THE GALOIS GROUP OF A POLYNOMIAL WITH TWO INDETERMINATE COEFFICIENTS

S. D. COHEN

Suppose that $f(x)=\sum_{i=0}^n\alpha_iX^i(\alpha_0\alpha_n\neq 0)$ is a polynomial in which two of the coefficients are indeterminates t,u and the remainder belong to a field F. We find the galois group of f over F(t,u). In particular, it is the full symmetric group S_n provided that (as is obviously necessary) $f(X)\neq f_1(X^r)$ for any r>1. The results are always valid if F has characteristic zero and hold under mild conditions involving the characteristic of F otherwise. Work of Uchida [10] and Smith [9] is extended even in the case of trinomials X^n+tX^a+u on which they concentrated.

1. Introduction. Let F be any field and suppose that it has characteristic p, where p=0 or is a prime. In [9], J. H. Smith, extending work of K. Uchida [10], proved that, if n and a are coprime positive integers with n>a, then the trinomial X^n+tX^a+u , where t and u are independent indeterminates, has galois group S_n over F(t,u), a proviso being that, if p>0, then $p \nmid na(n-a)$. (Note, however, that this conveys no information whenever p=2, for example.) Smith also conjectured that, subject to appropriate restriction involving the characteristic, the following holds. Let I be a subset (including 0) of the set $\{0,1,\cdots,n-1\}$ having cardinality at least 2 and such that the members of I together with n are co-prime. Let $T=\{t_i, i \in I\}$ be a set of indeterminates. Then the polynomial $X^n+\sum_{i=0}^{n-1}t_ix^i$ has galois group S_n over F(T).

In this paper, we shall confirm this conjecture under mild conditions involving p(>0), thereby extending even the range of validity of the trinomial theorem. In fact, we also relax the other assumptions. Specifically, we allow some of the t_i to be fixed nonzero members of F and insist only that two members of T be indeterminates. Indeed, even if the co-prime condition is dispensed with, so that the galois group is definitely not S_n , we can still describe what that group actually is. On the other hand, if, in fact, more than two members of T are indeterminates, then the nature of our results ensures that, in general, the relevant galois group is deducible by specialization.

Accordingly, from now on, let I denote a subset of *co-prime* integers from $\{0, 1, \dots, n\}$ containing 0 and n and having cardinality ≥ 3 . Write

(1)
$$f(X) = \sum\limits_{i \in I} lpha_i X^i = g(X) + t X^a + u X^b (lpha_0 lpha_n
eq 0, \, 0 \leqq b < a \leqq n)$$
 ,

say, where two of the coefficients α_a , α_b are indeterminates t, u and the remaining coefficients $\alpha_i (i \neq a, b)$ are fixed nonzero members of f; in particular, g is not identically zero. By the co-prime condition, assuredly f is separable, i.e., $f(X) \neq f_1(X^p)$. (We deal with sets of the form I which are not co-prime by equivalently considering $f(X^r)$ with r > 1, §4.) Put G = G(f(X), F(t, u)), the galois group of f over F(t, u), regarded as a group of permutations of the zeros of f.

THEOREM 1. Let f(x) in F[t, u, X] be given by (1). Suppose $G \neq S_n$. Then p > 0 and g(X), X^a and X^b are linearly dependent over $F(X^p)$. In particular, p divides (n-a)(n-b)(a-b).

Notes. (i) The polynomials g(X), X^a and X^b are linearly dependent over $F(X^p)$ if and only if either $p \mid (a-b)$ or

$$g(X) = g_{\scriptscriptstyle 1}(X^{\scriptscriptstyle p})X^{\scriptscriptstyle a^*} + g_{\scriptscriptstyle 2}(X^{\scriptscriptstyle p})X^{\scriptscriptstyle b^*}$$
 ,

where $g_1(X)$, $g_2(X) \in F[X]$ and, for any integer m, m^* denotes the least nonnegative residue of m modulo p.

(ii) For the case in which F is an algebraic number field, Theorem 1 is an easy by-product of Theorem 1 of [4].

If, for example, p=2, then Theorem 1 is vacuous. However, if, additionally, we assume that f is monic (i.e., $a \neq n$) and has indeterminate constant term (i.e., b=0), then we can strengthen Theorem 1 to give useful information even when p=2 (although we retain one restriction, namely, $p \nmid (a, n)$). Before stating the result, we introduce some further notation. Let $c(\leq a)$ denote the least positive member of I. Further, define

$$e = \begin{cases} a^*, & \text{if} \quad p \nmid a, \\ n^*, & \text{if} \quad p \mid a. \end{cases}$$

Finally, let $\gamma(n)$ be the maximal degree of transitivity of a subgroup of S_n that is neither S_n itself nor the alternating group, A_n .

THEOREM 2. Suppose that f is given by (1) with $a \neq n, b = 0$ and $p \nmid (a, n)$. Suppose $G \neq S_n$. Then one of the following (i)-(iii) holds.

