $\{[E_{i,j}]\} \cup \{[Q_{i,j}]\}$ if n = 8.

Proof. [Case 1: $n \leq 7$]. We will show that, for C an irreducible

curve on X_n , $C - E_{i,j}$ is equivalent to an effective divisor, for some i, j. As in the proof of Theorem 1, we may assume that $p_a(C)=0$. Moreover, the proof of Lemma 2 for $n \leq 7$ did not rely on the general position of the $\{P_i\}$; hence for any curve C on $X_n, n \leq 7$, dim $H^2(X_n, \mathcal{O}_{X_n}(C - D_i)) = 0$ for all i. Thus it suffices to show that (a) if $p_a(C) = 0$, C irreducible and $[C] \neq [E_{i,j}]$ for all i, j, then $\mathcal{X}(\mathcal{O}_{X_n}(C - D_i)) \geq 1$ for some i, and

(b) $[E_{i,j}]$ cannot be written nontrivially as a sum of effective divisor classes.

Part (b) follows from the maximality of the number of components of D_i for effective divisors in F_i . For part (a) we note that, since the intersection-theoretic properties of the $\{F_i\}$ are the same as in Theorem 1, it suffices to show that

$$(*) - K_{X_m} \cdot C > (D_i \cdot C) + 1$$
 for some i ,

with $[C] \neq [E_{i,j}] \forall i, j$. Writing $[C] = m[L] - \sum_{i=1}^{n} b_i[E_i]$ and writing (*) in terms of m and the $\{b_i\}$, the condition (*) becomes precisely the condition (**) of Theorem 1.

Since $[C] \neq [E_{i,j}]$ for all i, j, we have $C \cdot D_i \geq 0 \forall i$, i.e., the constraints on m and the $\{b_i\}$ are the same as in the proof of Theorem 1. Since the truth of $(^{**})$ depended only on these constraints, we are done.

[Case 2: n = 8]. As in the case $n \leq 7$, it suffices to show that for C an irreducible curve on X_s with $p_a(C) = 0$, either $C - E_{ij}$ or $C - Q_{i,j}$ is equivalent to an effective divisor. Clearly, if $C \in R_i$, for some *i*, then $C - Q_{i,j}$ is equivalent to an effective divisor for some *i*, *j*. If $C \notin R_i$ for any *i*, it suffices to show that, with $C \neq$ $E_{i,j}$ for all *i*, *j*,

(*)
$$\chi(\mathscr{O}_{X_{\mathbf{s}}}(C-D_i)) \geq 1$$
 for some i .

Since $C \cdot D_i \ge 0$ for all *i*, the verification of (*) reduces to the case n = 8 of Theorem 1.

In contrast with the above, if $n \ge 9$, $\mathcal{M}(X_n)$ need not be finitely generated.

EXAMPLE. Let C_1 be a cuspidal cubic curve in P^2 , and let C_2 be any cubic curve intersecting C_1 in nine distinct points, none of which is a singular point of C_1 . Let Y be the surface obtained by blowing up P^2 at $C_1 \cap C_2$. Claim: $\mathscr{M}(Y)$ is not finitely generated.

Let $F_i(X_0, X_1, X_2)$ be the (cubic) defining polynomials of $C_i(i = 1, 2)$. Then the rational function F_1/F_2 on P^2 has its only inde-

425

terminate points on $C_1 \cap C_2$. Since C_1 and C_2 are transversal, the rational function F_1/F_2 pulls back to Y to give a holomorphic map $\phi: Y \to P^1$, with fibers the proper transforms under the blowing up $\pi: Y \to P^2$ of the curves in the pencil generated by C_1 and C_2 .

Let Y^* denote the set $Y - \bigcap_{t \in P^1} \sin \phi^{-1}(t)$, and let $\phi^{-1}(t_0)$ be the proper transform of the cuspidal curve C_1 . The fibers of an elliptic fibering have been classified by [2, Th. 6.2 and 9.1], along with the possible group structures of the set of nonsingular points; we see by the classification that $\phi^{-1}(t_0) \cap Y^*$ has the structure of a torsion-free abelian group, with any point serving as the identity element.

