THE GALOIS GROUP OF A POLYNOMIAL WITH TWO INDETERMINATE COEFFICIENTS

S. D. COHEN

Abstract

Suppose that $f(x)=\sum_{n=0}^{n} \alpha_{i} X^{i}\left(\alpha_{0} \alpha_{n} \neq 0\right)$ is a polynomial in which two of the coefficients are indeterminates t, u and the remainder belong to a field F. We find the galois group of f over $F(t, u)$. In particular, it is the full symmetric group S_{n} provided that (as is obviously necessary) $f(X) \neq f_{1}\left(X^{r}\right)$ for any $r>1$. The results are always valid if F has characteristic zero and hold under mild conditions involving the characteristic of F otherwise. Work of Uchida [10] and Smith [9] is extended even in the case of trinomials $X^{n}+t X^{a}+u$ on which they concentrated.

1. Introduction. Let F be any field and suppose that it has characteristic p, where $p=0$ or is a prime. In [9], J. H. Smith, extending work of K. Uchida [10], proved that, if n and a are coprime positive integers with $n>a$, then the trinomial $X^{n}+t X^{a}+u$, where t and u are independent indeterminates, has galois group S_{n} over $F(t, u)$, a proviso being that, if $p>0$, then $p \nmid n a(n-a)$. (Note, however, that this conveys no information whenever $p=2$, for example.) Smith also conjectured that, subject to appropriate restriction involving the characteristic, the following holds. Let I be a subset (including 0) of the set $\{0,1, \cdots, n-1\}$ having cardinality at least 2 and such that the members of I together with n are co-prime. Let $T=\left\{t_{i}, i \in I\right\}$ be a set of indeterminates. Then the polynomial $X^{n}+\sum_{i=0}^{n-1} t_{i} x^{i}$ has galois group S_{n} over $F(T)$.

In this paper, we shall confirm this conjecture under mild conditions involving $p(>0)$, thereby extending even the range of validity of the trinomial theorem. In fact, we also relax the other assumptions. Specifically, we allow some of the t_{i} to be fixed nonzero members of F and insist only that two members of T be indeterminates. Indeed, even if the co-prime condition is dispensed with, so that the galois group is definitely not S_{n}, we can still describe what that group actually is. On the other hand, if, in fact, more than two members of T are indeterminates, then the nature of our results ensures that, in general, the relevant galois group is deducible by specialization.

Accordingly, from now on, let I denote a subset of co-prime integers from $\{0,1, \cdots, n\}$ containing 0 and n and having cardinality $\geqq 3$. Write
(1)

$$
f(X)=\sum_{i \in I} \alpha_{i} X^{i}=g(X)+t X^{a}+u X^{b}\left(\alpha_{0} \alpha_{n} \neq 0,0 \leqq b<a \leqq n\right)
$$

say, where two of the coefficients α_{a}, α_{b} are indeterminates t, u and the remaining coefficients $\alpha_{i}(i \neq a, b)$ are fixed nonzero members of f; in particular, g is not identically zero. By the co-prime condition, assuredly f is separable, i.e., $f(X) \neq f_{1}\left(X^{p}\right)$. (We deal with sets of the form I which are not co-prime by equivalently considering $f\left(X^{r}\right)$ with $r>1$, §4.) Put $G=G(f(X), F(t, u))$, the galois group of f over $F(t, u)$, regarded as a group of permutations of the zeros of f.

Theorem 1. Let $f(x)$ in $F[t, u, X]$ be given by (1). Suppose $G \neq S_{n}$. Then $p>0$ and $g(X), X^{a}$ and X^{b} are linearly dependent over $F\left(X^{p}\right)$. In particular, p divides $(n-a)(n-b)(a-b)$.

