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COMPARISON AND OSCILLATION CRITERIA
FOR SELFADJOINT VECTOR-MATRIX

DIFFERENTIAL EQUATIONS

ROGER T. LEWIS AND LYNNE C. WRIGHT

Let

L(y) = Σ (-l)*C
fc0

where the coefficients are real, continuous, mxm, symmetric
matrices, y(x) is an ^-dimensional vector-valued function, and
Pn(x) is positive definite for all xel. We consider both the
case for which the singularity is at oo, / = [ l , o o ) , and the
case for which the singularity is at 0, / = (0,1].

The main theorem is a comparison result in which the
equation L(y) = 0 is compared with an associated scalar equa-
tion. Then, general theorems for the oscillation and nonoscil-
lation of L(y) — 0 are presented which can be used when the
comparison theorem does not apply. Some of the proofs
indicate how scalar oscillation and nonoscillation criteria can
be extended to the vector-matrix case when the associated
scalar theorem has been proved using the quadratic functional
criteria for oscillation. In general, proofs using the associated
Riccati equation and other familiar methods do not extend as
easily.

l Introduction* Most of the theorems contained herein appear
in the recent Ph. D. dissertation of Wright [25].

For general treatments of the oscillation of L(y) = 0, the reader
is referred to the lecture notes of Coppel [3] and Kreith [14], the
book of Reid [20], the paper of Etgen and Lewis [5], and the refer-
ences contained therein.

Matrix notation will be used throughout this paper. For example,

if A is a matrix with elements aij9 \ A will be the matrix with

elements I aid. Differentiation is defined similarly. A ^ B is valid

if, and only if, A — B is positive semidefinite. The letter I will
denote the identity matrix. By ||A||, we shall mean the operator
norm of the matrix A which is induced by the Euclidean vector
norm, i.e., ||A|| = sup||Af|| where the supremum is taken over all
vectors ξ of norm 1. The notation A* shall denote the conjugate-
transpose of the matrix A and for vectors ξ1 and ξ29 (ξ19 ξ2) = (ξt'ξi)m

is the inner product.
If there exists a number b > a such that L(y) — 0 has a non-

trivial solution satisfying
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( 1 ) j,«>(α) = 0 = y{ί){b) , (0 ;£ ΐ ^ n - 1) ,

then b is a conjugate point of α and the least such 6 is denoted by
7}(a). The equation L(y) = 0 is oscillatory on an interval [c, d] if
there exists a nontrivial y satisfying (1) for numbers a and b in
[c, d]. Otherwise, L(y) = 0 is nonoscillatory on [c, d]. The equation
£,(y) = 0 is oscillatory at zero if for each δ > 0 there exists an interval
[α, 6] c (0, δ) such that L(y) = 0 is oscillatory on [α, &]. The equation
L(l/) = 0 is oscillatory at infinity if for each N there exists an
interval [α, b]a(N, ©o) such that the equation is oscillatory on [α, b].

Let J^Cα, b) denote the set of all m-dimensional vector-valued
functions, y(x), that have compact support in [a, b], where the first
n-1 derivatives are absolutely continuous, and the derivative of
order n is essentially bounded. The set J^C(α, 6) is called the set
of admissible functions. For y e J#in(a, b), define the quadratic
functional

Ja fc=O

We remind the reader that for n > 1 and m > 1 other defini-
tions of oscillation are sometimes used. One of the primary moti-
vations for the study of oscillation in terms of conjugate points, as
above, is the connection with the spectrum of differential operators
generated by L (c.f. Glazman [8, pp. 35, 95-106]). The next theorem
is well-known and it is central to our study. It connects oscillation
theory, the calculus of variations, and spectral theory of differential
operators. In this regard, we refer the reader to the books of Reid
[20] and Gelfand and Fomin [8, Ch. 5], in addition to the above
reference.

THEOREM 1. The following statements are equivalent:
(i) The equation L(y) = 0 is nonoscillatory on [α, 6],
(ii) If ye J*4Λ(α, b) and | / ί θ , then I(y) > 0.

A paper of Etgen and Pawlowski [6] introduced the use of positive
functionals to establish oscillation criteria for second-order matrix
differential equations. For n = 1, the oscillation of matrix differental
equations at oo is equivalent to the oscillation of L(y) — 0 at ^ [5,
p. 254], Subsequent uses of positive functionals in this regard can
be found in [5] and [7].

A linear mapping, g, from the Banach space &m = {A\A is an
m x m complex-valued matrix} into the set of complex numbers is
said to be a positive functional if g(A*A) >̂ 0 for all A e £%m or
equivalently, g(A) ^ 0 whenever A — A* and A ^ 0. We say that
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g is nontrivial if g(A) Φ 0 for some A e &n. For a more general
setting the reader is referred to Rickart [21].

The following characterization, which was communicated to us
by Professor Alan Hopenwasser, is known in a more general context
[22, pp. 45-48].