Let Γ denote the set of sections of ϕ (which necessarily map into Y^*); then after choosing some element of Γ (such as one of the nine exceptional curves lying over a point of $C_1 \cap C_1$) as an identity element, Γ has the structure of an abelian group under pointwise addition (the addition being the group operations on the nonsingular sets of the fibers of ϕ). We have, for each $t \in \mathbf{P}^1$, a natural evaluation homomorphism

$$\psi_t \colon \Gamma \longrightarrow \phi^{-1}(t) \cap Y^*$$
, defined by $\sigma \longrightarrow \sigma(t)$.

Since Γ contains at least nine disjoint sections (i.e., the nine exceptional curves lying over $C_1 \cap C_2$), the map ψ_{t_0} maps Γ nontrivially into a torsion-free group, so Γ must be infinite.

By [2, Th. 9.2], each $\eta \in \Gamma$ induces a fiber-preserving automorphism

$$L_\eta : Y^* \longrightarrow Y^*$$
, defined by $L_\eta(z) = z + \eta \circ \phi(z)$, which

actually extends to an automorphism of Y. Thus, any two elements of Γ differ by an automorphism of Y.

Hence, the orbits of the exceptional curves lying over $C_1 \cap C_2$ under the action of Aut (Y) yield an infinite number of exceptional curves of the first kind on Y. The following fact shows that $\mathscr{M}(Y)$ is not finitely generated, while of course N.S. $(Y) \approx$ $PIC(Y) \approx Z \bigoplus^{10}$.

Fact. Let Y be any surface containing an infinite number of curves of negative self-intersection. Then $\mathcal{M}(Y)$ is not finitely generated.

Proof. Suppose to the contrary that $\mathscr{L}_i, \dots, \mathscr{L}_n$ is a (finite) generating set of $\mathscr{M}(Y)$. To obtain a contradiction it suffices to show that if C_i is a fixed curve in the algebraic equivalence class \mathscr{L}_i , and if E is a curve on Y with negative self-intersection, then

E must be a component of C_i , for some i. For the curves C_i and E as stated, write

$$[E] = \sum_{i=1}^n m_i \mathscr{L}_i = \sum_{i=1}^n m_i [C_i]$$
, with $m_i \ge 0$.

Therefore $E^2 = \sum_{i=1}^{n} m_i(C_i \cdot E)$. If E is not a component of C_i for any *i*, then the right-hand side of the above equation is nonnegative, which is a contradiction.

REMARK. The elliptic surface constructed above is only one of a large number of known examples of surfaces which contain an infinite number of rational curves with self-intersection -1 and which are obtained by blowing up the projective plane at nine points. For other examples, see [5, p. 164], or [1, p. 407].

REMARK. It is not hard to show, using the projection formula [1, p. 426 A. 4] that if $X \to Y$ is a monoidal transformation of surfaces, and if $\mathcal{M}(X)$ is finitely generated, then $\mathcal{M}(Y)$ is also finitely generated. Hence $\mathcal{M}(X_n)$ need not be finitely generated for $n \geq 9$.

In view of the *fact* used above, the question naturally arises as to which surfaces can contain an infinite number of curves with negative self-intersection. A partial answer is given by a conjecture of A. Kas, a proof of which is provided below:

THEOREM 3. Let X be nonsingular algebraic surface over C which contains an infinite number of exceptional curves of the first kind. Then X is rational.

Proof. Let ϕ_1, \dots, ϕ_n be a basis of holomorphic 1-forms on X, for $n \ge 0$. We will first reduce to the case n = 0.

Case 1. $n \ge 2$ and $\phi_i \wedge \phi_j \neq 0$, some i, j.

We write the cannonical map $\pi: X \to Alb(X)$, given by

$$z \longrightarrow \left[\int_{P}^{z} \phi_{1}, \cdots, \int_{P}^{z} \phi_{n}\right]$$

modulo the lattice in C^n generated by the 2n vectors

$$egin{bmatrix} egin{smallmatrix} \phi_{i}, & \cdots, & egin{smallmatrix} \phi_{n} \ \Gamma_{i} & \Gamma_{i} \end{bmatrix}$$
 , $i=1,\,\cdots,\,2n$,

where P is a fixed point of X and $\Gamma_1, \dots, \Gamma_{2n}$ are 1-cycles whose homology classes generate the free subgroup of $H_1(X, \mathbb{Z})$.