Notes. (i) The polynomials $g(X), X^{a}$ and X^{b} are linearly dependent over $F\left(X^{p}\right)$ if and only if either $p \mid(a-b)$ or

$$
g(X)=g_{1}\left(X^{p}\right) X^{a^{*}}+g_{2}\left(X^{p}\right) X^{b^{*}}
$$

where $g_{1}(X), g_{2}(X) \in F[X]$ and, for any integer m, m^{*} denotes the least nonnegative residue of m modulo p.
(ii) For the case in which F is an algebraic number field, Theorem 1 is an easy by-product of Theorem 1 of [4].

If, for example, $p=2$, then Theorem 1 is vacuous. However, if, additionally, we assume that f is monic (i.e., $a \neq n$) and has indeterminate constant term (i.e., $b=0$), then we can strengthen Theorem 1 to give useful information even when $p=2$ (although we retain one restriction, namely, $p \nmid(a, n)$). Before stating the result, we introduce some further notation. Let $c(\leqq a)$ denote the least positive member of I. Further, define

$$
e=\left\{\begin{array}{lll}
a^{*}, & \text { if } p \nmid a \\
n^{*}, & \text { if } p \mid a
\end{array}\right.
$$

Finally, let $\gamma(n)$ be the maximal degree of transitivity of a subgroup of S_{n} that is neither S_{n} itself nor the alternating group, A_{n}.

THEOREM 2. Suppose that f is given by (1) with $a \neq n, b=0$ and $p \nmid(a, n)$. Suppose $G \neq S_{n}$. Then one of the following (i)-(iii) holds.
(i) $\quad a=n-1$ and $c \geqq n-\gamma(n)+1(>1)$
(ii) $\quad a \leqq \gamma(n)-1(<n-1)$ and $c=1$,
(iii) $a=n-1$ and $c=1$, necessarily with $p=2$ if $p \nmid(n-1)$.

Moreover, there exist $g_{1}(X), g_{2}(X)$ in $F[X]$ such that

$$
\begin{equation*}
g(X)=g_{1}\left(X^{p}\right) X^{e}+g_{2}\left(X^{p}\right) \tag{2}
\end{equation*}
$$

except possibly when $c=1$ and $a=n-1$, the latter being divisible by p.

Remarks. (a) I cannot quite prove (2) in the excluded case (see §3). On the other hand, if $p \mid a$ then, aside from this case ((iii)), the proof actually implies that

$$
\begin{equation*}
g(X)=\alpha X^{n}+g_{2}\left(X^{p}\right), \quad \alpha \neq 0 \tag{3}
\end{equation*}
$$

(b) Some estimates for $\gamma(n)$ are

$$
\begin{equation*}
\gamma(n) \leqq \frac{1}{3} n+1 \quad(\text { see }[1, p .150]) ; \tag{4}
\end{equation*}
$$

$$
\begin{align*}
& \gamma(n) \leqq 3 \sqrt{n}-2, n>12([7],[1, \text { p. 150] }) \tag{5}\\
& \gamma(n)<3 \log n, n \rightarrow \infty([11])
\end{align*}
$$

(c) It is an open question whether in (i) we must have $a=$ $c=n-1$, i.e., $f(X)=X^{n}+t X^{n-1}+u$ and in (ii) we must have $a=c=1$. In any event, the trinomials $X^{n}+t X+u$ considered by Uchida emerge as the most likely type of polynomial for which $G=S_{n}$ may be false. Indeed, he demonstrated that sometimes in this case G is definitely not S_{n}.
(d) In fact, in the cases excluded by the hypotheses of Theorem 2 (namely, $p \mid(a, n), b \neq 0$, etc.), I have obtained partial results in the direction of Theorem 2 but the details are too cumbersome to present here. However, although it is difficult to state a comprehensive result, the methods used presently will often enable G to be determined for a given specific f.

From Theorem 2, we derive immediately the following improvement of Smith's theorem.

Corollary 3. Let $f(X)=X^{n}+t X^{a}+u$, where $(a, n)=1$, $(n>a>0)$. Then $G=S_{n}$ unless $p(>0)$ divides $n(n-1)$ and $a=1$ or $n-1$.