- (i) $a = n 1 \text{ and } c \ge n \gamma(n) + 1(>1)$
- (ii) $a \le \gamma(n) 1(< n-1) \ and \ c = 1$,
- (iii) a = n 1 and c = 1, necessarily with p = 2 if $p \nmid (n 1)$. Moreover, there exist $g_1(X)$, $g_2(X)$ in F[X] such that

$$g(X) = g_1(X^p)X^e + g_2(X^p)$$
,

except possibly when c = 1 and a = n - 1, the latter being divisible by p.

REMARKS. (a) I cannot quite prove (2) in the excluded case (see §3). On the other hand, if $p \mid a$ then, aside from this case ((iii)), the proof actually implies that

$$g(X)=lpha X^n+g_{\scriptscriptstyle 2}(X^p)$$
 , $lpha
eq 0$.

(b) Some estimates for $\gamma(n)$ are

(4)
$$\gamma(n) \leq \frac{1}{3}n + 1 \text{ (see [1, p. 150]);}$$

(5)
$$\gamma(n) \leq 3\sqrt{n} - 2, n > 12 \ ([7], [1, p. 150]);$$
 $\gamma(n) < 3 \log n, n \to \infty \ ([11]).$

- (c) It is an open question whether in (i) we must have a = c = n 1, i.e., $f(X) = X^n + tX^{n-1} + u$ and in (ii) we must have a = c = 1. In any event, the trinomials $X^n + tX + u$ considered by Uchida emerge as the most likely type of polynomial for which $G = S_n$ may be false. Indeed, he demonstrated that sometimes in this case G is definitely not S_n .
- (d) In fact, in the cases excluded by the hypotheses of Theorem 2 (namely, $p \mid (a, n)$, $b \neq 0$, etc.), I have obtained partial results in the direction of Theorem 2 but the details are too cumbersome to present here. However, although it is difficult to state a comprehensive result, the methods used presently will often enable G to be determined for a given specific f.

From Theorem 2, we derive immediately the following improvement of Smith's theorem.

COROLLARY 3. Let $f(X) = X^n + tX^a + u$, where (a, n) = 1, (n > a > 0). Then $G = S_n$ unless p(>0) divides n(n-1) and a = 1 or n-1.

The galois group of $f(X^r)(r > 1)$ over F(t, u) is described in §4.

2. Preliminary results. Clearly, if Theorems 1 and 2 hold when F is algebraically closed, then they are valid for arbitrary F. Hence we assume throughout §§2-3 that F is algebraically closed. In particular, F is infinite. As usual, the phrase "for almost all members of F" means "for all but finitely many members of F".

A simplification arises from the use of the following lemma

established by Uchida [10] in a special case. (Suprisingly, Smith failed to use the corresponding result in his paper, [9].)

Lemma 4. Suppose that f is given by (1). Then G is doubly transitive.

Proof. Obviously f is irreducible over F(t, u) and hence G is transitive. Let x be a zero of f in a suitable extension of F(t, u). Then $x \neq 0$ and $u = -(g(x) + tx^a)/x^b$ so that F(t, u, x) = F(t, x), x being transcendental over F. Thus

$$(6) x^b f(X) = x^b g(X) - g(x) X^b + t(x^b X^a - x^a X^b).$$

Of course, X-x is a factor of (6). But since (6) is linear in t and separable, then f(X)/(X-x) can be reducible as polynomial in X only if for some $\xi(\neq x)$ in an extension of F(x) we have

(7)
$$x^b g(\xi) = \xi^b g(x) \quad \text{and} \quad \xi^a x^b = \xi^b x^a.$$

Now, $g(0) \neq 0$ or b = 0. In either case, (7) implies that $\xi \neq 0$ and that, in fact, $\xi = \zeta x$, where ζ is an (a - b)th root of unity $(\neq 1)$ in F (so that a - b > 1). Hence, we have

$$g(\zeta X) = \zeta^b g(X) ,$$

identically. If b=0, deduce from (8) that $g(X) \in F[X^a]$, where a>1, which yields the contradiction that $f(X) \in F[t, u, X^a]$. Otherwise, if b>0, then $g(0)\neq 0$ and so, by (8), $\zeta^b=1$. Accordingly, ζ must be a primitive dth root of unity for some d(>1) dividing (a, a-b)=(a, b) and, therefore, $f(X) \in F[t, u, X^a]$, again a contradiction and the lemma is proved.

An immediate consequence of Lemma 4 is that, if G is known to contain a transposition, then necessarily $G=S_n$. The next lemma will enable us to generate members of G with identifiable cycle patterns. First, we connect such a permutation cycle pattern with the "cycle pattern" of a polynomial h(X) of degree n in F[X] (recalling that F is assumed to be algebraically closed). To define this concept, suppose that in the factorization of h(X) into a product of linear factors there are precisely μ_i distinct factors of multiplicity $i, i = 1, 2, \cdots$. Thus $\sum i \mu_i = n$. We shall then say that h has cycle pattern $\mu(h) = (1^{(\mu_1)}, 2^{(\mu_2)}, \cdots)$, where the ith term is omitted if $\mu_i = 0$. For a given n, we extend this definition to apply to all nonzero h of degree d < n by formally adjoining ∞ to F and defining $\mu(h)$ to be the cycle pattern of $(X - \infty)^{n-d}h(X)$. Such a cycle pattern is identified with a cycle pattern of a permutation in S_n in the obvious way. The proof of the lemma we now state represents a

simplification of the first part of Lemma 7 of [4] and is not restricted to "tame" polynomials.