The hypothesese imply that the Jacobian of the Albanese map π has rank 2; hence π is generically finite-to-one in the sense that there are only a finite number of points $p \in \text{Alb}(X)$ such that $\dim \pi^{-1}(p) = 1$. Let $\{p_1, \dots, p_k\}$ be this finite set, and let $\pi^{-1}(p_i)$ be the divisor $\sum n_{ij}D_j$, with $n_{ij} > 0$ and D_{ij} irreducible. If C is a rational curve on X, then $\pi(C)$ is a single point; hence the number of rational curves on X is bounded by $\sum n_{ij}$. (Actually it is not hard to see that a rational curve on X must be a component of a fixed divisor in the cannonical class of X.)

Case 2. n = 1, or $n \ge 2$ and $\phi_i \wedge \phi_j = 0 \forall i, j$.

If n = 1, then dim $\pi(X) = \text{dim Alb}(X) = 1$. If $n \ge 2$, the fact that $\phi_i \wedge \phi_j = 0 \forall i, j$ implies that the Jacobian matrix of π has rank 1, and dim $\pi(X) = 1$ in this case as well.

Let Δ be the curve $\pi(X) \subset \operatorname{Alb}(X)$, and let $\{a_1 \cdots a_r\} \subset \Delta$ be the (finite) set of points such that $\forall t \in \Delta, \pi^{-1}(t)$ is singular if and only if $t = a_i$, some *i*. Let *C* be a rational curve on *X* with nonzero self-intersection. Then $\pi(C)$ is a point of Δ , so *C* is a component of $\pi^{-1}(t_0)$, some $t_0 \in \Delta$. Since $(\pi^{-1}(t))^2 = 0 \forall t$, and since $C^2 \neq 0$, $t_0 \in \{a_1 \cdots a_r\}$. Thus the number of rational curves on *X* with nonzero square is bounded by $\sum_{i,j} n_{i,j}$, where $\pi^*(a_i)$ is the effective divisor $\sum_i n_{i,j} D_j$. Therefore, we have reduced to

Case 3. X has no (global) holomorphic 1-forms. For C an exceptional curve of the first kind on X, the adjunction formula yields $C \cdot K_x = -1$, and so $C \cdot mK_x < 0 \forall m > 0$.

Case 3a. $2K_x$ contains an effective divisor D. Then since $D \cdot C < 0$, C must be a component of D, and the number of exceptional curves of the first kind on X is bounded by $\sum n_i$, where $D = \sum n_i D_i$, with D_i integral and $n_i > 0$.

Case 3b. $2K_x$ does not contain an effective divisor, i.e., $P_2(X) = 0$. Since X has no global holomorphic 1-forms, $q(X) = \dim H^1(X, \mathcal{O}_x) = 0$. Since $q(X) = P_2(X) = 0$, X is rational by the classification theorem of Castelnuovo [3. Th. 49]).

REMARK. Among the standard surface types, it is also known that certain K3 surfaces contain an infinite number of -2 curves. In addition, it seems to be a part of the folklore that, for each positive integer *n*, there is an elliptic surface containing an infinite number of curves with self-intersection -n.

We end this paper with a conjecture, a discussion of which is to appear in the near future:

Conjecture. Let X be a nonsingular algebraic surface of general type. Then $\mathcal{M}(X)$ is finitely generated.

References

1. R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Math., Springer-Verlag, New York Inc., 1977.

K. Kodaira, On compact analytic surfaces II, Annals of Math., 77, No. 3 (1963).
 , On the structure of complex analytic surfaces IV, Amer. J.Math., 90 (1968), 1048-1066.

4. Yu I. Manin, Cubic Forms: Algebra, Geometry, Arithmetic; North Holland Pub. Co., Amsterdam, 1974.

5. I. R. Saferevic, *Algebraic surfaces*, Proc. Steklov Inst. Math., **75** (1965), Transl. by Amer. Math. Soc., (1967).

Received September 17, 1979 and in revised form December 16, 1979.

Illinois State University Normal, IL 61761.