The galois group of $f\left(X^{r}\right)(r>1)$ over $F(t, u)$ is described in $\S 4$.
2. Preliminary results. Clearly, if Theorems 1 and 2 hold when F is algebraically closed, then they are valid for arbitrary F. Hence we assume throughout $\S \S 2-3$ that F is algebraically closed. In particular, F is infinite. As usual, the phrase "for almost all members of F " means "for all but finitely many members of F ".

A simplification arises from the use of the following lemma
established by Uchida [10] in a special case. (Suprisingly, Smith failed to use the corresponding result in his paper, [9].)

Lemma 4. Suppose that f is given by (1). Then G is doubly transitive.

Proof. Obviously f is irreducible over $F(t, u)$ and hence G is transitive. Let x be a zero of f in a suitable extension of $F(t, u)$. Then $x \neq 0$ and $u=-\left(g(x)+t x^{a}\right) / x^{b}$ so that $F(t, u, x)=F(t, x), x$ being transcendental over F. Thus

$$
\begin{equation*}
x^{b} f(X)=x^{b} g(X)-g(x) X^{b}+t\left(x^{b} X^{a}-x^{a} X^{b}\right) \tag{6}
\end{equation*}
$$

Of course, $X-x$ is a factor of (6). But since (6) is linear in t and separable, then $f(X) /(X-x)$ can be reducible as polynomial in X only if for some $\xi(\neq x)$ in an extension of $F(x)$ we have

$$
\begin{equation*}
x^{b} g(\xi)=\xi^{b} g(x) \quad \text { and } \quad \xi^{a} x^{b}=\xi^{b} x^{a} \tag{7}
\end{equation*}
$$

Now, $g(0) \neq 0$ or $b=0$. In either case, (7) implies that $\xi \neq 0$ and that, in fact, $\xi=\zeta x$, where ζ is an $(a-b)$ th root of unity $(\neq 1)$ in F (so that $a-b>1$). Hence, we have

$$
\begin{equation*}
g(\zeta X)=\zeta^{b} g(X) \tag{8}
\end{equation*}
$$

identically. If $b=0$, deduce from (8) that $g(X) \in F\left[X^{a}\right]$, where $a>1$, which yields the contradiction that $f(X) \in F\left[t, u, X^{a}\right]$. Otherwise, if $b>0$, then $g(0) \neq 0$ and so, by (8), $\zeta^{b}=1$. Accordingly, ζ must be a primitive d th root of unity for some $d(>1)$ dividing $(a, a-b)=$ (a, b) and, therefore, $f(X) \in F\left[t, u, X^{d}\right]$, again a contradiction and the lemma is proved.

An immediate consequence of Lemma 4 is that, if G is known to contain a transposition, then necessarily $G=S_{n}$. The next lemma will enable us to generate members of G with identifiable cycle patterns. First, we connect such a permutation cycle pattern with the "cycle pattern" of a polynomial $h(X)$ of degree n in $F[X]$ (recalling that F is assumed to be algebraically closed). To define this concept, suppose that in the factorization of $h(X)$ into a product of linear factors there are precisely μ_{i} distinct factors of multiplicity $i, i=1,2, \cdots$. Thus $\sum i \mu_{i}=n$. We shall then say that h has cycle pattern $\mu(h)=\left(1^{\left(\mu_{1}\right)}, 2^{\left(\mu_{2}\right)}, \cdots\right)$, where the i th term is omitted if $\mu_{i}=0$. For a given n, we extend this definition to apply to all nonzero h of degree $d<n$ by formally adjoining ∞ to F and defining $\mu(h)$ to be the cycle pattern of $(X-\infty)^{n-d} h(X)$. Such a cycle pattern is identified with a cycle pattern of a permutation in S_{n} in the obvious way. The proof of the lemma we now state represents a
simplification of the first part of Lemma 7 of [4] and is not restricted to "tame" polynomials.