LEMMA 5. Let F be algebraically closed and $h_1(X)$, $h_2(X)$ be nonzero co-prime polynomials in F[X] not both in $F[X^p]$ and such that $n = \max(\deg h_1, \deg h_2)$. Suppose that $(\beta_1, \beta_2)(\neq (0, 0)) \in F^2$ and put $\mu = \mu(\beta_1 h_1 + \beta_2 h_2)$. Let t be an indeterminate. Then $G(h_1 + th_2, F(t))$ contains an element with cycle pattern μ .

Proof. Evidently, $h_1 + th_2$ and $th_1 + h_2$ have the same galois group over F(t). Hence, we may assume, without loss of generality, that $\beta_1 \neq 0$. Put $\beta = -\beta_2/\beta_1$ and write h for $h_1 + th_2$. We now make some transformations which, while not essential, make the argument easier to visualise. First, replacing h_1 by $h_1 + \beta h_2$ and t by $t + \beta$, we can suppose that $\beta = 0$. If then $\deg h_1 < n$, we may take $(cX + d)^n h_1(L(X))$ for h_1 and $(cX + d)^n h_2(L(X))$ for h_2 , where L(X) is a nonsingular linear transformation with denominator cX + d, in such a way that $\deg h_1 = n$. Obviously, the hypotheses remain valid and h has a galois group isomorphic to the original one.

Now, let x be a zero of h. Then $t = -h_1(x)/h_2(x)$ and F(t, x) = F(x), x being transcendental over F. The function field extension F(x)/F(t) has degree n and genus 0. In particular, if P(x) is a (linear) irreducible factor of $h_1(x)$, then the P(x)-adic valuation on F(x) is an extension of the t-adic valuation on F(t). Indeed, in the extension to F(x) of the local ring of integers of F(t) corresponding to the t-adic valuation, the cycle pattern μ provides a description of the ramification of t in the sense that there are precisely μ_i primes with ramification index $i, i = 1, 2, \cdots$, in its prime decomposition. It follows [2, Ch. 2] that, in the prime decomposition of h(X) over $F\{t\}$, the t-adic completion of F(t), there are precisely μ_i distinct irreducible factors of degree $i, i = 1, 2, \cdots$. Hence $G(h, F\{t\})$ (which is cyclic [2, Ch. 1]) clearly has as a generator a permutation with cycle pattern μ . However, $G(h, F\{t\})$ can be considered as a subgroup of G(h, F(t)) and the proof is complete.

COROLLARY 6. Let F be algebraically closed and $h_1(X)$, $h_2(X)$, $h_3(X)$ be co-prime polynomials in F[X], not all in $F[X^p]$, linearly independent over F and such that $\max_i \deg h_i = n$. Suppose that $(\beta_1, \beta_2, \beta_3)(\neq (0, 0, 0)) \in F^3$ and put $\mu = \mu(\beta_1 h_1 + \beta_2 h_2 + \beta_3 h_3)$. Let t, u be indeterminates. Then $G(h_1 + th_2 + uh_3, F(t, u))$ contains an element with cycle pattern μ .

Proof. We may suppose that $\beta_1 \neq 0$. Note that the h_i 's and the polynomial $B:=\beta_1h_1+\beta_2h_2+\beta_3h_3$ are nonzero. By our assumptions

and the fact that F is infinite. We can choose γ_2 and γ_3 in F such that $h_1^* := \beta_1 h_1 + \gamma_2 h_2 + \gamma_3 h_3$ is not in $F[X^p]$ and $(h_1^*, B) = 1$. (For example, if the latter assertion were false, B would have a nontrivial factor which divides h_1^* for infinitely many values of each of γ_2 and γ_3 and so divides (h_1, h_2, h_3) contrary to hypothesis.) With this choice of γ_2 and γ_3 , put $h_2^* = (\beta_2 - \gamma_2)h_2 + (\beta_3 - \gamma_3)h_3$. Then h_1^* and h_2^* satisfy the conditions of Lemma 5. Consequently, $G(h_1^* + th_2^* F(t))$, ($\subseteq G(h_1 + th_2 + uh_3, F(t, u))$) contains an element of cycle pattern μ , as required.

3. When is the galois group S_n ? We shall use R'(X) to denote the formal derivative of rational function R (usually a polynomial) in F(X). Of course, all members of $F(X^p)$ are constants with respect to this differentiation process. Moreover, if $(X - \theta)^k || h'(X)$ (exactly), where h is a polynomial and $k \ge 1$, then $(X - \theta)^j || (h(X) - h(\theta))$, where j = k + 1 or k, the latter being possible if $p \mid k$.