THEOREM 2. For every nontrivial positive linear functional g,
there exist nonzero vectors vl9 , v89 s 5̂  m, such that

( 2) g(A) = Σ (Avif Vi)

for every A e &m.

2* A comparison theorem* We now use the characterization
of Theorem 2 and the fundamental criterion for oscillation given in
Theorem 1 to establish the following comparison theorem.

THEOREM 3. The oscillation of

n

\ O ) / t \ X.) \y\JΓjc\JO)) (A/ \ά>)) — "
fc=0

on [α, b]} for some nontrivial positive functional g, implies the oscil-
lation of L(y) — 0 on [a, b].

Proof. If (3) is oscillatory on [a, 6], then by Theorem 1 there
is an admissible function / e j / ^ α , b) such that / ί 0 on [α, b] and

k=Q Ja

Using the characterization of g given by Theorem 2 this inequality
becomes

Σ Σ Γ ( * ( K iχr%)γ ^ o
ι = l k=0 Ja

which implies that for some j e {1, 2, , s}

Σ

If we let ς = vj9 then the scalar equation

( 4 ) £W

must be oscillatory on [a, b] by Theorem 1. The conclusion follows
from Theorem 1 since f(x)-v3- is an element of *£<,n(α, 6). The proof
is complete.
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If ^(α), %(α), and ηz(a) are the least conjugate points of a with
respect to equations L(y) — 0, (4), and (3), then Theorem 3 shows
that ηγ(a) ^ η%(a) ̂  ηz(a).

COROLLARY 3.1. // there is a positive functional g such that (3)
is oscillatory at oo (at 0), then L(y) = 0 is oscillatoi*y at co (at 0).

Proof The proof follows immediately from the definitions and
Theorem 3.

In the second-order case, n = 1, results of [5, Theorem 4.3 and
p. 254] and [7, Theorem 3.2] show that (3) being oscillatory at oo
implies that L(y) — 0 is oscillatory at °o. The proof of Theorem 3
is not only valid for arbitrary n but it is considerably simpler than
the proofs of the associated theorems of [5] and [7] cited above.
However, the results of [5] and [7] do apply in a more general
infinite-dimensional setting.

The next corollary shows that many of the results in the litera-
ture concerning the oscillation of L(y) = 0 are corollaries of the fact
that the oscillation of (4) for some ξ Φ 0 implies the oscillation of
L(y) = 0 [17, Theorem 3.2].

COROLLARY 3.2. If the equation (3) is oscillatory at <*> (at 0),
then there is a nonzero constant vector ξ, among the vectors vif i —
1, , s, of (2), such that (4) is oscillatory at oo (at 0).

Proof If (3) is oscillatory at oo then there is a sequence of
intervals {[ajy bjDf = 1 with lim^*, a5 = oo such that (3) is oscillatory
on [aj9 6y] for every j. By Theorem 3, for each j there is some
i e {1, 2, ••-,«} such that (4) is oscillatory on [ajf bό] for ξ — vt. This
implies that there is some i e{l, 2, , s} such that for ζ = viy (4) is
oscillatory on each interval in a subsequence of the above sequence
of intervals whose end points also diverge to oo. This implies that
(4) is oscillatory at oo for the particular choice of ζ.

The proof of the case at 0 is similar.

Let Pit(x) denote the diagonal element of Pk(x) in row i and
column i. Let " t r" denote the "trace" functional. The oscillation
at oo (at 0) of

( 5 ) g (-l)fe(tr {Ph{x))u*\x))w = 0

implies, by Corollary 3.2, the oscillation at oo (at 0) of
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(6) M

for some i, 1 <I i ^ m. The oscillation of (6) at oo (at 0) implies the
oscillation of L(y) = 0 at co (at 0) by Theorem 3. Hence, as an
application of Corollary 3.2, we have that the oscillation of (5) at oo
(at 0) implies the oscillation of L(y) = 0 at oo (at 0).

Next, we give some examples to show how known oscillation
criteria for scalar equations can be used with Theorem 3 in order
to establish criteria for the oscillation of L(y) = 0.

EXAMPLE 1. If there is a positive functional g such that

\° g(P(x))~1 dx = - Γ x2(n-1]g(Q(x))dx = co
Jl Jl

then

(7) (-iy(P(x)y{n)(x)Yn) + Q(x)y(x) = 0

is oscillatory at oo.

Proof. This follows by using the corresponding scalar criterion
recently established by Miiller-Pfeiffer [18].

EXAMPLE 2. If there is a positive functional g such that

χag(Q(χ))dχ-= - c o

for some a < 2n — 1, then

(8) ( — l)nyi2n) + Q(x)y(x) — 0

is oscillatory at oo.

Proof Apply the result of Lewis [16, corollary to Theorem 2].

Finally, we give a generalization of the well-known oscillation
criterion of Glazman and Hille using the scalar result established
in [9, p. 100].