Lemma 5. Let F be algebraically closed and $h_{1}(X), h_{2}(X)$ be nonzero co-prime polynomials in $F[X]$ not both in $F\left[X^{p}\right]$ and such that $n=\max \left(\operatorname{deg} h_{1}, \operatorname{deg} h_{2}\right)$. Suppose that $\left(\beta_{1}, \beta_{2}\right)(\neq(0,0)) \in F^{2}$ and put $\mu=\mu\left(\beta_{1} h_{1}+\beta_{2} h_{2}\right)$. Let t be an indeterminate. Then $G\left(h_{1}+t h_{2}\right.$, $F(t))$ contains an element with cycle pattern μ.

Proof. Evidently, $h_{1}+t h_{2}$ and $t h_{1}+h_{2}$ have the same galois group over $F(t)$. Hence, we may assume, without loss of generality, that $\beta_{1} \neq 0$. Put $\beta=-\beta_{2} / \beta_{1}$ and write h for $h_{1}+t h_{2}$. We now make some transformations which, while not essential, make the argument easier to visualise. First, replacing h_{1} by $h_{1}+\beta h_{2}$ and t by $t+\beta$, we can suppose that $\beta=0$. If then $\operatorname{deg} h_{1}<n$, we may take $(c X+d)^{n} h_{1}(L(X))$ for h_{1} and $(c X+d)^{n} h_{2}(L(X))$ for h_{2}, where $L(X)$ is a nonsingular linear transformation with denominator $c X+d$, in such a way that $\operatorname{deg} h_{1}=n$. Obviously, the hypotheses remain valid and h has a galois group isomorphic to the original one.

Now, let x be a zero of h. Then $t=-h_{1}(x) / h_{2}(x)$ and $F(t, x)=$ $F(x), x$ being transcendental over F. The function field extension $F(x) / F(t)$ has degree n and genus 0 . In particular, if $P(x)$ is a (linear) irreducible factor of $h_{1}(x)$, then the $P(x)$-adic valuation on $F(x)$ is an extension of the t-adic valuation on $F(t)$. Indeed, in the extension to $F(x)$ of the local ring of integers of $F(t)$ corresponding to the t-adic valuation, the cycle pattern μ provides a description of the ramification of t in the sense that there are precisely μ_{i} primes with ramification index $i, i=1,2, \cdots$, in its prime decomposition. It follows [2, Ch. 2] that, in the prime decomposition of $h(X)$ over $F\{t\}$, the t-adic completion of $F(t)$, there are precisely μ_{i} distinct irreducible factors of degree $i, i=1,2, \cdots$. Hence $G(h, F\{t\}$) (which is cyclic [2, Ch. 1]) clearly has as a generator a permutation with cycle pattern μ. However, $G(h, F\{t\})$ can be considered as a subgroup of $G(h, F(t))$ and the proof is complete.

Corollary 6. Let F be algebraically closed and $h_{1}(X), h_{2}(X)$, $h_{3}(X)$ be co-prime polynomials in $F[X]$, not all in $F\left[X^{p}\right]$, linearly independent over F and such that $\max _{i} \operatorname{deg} h_{i}=n$. Suppose that $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)(\neq(0,0,0)) \in F^{3}$ and put $\mu=\mu\left(\beta_{1} h_{1}+\beta_{2} h_{2}+\beta_{3} h_{3}\right)$. Let t, u be indeterminates. Then $G\left(h_{1}+t h_{2}+u h_{3}, F(t, u)\right)$ contains an element with cycle pattern μ.