Theorem 1 is immediate from the next lemma together with the remark subsequent to Lemma 4 and Corollary 6. Recall that we are assuming that F is algebraically closed.

LEMMA 7. Suppose that f is given by (1) and that g(X), X^a and X^b are linearly independent over $F(X^p)$. Then there exists $(\beta_1, \beta_2, \beta_3)$ in F^3 with $\beta_3 \neq 0$ (and $\beta_2 \neq 0$ if a = n) such that

$$(\mu(B)=)\mu(\beta_1g(X)+\beta_2X^a+\beta_3X^b)=(1^{(n-2)},2^{(1)}).$$

Proof. Suppose a < n so that $\deg g = n$ and put $\beta_1 = 1$. (Otherwise, if a = n, put $\beta_2 = 1$ and proceed in like manner.) The assertion which follows is established by the argument of Lemma 5 of [3] as expressed in the more general context of Lemma 9 of [4] (yet without the restriction p > n assumed there). Note that the hypothesis " $p \nmid 2(n - m)$ " and the tameness assumption implicit in the statement of Lemma 5 of [3] are not relevant here and not necessary for the proof. The conclusion is that for almost all β_2 in F, $\mu(B) = (1^{(n)})$ or $(1^{(n-2)}, 2^{(1)})$ for every β_3 in F. We show that the latter must occur for some pair $(\beta_2, \beta_3)(\beta_3 \neq 0)$ in F^2 .

To do this, consider the polynomial equation

$$(9) bg(X) - Xg'(X) + (b-a)\beta_2 X^a = 0.$$

Now, for almost all β_2 , the left side of (9) is a polynomial in F[X] not of the form $\delta_1 X^a(\delta_1 \in F)$. (Otherwise, since $p \nmid (a - b)$ and F is infinite, we would have identically

$$rac{bX^{b-1}g(X)-X^bg'(X)}{X^{2b}}=\delta_2X^{a-b-1}\quad (\delta_2\,{\in}\, F)$$
 ,

which implies that $g(X)/X^b = \delta_3 X^{a-b} + \phi(X^p)$, for some rational function ϕ . But this would mean that

$$g(X) = \delta_3 X^a + \phi(X^p) X^b$$
 ,

contrary to hypothesis.) It follows that, for almost all β_2 , we can pick a nonzero solution $X=\xi(=\xi(\beta_2))$ of (9). Obviously, as β_2 varies, $\xi(\beta_2)$ must take infinitely many distinct values (because $p \nmid (b-a)$). Next, we claim that, for almost all β_2 , $g(\xi)+\beta_2\xi^a\neq 0$. For, if this were false, then we could conclude from (9) that infinitely many ξ would satisfy $ag(\xi)-\xi g'(\xi)=0$ which would imply that $g(X)=\phi_1(X^p)X^a$, say, a contradiction. Put $\beta_3=-(g(\xi)+\beta_2\xi^a)/\xi^b$. Then $(X-\xi)^2|B$. Hence, for almost all β_2 , $\beta_3\neq 0$ and $\mu(B)=(1^{(n-2)},2^{(1)})$. This completes the proof.

We now move towards the proof of Theorem 2 and can assume p > 0. Take b = 0, $a \ne n$ and define c as in Theorem 2. However, in the meantime, we continue to allow the possibility $p \mid (a, n)$.

Lemma 8. There exist σ_1 , σ_2 , σ_3 , σ_4 in G with cycle patterns as follows

$$\mu(\sigma_1)=(n^{(1)}), \ \mu(\sigma_2)=((n-a)^{(1)}, a^{(1)}) \ , \ \mu(\sigma_3)=((n-a)^{(1)}, (p^q)^{(a_1)}) \ , \ \ \mu(\sigma_4)=(c^{(1)}, (p^r)^{(s)}) \ ,$$

where $a = p^q a_1(q \ge 0, p \nmid a_1)$ and $n - c = p^r s(r \ge 0, (p^r, c) = 1)$.

Note. Of course, if a = n/2, then σ_2 is really $(a^{(2)})$, etc.

Proof. We use Corollary 6. Write $\mu(\beta_1, \beta_2, \beta_3)$ for $\mu(\beta_1 g(X) + \beta_2 X^a + \beta_3)$.

Since $\mu(0, 0, 1) = (n^{(1)})$, the existence of σ_1 is clear. Similarly, σ_2 is present because $\mu(0, 1, 0) = ((n - a)^{(1)}, a^{(1)})$. Next, $\mu(0, 1, -1) = ((n - a)^{(1)}, (p^q)^{(a_1)})$ which yields σ_3 . For σ_4 , we consider $\mu(1, \beta, 0)$ for an appropriate nonzero value of β and distinguish two cases.