EXAMPLE 3. If g(Q(x)) ̂  0 for large x and

\g(Q(x))\dx > Al ,

SB

where



130 ROGER T. LEWIS AND LYNNE C. WRIGHT

A? - (V2ΪΓ=ϊ/(n - 1)!) Σ (-l)*-1^ j^(2n - k) ,

then equation (8) is oscillatory at oo.

It can be shown, [10], that

Al= \{2n - 1) (2Λ - 2) (n)Y/(2n - 1) .

Using these examples it is not difficult to see how to extend to
L(y) = 0 the oscillation criteria of Allegretto and Erbe [2], Etgen
[4], Hinton [10], Hinton and Lewis [11], Howard [13], Noussair and
Swanson [19], Swanson [23], and Tomastik [24].

3* Oscillation and nonosciUation at infinity* We present here
theorems which require conditions on the minimum (or maximum)
eigenvalues of the coefficient matrices of L{y) = 0 of the associated
two-term equation K(y) = (-l)n(P(x)y{n)(x)){n) .+ Q{x)y{x) = 0. These
results cannot be obtained by applying Theorem 3.

When m = 1, the next theorem is known [18] and we state it
without proof. It follows by adopting the proof in the scalar case

THEOREM 4. Suppose Pt{x) 5ΞJ 0 for each i = 0, 1, , n — 1. If

(9)

CLTld

(10) lim μ Γ x**'1-"Pt(x) dx = - oo
χ->oo J l

for some i = 0, 1, , n — 1, then L(y) = 0 is oscillatory at oo.

In the scalar case (m = 1), the original theorem of Mϋller-Pfeiffer
[18] does not require the sign restriction P0(x) ^ 0, when (9) holds
and (10) is true for i = 0.

Define

f(a,n) = [(2n - l)/(2n - . 1 + | αI)]2-1!-! a.|/(2w - 1 + | a [)]*

for a < 0 and f(af n) = 1 for α ^ 0. Note that for each fixed w

lim /(α, w) = 1 .
a-*0

Let
5(α, Λ) = f(a, n)Al

for Ai denned in Example 3.
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THEOREM 5. Suppose P(x) = xa I for some a < 2n — 1, Q(x) <: 0,

S oo

Q(x)dx exists. If

lim sup x271-1-"
X—>oo

then K(y) = 0 is oscillatory at

foo

Q(s)
JX

ds B(a, n)

Proof. When m = 1 (the scalar case) and 0 ^ a < 2w — 1 this
theorem is proved in [15, Theorem 3.1]. The proof for general m
follows readily. (In Theorem 3.1 of [15], the author erroneously
claims that for a < 0 the proof follows from a theorem of Glazman.)
Consequently, we consider here only the case when a < 0.

Let p(x) be a polynomial satisfying pw = p{k)(0) = p(fe)(l) = 0 for

k = 1, 2, 1, and = 1. For μ e (0, 1) and 1 < p < R, define

/ / x _ nβ \

p cr_ ) 9 x e [μo, p)
\p(l-μ)/

x e [^, 5)

x e [i?, 2i?]

and Φ(x) Ξ
Let ξ be a constant unit vector and define y(x) = Φ(x)-ξ. Calcu-

lations show that

p
{n) dx

R

< A2% Γ — ^ — +

The function of μ, μa/(l — μ)2n~\ assumes its minimum,

on (0, 1) at μ — \a\/(2n — 1 + |α |) . With this substitution for μ, we
have the inequality

S IR

(xayM(x),y'n)(x))dx

. Al [{ 2 Λ - 1 \—V \a
\a R
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The limit in the hypothesis is equivalent to the limit obtained
by replacing the norm with the absolute value of the minimum
eigenvalue.

Let (pk) —> oo as k —> oo be a sequence satisfying

\\mpf-ι~κμ Γ Q{s)ds = -B(a, ri) - σ

for some σ > 0, and choose JV such that for p = pN

p*»-i-*μ [° Q(s)ds ^ -B(a, n) - σ/2 .
JP

Choose R so large that

[*Q(8)fo ^ -B(CX, U) - £7/4

and (pIR)2*-1-" ^ σ/4.
If ξ is chosen to be an eigenvector corresponding to

μ\UQ(s)ds
JP

then by (11)

S 2IΪ

[ ( * V '(aO, 2/<M)(x)) - (Q(*)»(*) f »(»))] <te ^ 0 ,

and the proof is complete.

In contrast, we state the next theorem.

THEOREM 6. Let P(x) = xalfor some constant a £ {1, 3, , 2n — 1}
and which satisfies a < 2n — 1. //

Q(s) ds
J l

exists and

lim sup a;2*-1-*

3) . (a - 2n

= 0 is nonoscillatory at oo.

The proof follows by adapting the proof of its scalar version
[12, Theorem 2.2].

In [12], a criterion is established which applies when a ^ 2n — 1.
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Added in Proof. The authors wish to bring to the readers at-
tention a related paper by Philip Hartman, "Oscillation criteria for
self-adjoint second-order differential systems and "Principal Sectional
Curvatures," J. Differential Equations, 34 (1979), 326-338.
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