Proof. We may suppose that $\beta_{1} \neq 0$. Note that the h_{i} 's and the polynomial $B:=\beta_{1} h_{1}+\beta_{2} h_{2}+\beta_{3} h_{3}$ are nonzero. By our assumptions
and the fact that F is infinite. We can choose γ_{2} and γ_{3} in F such that $h_{1}^{*}:=\beta_{1} h_{1}+\gamma_{2} h_{2}+\gamma_{3} h_{3}$ is not in $F\left[X^{p}\right]$ and $\left(h_{1}^{*}, B\right)=1$. (For example, if the latter assertion were false, B would have a nontrivial factor which divides h_{1}^{*} for infinitely many values of each of γ_{2} and γ_{3} and so divides (h_{1}, h_{2}, h_{3}) contrary to hypothesis.) With this choice of γ_{2} and γ_{3}, put $h_{2}^{*}=\left(\beta_{2}-\gamma_{2}\right) h_{2}+\left(\beta_{3}-\gamma_{3}\right) h_{3}$. Then h_{1}^{*} and h_{2}^{*} satisfy the conditions of Lemma 5. Consequently, $G\left(h_{1}^{*}+t h_{2}^{*} F(t)\right)$, (厅G($h_{1}+$ $\left.t h_{2}+u h_{3}, F(t, u)\right)$) contains an element of cycle pattern μ, as required.
3. When is the galois group S_{n} ? We shall use $R^{\prime}(X)$ to denote the formal derivative of rational function R (usually a polynomial) in $F(X)$. Of course, all members of $F\left(X^{p}\right)$ are constants with respect to this differentiation process. Moreover, if $(X-\theta)^{k} \| h^{\prime}(X)$ (exactly), where h is a polynomial and $k \geqq 1$, then $(X-\theta)^{j} \|(h(X)-$ $h(\theta))$, where $j=k+1$ or k, the latter being possible if $p \mid k$.

Theorem 1 is immediate from the next lemma together with the remark subsequent to Lemma 4 and Corollary 6. Recall that we are assuming that F is algebraically closed.

Lemma 7. Suppose that f is given by (1) and that $g(X), X^{a}$ and X^{b} are linearly independent over $F\left(X^{p}\right)$. Then there exists $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ in F^{3} with $\beta_{3} \neq 0$ (and $\beta_{2} \neq 0$ if $a=n$) such that

$$
(\mu(B)=) \mu\left(\beta_{1} g(X)+\beta_{2} X^{a}+\beta_{3} X^{b}\right)=\left(1^{(n-2)}, 2^{(1)}\right) .
$$

Proof. Suppose $a<n$ so that $\operatorname{deg} g=n$ and put $\beta_{1}=1$. (Otherwise, if $a=n$, put $\beta_{2}=1$ and proceed in like manner.) The assertion which follows is established by the argument of Lemma 5 of [3] as expressed in the more general context of Lemma 9 of [4] (yet without the restriction $p>n$ assumed there). Note that the hypothesis " $p \nmid 2(n-m)$ " and the tameness assumption implicit in the statement of Lemma 5 of [3] are not relevant here and not necessary for the proof. The conclusion is that for almost all β_{2} in $F, \mu(B)=\left(1^{(n)}\right)$ or $\left(1^{(n-2)}, 2^{(1)}\right)$ for every β_{3} in F. We show that the latter must occur for some pair $\left(\beta_{2}, \beta_{3}\right)\left(\beta_{3} \neq 0\right)$ in F^{2}.

To do this, consider the polynomial equation

$$
\begin{equation*}
b g(X)-X g^{\prime}(X)+(b-a) \beta_{2} X^{a}=0 \tag{9}
\end{equation*}
$$