- (i) $p \mid a$. We show that here we can pick β such that the part $g(X) + \beta X^a$ that is prime to X is actually square-free. This would give the existence of σ_4 with r = 0. For any β in F, the repeated roots of $g(X) + \beta X^a = 0$ satisfy g'(X) = 0. Now, g'(X) is not identically zero for otherwise $g(X) \in F[X^p]$ which would mean that $f(X) \in F[t, u, X^p]$. Thus $g'(\theta) = 0$ for at most n 1 nonzero values of θ . Choose any nonzero β which is not equal to $-g(\theta)/\theta^a$ for any such θ and we are through.
 - (ii) $p \nmid a$. By Theorem 1 we may assume that g has the form

$$g(X) = g_1(X^p)X^{a^*} + g_2(X^p)$$
, $a^* \equiv a \pmod{p}$,

where g_1 and g_2 are polynomials not both zero. Clearly, a repeated zero θ of $g(X) + \beta X^a$ for any given β must satisfy

$$(10) g_1(\theta^p)\theta^{a^*} + \beta \theta^a = 0.$$

Suppose g_2 is not identically zero. We can evidently choose $\beta(\neq 0)$ such that $g_1(X^p)X^{a^*} + \beta X^a$ and $g_2(X^p)$ have highest common factor X^c . Then $g(\theta) + \beta \theta^a \neq 0$ for any nonzero θ satisfying (10) and so $\mu(1, \beta, 0) = (1^{(n-c)}, c^{(1)})$.

Accordingly, suppose g_2 is identically zero. Then $c \equiv a \not\equiv 0 \pmod{p}$. By way of illustration, take c = a; the remaining possibilities submit to an analogous treatment. We have

$$g(X)+eta X^a=(h(X)+eta_{\scriptscriptstyle 1})^{p^r} X^a$$
 ,

say, where $r \ge 1$, $\beta_1^{p^r} = \beta$ and $h(X) \notin F[X^p]$. By definition, h' is not identically zero and so we can easily select $\beta_1(\ne 0)$ such that $\beta_1 \ne -h(\theta)$ for any θ for which $h'(\theta) = 0$. Put $\beta = \beta_1^{p^r}$ and we find that $\mu(1, \beta, 0) = (a^{(1)}, (p^r)^{(s)})$, where here a = c is not divisible by p. The result is then clear.

All future references to $\sigma_1, \dots, \sigma_4$ will be to those permutations constructed in Lemma 8.

Lemma 9. $G \not\subseteq A_n$.

Proof. If n is even, then σ_1 is an odd permutation. If n is odd, then σ_2 is an odd permutation whether a is even or odd.

Note. In the cases $b \neq 0$ or a = n omitted from the present discussion, similar considerations show that Lemma 9 remains true except possibly when n is even and a and b are both odd or when a = n is odd, b = 0 and both c and the degree of g are even.

Before proceeding with the proof of Theorem 2, we state a lemma which is based on some classical (but nontrivial) results on permutation groups. We let G (temporarily) be any doubly transitive subgroup of S_n . For any σ in G, let $\lambda(\sigma)$ denote the number of symbols actually moved by σ and define λ , the *minimum degree* of G to be $\min_{\sigma \neq 1} \lambda(\sigma)$.

LEMMA 10. (i) Suppose that G contains a d-cycle, where 1 < d < n. Then G is (n-d+1)-ply transitive.

(ii) Suppose that $G \neq A_n$ or S_n but is (d+1)-ply transitive where d > 1. Then $\lambda \geq 2d$ with strict inequality unless d = 2 and n = 6 or 8 or d = 3 and n = 11 or d = 4 and n = 12.

Proof. (i) Since G is certainly primitive, this follows from

Theorem 13.8 in [12]. (For a proof and comments on its authorship and history see [5] and the review of [5] in Mathematical Reviews.)

(ii) If d>1, the inequality $\lambda\geq 2d$ is standard (see [1, p. 150]). There may well be a direct proof of the strict inequality but I extract it from previous work. We may suppose $\lambda=2d$. Using the table of lower bounds for λ given in Theorem 15.1 of [12] (due to W. A. Manning), we may easily check that, if $d\leq 6$, then $n\leq 20$. Suppose $d\geq 7$ and n>12. Then, again by [12, Theorem 15.1] and also (5)

$$\frac{2}{3}n \leq 2d \leq 6\sqrt{n} - 6$$
 ,

which implies that $n \le 63$. However, if $n \le 63$ we cannot have $d \ge 7[1, p. 164]$. Hence $d \le 6$ and $n \le 20$. Therefore, either d = 2 or d = 3 and G is the Mathieu group M_{11} or d = 4 and $G = M_{12}$. Finally, if d = 2 and $\lambda = 4$, it follows from G. A. Miller's list [6] of primitive groups with minimal degree 4 that G can be triply transitive only if n = 6 or n = 8. This completes the proof.

Proof of Theorem 2. We can take g to be monic. Suppose that $G \neq S_n$. By Lemma 9, $G \neq A_n$ either. (This holds, in fact, even if $p \mid (a, n)$ as does the next deduction.) With reference to σ_4 , since r = 0 or $p \nmid c$, then σ_4^{pr} is a c-cycle and so, if c > 1, Lemma 10(i) implies that G is (n - c + 1)-ply transitive.

