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ON HOLOMORPHIC APPROXIMATION IN WEAKLY
PSEUDOCONVEX DOMAINS

F. BEATROUS, JR. AND R. MICHAEL RANGE

A uniform estimate for solutions to the equation du—a
in a weakly pseudoconvex domain is obtained, provided
that the form a vanishes near the set of degeneracy of the
Levi form. Under the additional hypothesis that the closure
of the domain is holomorphically convex, analogous esti-
mates are obtained for solutions defined in a full neighbor-
hood of the closure. Applications are given to Mergelyan
type approximation problems in a weakly pseudoconvex
domain D. In particular, it is shown that any function in
A(D) can be uniformly approximated by functions in A(D)
which extend holomorphically across all strongly pseudocon-
vex boundary points. When D is holomorphically convex,
it is shown that the Mergelyan problem can be localized
to a small neighborhood of the set on which the Levi form
degenerates.

Introduction* A bounded domain D in Cn has the Mergelyan
Property if continuous functions on D which are holomorphic in
the interior of D can be approximated uniformly on D by functions
holomorphic in a neighborhood of D. For n > 1, the first non-
trivial domains for which the Mergelyan property was verified were
the strictly pseudoconvex ones (Henkin [7], Kerzman [9], Lieb [12]).
For a more general class of pseudoconvex domains, Eange [14] con-
sidered approximation by functions which extend holomorphically
across strictly pseudoconvex boundary points. Our interest in the
problem was rekindled by an example due to Diederich and Fornaess
[3] of a smooth pseudoconvex domain D for which approximation by
functions holomorphic in a full neighborhood of D is impossible.
The failure of the Mergelyan property in this example is intimately
connected with the absence of a Stein neighborhood basis for D.
Thus a principal objective of this paper is the removal of the hypo-
thesis of existence of Stein neighborhoods which was required in
[14].

The key technical tool in [14] is an estimate for solutions to
du — a when the support of a is disjoint from the non-strictly
pseudoconvex boundary. In the absence of a Stein neighborhood
base, such estimates were first obtained by Beatrous [1] by using
Kohn's global regularity theorem for 9 in the construction of a
global Ramirez-Grauert-Lieb type kernel which solves the 3-problem
with the above mentioned support condition. In the present paper,
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we apply directly the Bochner-Martinelli-Koppelman formula for
(0, l)-forms [11] and Kohn's theorem in order to pass from local to
global in the relevant 6-problem in [14].

It has been conjectured that any smooth, bounded domain whose
closure is holomorphically convex should have the Mergelyan pro-
perty. In this direction, we show that holomorphic convexity of D
implies the Mergelyan property if one can approximate near the
non strictly pseudoconvex points of 3D (Theorem 2.3). Again, the
essential tool is an estimate for 3 with a support condition. The
Mergelyan type theorems in [5] and [15] are easy consequences of
this result.

1* A 5'problem with support condition* Let D be a domain
in Cn. A point p e 3D is called a strictly pseudoconvex boundary
point if 3D is of class Ck, k ^ 2, in a neighborhood of p and strictly
Levi pseudoconvex at p (cf. [6] p. 262). The collection of all such
points is denoted by S(3D). The set S(3D) is relatively open in 3D,
and if D is a bounded domain with a C2 boundary S(3D) is non-
empty. The set NS(dD) = 3D, S{3D) is the set of non strictly
pseudoconvex boundary points.

For K compact in Cn, &\K) denotes the algebra of functions
which are holomorphic on some neighborhood of K. The set K is
said to be holomorphically convex if every nonzero algebra homo-
morphism from έ?\K) into C is given by point evaluation at some
point in K. If K has a Stein neighborhood basis then K is holo-
morphically convex; the converse is in general false.

Given D and an open set U we set JB0?I(A U)~{aeC™1(D): 3a=-~
0, supp α c ί/, and \\a\\D< <*>}. Here || \\D denotes the sup norm
on D.

THEOREM 1.1. Suppose D is pseudoconvex and U1ac:U2 are
open with Ux Π 3D c c U2 Π 3D c c S(3D).