Now, for almost all β_{2}, the left side of (9) is a polynomial in $F[X]$ not of the form $\delta_{1} X^{a}\left(\delta_{1} \in F\right)$. (Otherwise, since $p \nmid(a-b)$ and F is infinite, we would have identically

$$
\frac{b X^{b-1} g(X)-X^{b} g^{\prime}(X)}{X^{2 b}}=\delta_{2} X^{a-b-1} \quad\left(\delta_{2} \in F\right)
$$

which implies that $g(X) / X^{b}=\delta_{3} X^{a-b}+\phi\left(X^{p}\right)$, for some rational function ϕ. But this would mean that

$$
g(X)=\delta_{3} X^{a}+\phi\left(X^{p}\right) X^{b}
$$

contrary to hypothesis.) It follows that, for almost all β_{2}, we can pick a nonzero solution $X=\xi\left(=\xi\left(\beta_{2}\right)\right)$ of (9). Obviously, as β_{2} varies, $\xi\left(\beta_{2}\right)$ must take infinitely many distinct values (because $p \nmid(b-a)$). Next, we claim that, for almost all $\beta_{2}, g(\xi)+\beta_{2} \xi^{a} \neq 0$. For, if this were false, then we could conclude from (9) that infinitely many ξ would satisfy $a g(\xi)-\xi g^{\prime}(\xi)=0$ which would imply that $g(X)=\phi_{1}\left(X^{p}\right) X^{a}$, say, a contradiction. Put $\beta_{3}=-\left(g(\xi)+\beta_{2} \xi^{a}\right) / \xi^{b}$. Then $(X-\xi)^{2} \mid \boldsymbol{B}$. Hence, for almost all $\beta_{2}, \beta_{3} \neq 0$ and $\mu(B)=\left(1^{(n-2)}, 2^{(1)}\right)$. This completes the proof.

We now move towards the proof of Theorem 2 and can assume $p>0$. Take $b=0, a \neq n$ and define c as in Theorem 2. However, in the meantime, we continue to allow the possibility $p \mid(a, n)$.

Lemma 8. There exist $\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}$ in G with cycle patterns as follows

$$
\begin{aligned}
& \mu\left(\sigma_{1}\right)=\left(n^{(1)}\right), \mu\left(\sigma_{2}\right)=\left((n-a)^{(1)}, a^{(1)}\right), \\
& \mu\left(\sigma_{3}\right)=\left((n-a)^{(1)},\left(p^{q}\right)^{\left(a_{1}\right)}\right), \quad \mu\left(\sigma_{4}\right)=\left(c^{(1)},\left(p^{r}\right)^{(s)}\right),
\end{aligned}
$$

where $a=p^{q} a_{1}\left(q \geqq 0, p \nmid a_{1}\right)$ and $n-c=p^{r} s\left(r \geqq 0,\left(p^{r}, c\right)=1\right)$.
Note. Of course, if $a=n / 2$, then σ_{2} is really $\left(a^{(2)}\right)$, etc.
Proof. We use Corollary 6. Write $\mu\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ for $\mu\left(\beta_{1} g(X)+\right.$ $\left.\beta_{2} X^{a}+\beta_{3}\right)$.

Since $\mu(0,0,1)=\left(n^{(1)}\right)$, the existence of σ_{1} is clear. Similarly, σ_{2} is present because $\mu(0,1,0)=\left((n-a)^{(1)}, a^{(1)}\right)$. Next, $\mu(0,1,-1)=$ $\left((n-a)^{(1)},\left(p^{q}\right)^{\left(a_{1}\right)}\right)$ which yields σ_{3}. For σ_{4}, we consider $\mu(1, \beta, 0)$ for an appropriate nonzero value of β and distinguish two cases.
(i) $p \mid a$. We show that here we can pick β such that the part $g(X)+\beta X^{a}$ that is prime to X is actually square-free. This would give the existence of σ_{4} with $r=0$. For any β in F, the repeated roots of $g(X)+\beta X^{a}=0$ satisfy $g^{\prime}(X)=0$. Now, $g^{\prime}(X)$ is not identically zero for otherwise $g(X) \in F\left[X^{p}\right]$ which would mean that $f(X) \in$ $F\left[t, u, X^{p}\right]$. Thus $g^{\prime}(\theta)=0$ for at most $n-1$ nonzero values of θ. Choose any nonzero β which is not equal to $-g(\theta) / \theta^{a}$ for any such θ and we are through.
(ii) $p \nmid a$. By Theorem 1 we may assume that g has the form