From now on suppose that $p \nmid (a, n)$ as in the hypothesis of the theorem. Then $\sigma_3^{p^a}$ is an (n-a)-cycle. Accordingly, if a < n-1, then G is (a+1)-ply transitive.

It follows from the above and (4) that, if both a < n-1 and c > 1, then $2n/3 \le c \le a \le n/3$, a glaring contradiction. Hence, either a = n-1 or c = 1 and, in fact, one of (i)-(iii) in Theorem 2 must hold. In particular, since we know already that f must have the form (2) when $p \nmid a$ (by Theorem 1), then, if $p \nmid a = n-1$ and c = 1, necessarily p = 2.

It suffices, therefore, to show that, if $p \mid a$ (but $p \nmid n$), then unless f has the form (3), (i) and (ii) lead to a contradiction. We consider the two cases separately.

We begin with (ii). Thus, suppose

$$f(X) = g(X) + tX^{a} + u, p | a, a < n - 1, c = 1.$$

Then actually (3) is impossible (since c=1) and so g'(X)=0 has a nonzero root θ . For a nonzero value of β to be chosen, set $u=-g(\theta)-\beta\theta^a$. Thus

$$f(X) = g(X) - g(\theta) + \beta(X^a - \theta^a),$$

where $(X-\theta)^j||(g(X)-g(\theta))$, say, for some $j\geq 2$. Put $a=p^qa_1$. If $j\neq p^q$, then $(X-\theta)^k||f(X)$, where $2\leq k=\min(j,p^q)\leq p^q$. Even if $j=p^q$ this remains true for almost all β . Of course, it is possible that f(X) (given by (11)) has another multiple factor, a power of $(X-\rho)$, say, where $\rho\neq\theta$ and $g'(\rho)=0$. By (11), for almost all β , $g(\rho)=g(\theta)$ and $\rho^a=\theta^a$ which, in particular, implies that $\rho^{a_1}=\theta^{a_1}$. Hence there are at most a_1-1 candidates for ρ . Moreover, as for $X-\theta$, the exact power of any such $X-\rho$ dividing f(X) does not exceed p^q for almost all β . Consequently, we can choose β so that the part of f(X) comprising its factors of multiplicity exceeding 1 has degree δ , say, where $2\leq\delta\leq p^qa_1=a$. Apply Corollary 6 to this polynomial to derive the existence of σ in G with $\lambda(\sigma)=\delta$. Hence G has minimal degree $\lambda\leq\delta\leq a$. But G is (a+1)-ply transitive and so Lemma 10(ii) supplies a contradiction.

Finally, suppose that (i) holds that but f does not have form (3). Then

$$f(X) = g(X) + tX^{n-1} + u, p | n-1, c > 1$$

where $g(X) = X^c h(X)$, say, with $h(0) \neq 0$ and deg h = n - c. By our assumptions, g'(X) = 0 has at least one and at most n - c nonzero roots. As before, for a β in F to be chosen put $u = -g(\theta) - \beta \theta^{n-1}$. Then $X - \theta$ is a multiple factor of

(12)
$$f(X) = g(X) - g(\theta) + \beta(X^{n-1} - \theta^{n-1}).$$

Put $n-1=p^sn_1(s\geq 1,\ p\nmid n_1)$. For almost all β , if $(X-\rho)(\rho\neq\theta)$ is also a multiple factor of (12), then

(13)
$$g'(\rho) = 0, g(\rho) = g(\theta) \text{ and } \rho^{n_1} = \theta^{n_1},$$

which certainly forces $n_1 > 1$. Let Q(X) be that part of $g(X) - g(\theta)$ involving $X - \theta$ and any $X - \rho$ for which ρ satisfies (13). If $n_1 > 1$, even if we take a pessimistic view, we can safely conclude that Q has degree at most 2(n-c), equality being possible if $g'(X)/X^{c-1}$ is square-free. On the other hand, if $n_1 = 1$, then $\deg Q \leq n - c + 1$, equality occuring only if $g'(X) = X^{c-1}(X - \theta)^{n-c}$. Choosing a nonzero β outside a finite subset of F in the usual way, we can exhibit, using Corollary 6, a nonidentical member σ of G for which $\lambda(\sigma) \leq 2(n-c)$ with $\lambda(\sigma) \leq n-c+1$, in fact, if $n_1 = 1$. Hence G is (n-c+1)-ply transitive with $\lambda \leq 2(n-c)$ which contradicts Lemma 10(ii) (since $c \leq n-2$) unless c = n-2 and n = 6 or n-20 unless n-21. However, if n=62 or n-23 and n=12. However, if n=63 or n-24 and n=13. However, if n=64 or n-25. Then because n-16 is prime, necessarily n-1=p6. Hence n=17 and n=19 which now is incompatible with Lemma 10(ii). Suppose finally that n=11 and n=12. Then either n=12 which

means that $X^{8}|g'(X)$ forcing $\lambda \leq 4$ or p=5 which implies that $n_{1}=2$, deg $Q \leq 5$ so again $\lambda \leq 5$. This yields a contradiction either way. (Alternatively, use the fact that $M_{11} \subseteq A_{11}$.) This completes the proof.