(a) // 3D is of class C°° then there are a constant C and a
linear operator

T: BZ(D, Uλ) >C(D)Γ\ C

which satisfy
( i ) 3(Ta) = a;
(ii) \\Ta\\D^C\\a\\D;
(iii) \\Ta\Uu%^C\\a\\Liιω).

The constant C can be chosen to be independent of small perturba-
tions of Uλ (Ί 3D.

(b) // 3D is of class C2 and D is holomorphically convex then
there are a neighborhood basis {Dε, 0 < ε < ε0} of D> a constant C,
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and linear operators

which satisfy
(iv) 5(Γ.α) = a;
(v)

/or α ?̂/ ε with 0 < ε < ε0 αwd αw?/ a e B^x(Dεtt t/J.

REMARK 1.2. If 5 has a Stein neighborhood basis, part (a) is
contained in Theorem 2.1 in [14]. We will neither prove nor use
(iii) in this paper; however, it is needed to extend the results of
[14] to the domains considered here.

REMARK 1.3. We have stated only the simplest estimates. Any
estimate valid for the local solution operator used in the proof will
carry over to the global operators. For the construction of local
solution operators in the case of a C2 boundary, see [13] or [16].

Proof. (I) Choose another open set U with U1cκzUcc Z72.
By applying successively one of the local solution operators for 3
and the bumping technique (cf. [9] and [14]) one obtains a small
perturbation D of D with D9 U2 = D\U2 and Uf)DaD which has
the following property: For any a e 2?c?i(A UΊ) there are a form
a e B^Φ, U) n Co~(Ϊ5) and_ a function ux e C(D) Π C°°(D) with supp
uλ c U such that a = ά + dnx. Moreover, ά and ux depend linearly
on a, and the following estimates are satisfied:

The domain D and the constant CΊ can be chosen to be independent
of small perturbations of S(dD) Π Uλ.

(II) For part (a) we proceed as follows. By a small perturba-
tion of S(dD)9 choose another pseudoconvex domain D* such that
D*\U2 = D\U2, C/n5cJ9*, and Uf)D*c:D. Observe that these
properties of ΰ * persist if D is replaced by a sufficiently small
perturbation of D within Ux. Apply the Bochner-Martinelli-Koppel-
man formula (see for example [13]) to write a — β + du2 where

β = t a A K, , u2 = ί a A Ko ,

and iΓ0, Kγ are the Bochner-Martinelli-kernels of the appropriate bi-
degree. Clearly u2 is continuous on D and \\u2\\n <; C2 \\S\\D] also
S/3 = 0 and, since a = 0 on dD\U, it follows by differentiation under
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the integral sign that βeC&φ*) and

ll/3||oSfl(5.) ^ 7 * Hays

for k = 0, 1, 2, . By Theorem 3.19 of [10] and Sobolev's Lemma
there is, for sufficiently large &, a linear operator

Tk: Co^D*) Π ker 3 > C\D*) Π C%D*)

which inverts 3 and satisfies the estimate

It follows that Ta — Tkβ + u2 + u± satisfies all the required condi-
tions.

(Ill) For part (b) we need the following well known charac-
terization of compact holomorphically convex sets, the proof of
which can be found in [2]. For any open set U in Cn we let E(U)
denote its envelope of holomorphy, and we denote the associated
spread map by Πεr

LEMMA 1.5. A compact set K in Cn is holomorphically convex
if and only if for every neighborhood basis {U%)iBI for K we have