REMARKS. When $p \mid n-1$, I can show that (2) holds in the excluded case (iii) unless the roots of g'(X) = 0 can be arranged in s nonsingleton bunches, where $1 < s \le n_1$, the members of each bunch giving rise to identical values of g and n_1 th powers (without however g'(X) being of the form $g_1(X^{n_1})$). Loosely, call any g which satisfies a condition like this awkward. In fact, for large n, (2) holds unless s = 2. Similarly, if $p \mid a$, we can reach beyond (2) in a description of g. Further, even if $p \mid (a, n)$ or $b \ne 0$, etc., we can obtain information on G and g by analogous arguments. However, the results are too fragmentary to record in detail. Nevertheless, if a specific f not covered by Theorems 1 and 2 is given, an examination of its multiple points may well yield $G = S_n$. We conclude this section by beginning the treatment of one case in which $p \mid (a, n)$.

Suppose $p \mid (a, n)$, where $a = p^q a_1(q \ge 1, p \nmid a_1)$ but $(n-a) \nmid p^q$ (for example, whenever a < n/2); in particular a < n-1. Then $1 < \lambda(\sigma_3^{p^q}) \le n-a$. Thus, $\lambda \le n-a$. If, additionally, c > 1, then G is (n-c+1)-ply transitive and Lemma 10(ii) provides a contradiction. Thus we must have c = 1.

4. Polynomials in $X^r > 1$. Let f be given by (1) as before. For any r > 1, we wish to find $G_r := G(f(X^r), F(t, u))$. Obviously, if p > 0, we may assume that $p \nmid r$. Note that we no longer assume throughout that F is algebraically closed; nevertheless, we appeal to the results of §§2-3 when appropriate. Some devices used in [4] come to the fore.

Let x_1, \dots, x_n be the zeros of f(X) and define

$$H_r = G(f(X^r), F(t, u, x_1, \dots, x_n)).$$

Then $H_r \cong G_r/G$. For each x_j , $j=1, \dots, n$, let y_j be an rth root of x_j . G_r and H_r are groups of permutations of $\{\zeta^i y_j, i=0, \dots, r-1, j=1, \dots, n\}$, where ζ is a primitive rth root of unity. With reference to (1), let $\delta(=\delta(F))$ be the least positive divisor of r for which $(-1)^n \alpha_0/\alpha_n$ is an (r/δ) th power in $F(\alpha_0, \alpha_n)$. Evidently, if either a=n or b=0, then $\delta=r$. Put $\eta=((-1)^n\alpha_0/\alpha_n)^{\delta/r}$. We know that usually $G=S_n$. The following lemma [4, Lemma 5] then narrows down the possibilites for H_r . In it, D denotes the discriminant of f and so is a polynomial in F[t,u] and C_m is a cyclic group of order m.

LEMMA 11. Suppose that $F = F(\zeta)$ and that $G = S_n$. Then either

(14)
$$H_r = C_r^{n-1} \times C_{\varepsilon} ,$$

where

$$arepsilon = egin{dcases} \delta/2 \ , & if \ \delta \ is \ even \ and \ \eta D \ is \ a \ square \ in \ F(t, \, u) \ , \ \delta \ , & otherwise \ ; \end{cases}$$

or, for some prime q dividing r,

$$(15) H_{q} < C_{q}.$$

In fact we are able to eliminate the possibility that (15) holds and obtain our final theorem which is certainly applicable whenever f is one of the polynomials shown to have $G = S_n$ by either Theorem 1 or Theorem 2.

Theorem 12. Suppose f given by (1) is such that $G=S_n$. Let r>1. Then

$$H_r \cong C_r^{n-1} imes C_{arepsilon} imes arPhi$$
 ,

where $\varepsilon = \delta$ or $\delta/2$, $\delta = \delta(F(\zeta))$ and Φ is the galois group of the cyclotomic extension $F(\zeta)/F$. In fact, $\varepsilon = \delta$ unless p > 0, δ is even and g(X), X^a and X^b are linearly dependent over $F(X^p)$.

Note. Of course δ is odd whenever r is odd. Although more investigation would further limit the possibilities in which $\varepsilon = \delta/2$ could happen, some restriction is necessary, particularly for awkward g (see below).

Proof. The result is derived from Lemma 11 in a manner based on Lemma 6 of [4] to which reference is made. By symmetry, we may assume that, if a = n, then b = 0.

We note first that, if g(X), X^a and X^b are linearly independent over $F(X^p)$, then the care we took in Lemma 7 to ensure that $\beta_a \neq 0$ (and $\beta_2 \neq 0$, if a = n) now repays us with the conclusion that the part of the discriminant D which is prime to u (and t) has a nontrivial irreducible factor of multiplicity 1. Hence ηD cannot be a square in F(t, u) and hence, granted (14) holds, we must have $\varepsilon = \delta$.