Choose a function p e C\Cn) such that D = {z e Cn: p < 0}, dpΦO
on 3D, and p is strictly plurisubharmonic in a neighborhood of C72ΓΊ
3D. Set Dε = {z 6 O . p(z) < ε}. For 0 < ε < ε0, with ε0 sufficiently
small, Dε has C2 boundary and 3Dε is strictly pseudoconvex at points
in U2 Π dDε, so part (I) of the proof can be applied to Dε. Given
aeB^Dε, Ϊ7J, one obtains άeB^φ, U) and ^eC'CA) as before,
where the constants in (1.4) and the domain D can be chosen inde-
pendently of ε for 0 < ε < ε0. Since a. ~ 0 on D\U, a. can be trivially
extended to a neighborhood V of D with V ΓΊ U c D Π U. Using
Lemma 1.5 one finds a neighborhood Ω of D with Ω c J[Q(E(Ω)) C V.
By Theorem 3.4.10 of [8] one can solve du2 = ΠS^ on the Stein
manifold E(Ω) with L2-estimates with respect to a suitable Eieman-
nian metric. If ε0 is such that D$o c c 42, it follows by interior
elliptic estimates that for 0 < ε < ε0

\\u2\\Dε^Cs\\ά\\v.

Thus Γeα = (Ut + w2) Ue is a solution to 3w = a which satisfies the
desired estimate.
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2* Approximation theorems* We consider first a bounded
pseudoconvex domain with a smooth boundary. We denote the con-
tinuous boundary value algebra C(D) Π ̂ (D) by A{D).

LEMMA 2.1. Let E be a closed subset of S(dD). Then every
f e A(D) can be approximated uniformly by functions in A(D)
which extend holomorphically across E.

If D has a Stein neighborhood basis, the lemma is a special
case of Theorem 3.2 in [14]. The proof in [14] is technically more
complicated as it covers more general situations. We indicate the
direct argument for the case considered here.

Proof (Sketch). Fix an open neighborhood U of E with UΠ
dDaS(dD). Cover the compact set E by finitely many balls
Blf •••, Br such that ί ^ c U and / can be approximated uniformly
on B, n D by translates {fδ, δ > 0} of /. To the collection {/, //,
fr) one applies the usual Cousin I type argument as in [9] or [12].
The crucial step involves solving du = aδ where, in our case, aδ is
a (0, l)-form on a small perturbation Dδ of D inside U with supp
aδ a U and \\ccδ\\D~^O as 8 —> 0. Theorem 1.1.a applies, so the proof
can be completed as in [9] or [12].

THEOREM 2.2. Every f e A(D) can be approximated uniformly
on D by functions which extend holomorphically across S(dD).

Proof Write S(dD) = UJU Ejf where E1 c E2 c and E3 is
closed. A sequence {/,} of approximating functions is constructed
inductively by applying Lemma 2.1 to a sequence {Dά} of small
perturbations of D satisfying Dλ = D and Di+1'DDi\jEi. The details
are left to the reader.

We now consider bounded domains with C2 boundary and holo-
morphically convex closure. The following theorem, which first
appeared in [1], localizes the problem of verifying the Mergelyan
property to a small neighborhood of NS(dD).

THEOREM 2.3. Suppose D is a bounded domain with a C2

boundary such that D is holomorphically convex. A function fe
A(D) can be approximated uniformly on D by functions in <^(D)
if and only if there is a neighborhood W of NS(dD) such that
f\w7w C&Ή* be approximated uniformly on Wf)D by functions in
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The proof of the nontrivial implication is based on the obvious
modification of the classical argument (cf. [9], [12]). The relevant
3-problem is solved by Theorem l.l.b.

Obviously the above condition is satisfied for all feA(D) if
NS(dD) is finite, so the result of [15] is an immediate corollary.
More generally, one obtains the following result of Fornaess and
Nagel [5].

COROLLARY 2.4. Let D be a bounded, pseudoconvex domain
with a C2 boundary. For z e dD9 let n(z) denote the outer unit
normal to 3D at z. Suppose there are a neighborhood W of NS(dD)
and a holomorphic vector field F: W -» Cn with Re (jι(z\ F(z)) > 0
for z e W ΓΊ dD. Then D has the Mergelyan property.

Proof It follows easily from standard arguments that under
the above hypothesis D has a Stein neighborhood basis. Moreover,
after shrinking W if necessary, it follows that for any fe A(D) the
functions f(z) = f(z~δF(z)), are holomorphic on WΠD for sufficiently
small δ > 0. Clearly / , - > / uniformly as δ->0, so by Theorem 2.3 /
can be approximated uniformly on D by functions in έ?(D).
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