Accordingly, it suffices to assume that $F = F(\zeta)$ and show that (15) is impossible. Suppose, to the contrary, that q is a prime divisor of r for which (15) holds. Replacing F by its algebraic closure does not affect this property, so we may assume that, in fact, F is

¹ There are occurrences of (15) with f not of the form (1); these have been classified by the author and W. W. Stothers.

algebraically closed. Actually, (15) can be interpreted to say that any member of H_q has cycle pattern $(1^{(nq)})$ or $(q^{(n)})$. We distinguish two cases.

(i) $b \neq 0$. Put $a - b = p^k d(k \geq 0, p \nmid d)$. Then $\mu(X^a - X^b) = ((n-a)^{(1)}, (p^k)^{(d)}, b^{(1)}) = \mu$, say, while, as a cycle pattern of degree qn we have

$$\mu(X^{q^a}-X^{q^b})=((q(n-a))^{(1)},(p^k)^{(dq)},(bq)^{(1)})=\mu_r$$
,

say. Thus (cf. [4, Lemma 6]), by Corollary 6, there exists σ in G_q with $\mu(\sigma) = \mu_r$ whose restriction in G has $\mu(\sigma) = \mu$. Let m = 1.c.m. $\{p^k, n-a, b\}$. Since $q \neq p, q$ does not divide both m/b and m/(n-a). Accordingly, σ^m is in H_q while $\mu(\sigma^m) = (1^{(q(n-j))}, q^{(j)})$, where $1 \leq \min(b, n-a) \leq j \leq n-a+b \leq n-1$, a contradiction.

(ii) b=0. Since $g(X)/X^a$ is certainly not a constant we can always express $g(X)/X^a$ as $h^{p^i}(X)$, where $i\geq 0$ and h(X) is a rational function not in $F(X^p)$. Accordingly, h'(X) is not identically zero and we can pick $\beta\in F$ such that $\beta\neq -h(\theta)$ for any nonzero θ for which $h'(\theta)=0$. Now with c as in Theorem 2, put $n-c=p^kd(k\geq 0,\ p\nmid d)$. Then, as in case (i),

$$\mu(g(X)+eta X^a)=((p^k)^{(d)},\,c^{(i)})=\mu$$
 , $\mu(g(X^q)+eta X^{aq})=((p^k)^{(dq)},\,(cq)^{(1)})=\mu_r$,

say. Thus there exists σ in G_r with $\mu(\sigma) = \mu_r$ whose restriction in G has cycle pattern μ . Put $m = p^k c$. Then $\sigma^m \in H_r$ and $\mu(\sigma^m) = (1^{(q(n-c))}, q^{(c)}), 1 \le c < n$; again a contradiction. This completes the proof.

We conclude with an example for which $\varepsilon=\delta/2$ in (14) with f not even of the shape (2). Let $p=5,\,r=2$ and F be algebraically closed. Put

$$f(X) = X^8 - X^6 + 2X^4 + tX^5 + u.$$

Then $G = S_8$ but $D = \alpha u^3 (t^2 - (u+2)^2)^2 (\alpha \in F)$ so that uD is a square in F(t, u). Hence $\varepsilon = 1 = \delta/2$ in this case!

REFERENCES

- 1. R. Carmichael, Introduction to the theory of Groups of Finite Order, Dover, 1956.
- 2. J. W. S. Cassels and A. Frohlich (Editors), *Algebraic Number Theory*, Academic Press, New York and London, 1967.
- 3. S. D. Cohen, Uniform distribution of polynomials over finite fields, J. London Math. Soc., (2), 6 (1972), 93-102.
- 4. ——, The distribution of the galois groups of integral polynomials, Illinois J. Math., 23 (1979), 135-152.

- 5. R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc., 15 (1974), 125-128; MR 54 (1977), #12,870.
- 6. G. A. Miller, On the primitive groups of class 4, Amer. Math. Monthly, 9 (1902), 63-66.
- 7. _____, Limits of the degree of transitivity of substitution groups, Bull. Amer. Math. Soc., 22 (1915), 68-71.
- 8. E. T. Parker, On quadruply transitive groups, Pacific J. Math., 9 (1959), 829-836.
- 9. J. H. Smith, General trinomials having symmetric Galois group, Proc. Amer. Math. Soc., 63 (1977), 208-212.
- 10. K. Uchida, Galois group of an equation $X^n-aX+b=0$, Tohoku Math. J., 22 (1970), 670-678.
- 11. H. Wielandt, Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad, Schr. Math. Sem. Inst. angew. Math. Univ. Berlin, 2 (1934), 151-174.
- 12. _____, Finite Permutation Groups, Academic Press, New York and London, 1964.

Received May 9, 1979.

UNIVERSITY OF ILLINOIS URBANA, IL 61801 Permanent address: UNIVERSITY OF GLASGOW GLASGOW G12 8QW SCOTLAND