$$
g(X)=g_{1}\left(X^{p}\right) X^{a^{*}}+g_{2}\left(X^{p}\right), a^{*} \equiv a(\bmod p)
$$

where g_{1} and g_{2} are polynomials not both zero. Clearly, a repeated zero θ of $g(X)+\beta X^{a}$ for any given β must satisfy

$$
\begin{equation*}
g_{1}\left(\theta^{p}\right) \theta^{a^{*}}+\beta \theta^{a}=0 \tag{10}
\end{equation*}
$$

Suppose g_{2} is not identically zero. We can evidently choose $\beta(\neq 0)$ such that $g_{1}\left(X^{p}\right) X^{a^{*}}+\beta X^{a}$ and $g_{2}\left(X^{p}\right)$ have highest common factor X^{c}. Then $g(\theta)+\beta \theta^{a} \neq 0$ for any nonzero θ satisfying (10) and so $\mu(1, \beta, 0)=\left(1^{(n-c)}, c^{(1)}\right)$.

Accordingly, suppose g_{2} is identically zero. Then $c \equiv a \not \equiv 0(\bmod p)$. By way of illustration, take $c=a$; the remaining possibilities submit to an analogous treatment. We have

$$
g(X)+\beta X^{a}=\left(h(X)+\beta_{1}\right)^{p^{r}} X^{a},
$$

say, where $r \geqq 1, \beta_{1}^{p r}=\beta$ and $h(X) \notin F\left[X^{p}\right]$. By definition, h^{\prime} is not identically zero and so we can easily select $\beta_{1}(\neq 0)$ such that $\beta_{1} \neq$ $-h(\theta)$ for any θ for which $h^{\prime}(\theta)=0$. Put $\beta=\beta_{1}^{p r}$ and we find that $\mu(1, \beta, 0)=\left(a^{(1)},\left(p^{r}\right)^{(s)}\right)$, where here $a=c$ is not divisible by p. The result is then clear.

All future references to $\sigma_{1}, \cdots, \sigma_{4}$ will be to those permutations constructed in Lemma 8.

Lemma 9. $G \nsubseteq A_{n}$.
Proof. If n is even, then σ_{1} is an odd permutation. If n is odd, then σ_{2} is an odd permutation whether a is even or odd.

Note. In the cases $b \neq 0$ or $a=n$ omitted from the present discussion, similar considerations show that Lemma 9 remains true except possibly when n is even and a and b are both odd or when $a=n$ is odd, $b=0$ and both c and the degree of g are even.

Before proceeding with the proof of Theorem 2, we state a lemma which is based on some classical (but nontrivial) results on permutation groups. We let G (temporarily) be any doubly transitive subgroup of S_{n}. For any σ in G, let $\lambda(\sigma)$ denote the number of symbols actually moved by σ and define λ, the minimum degree of G to be $\min _{\sigma \neq 1} \lambda(\sigma)$.

Lemma 10. (i) Suppose that G contains a d-cycle, where $1<$ $d<n$. Then G is $(n-d+1)$-ply transitive.
(ii) Suppose that $G \neq A_{n}$ or S_{n} but is $(d+1)$-ply transitive where $d>1$. Then $\lambda \geqq 2 d$ with strict inequality unless $d=2$ and $n=6$ or 8 or $d=3$ and $n=11$ or $d=4$ and $n=12$.

Proof. (i) Since G is certainly primitive, this follows from

Theorem 13.8 in [12]. (For a proof and comments on its authorship and history see [5] and the review of [5] in Mathematical Reviews.)
(ii) If $d>1$, the inequality $\lambda \geqq 2 d$ is standard (see [1, p. 150]). There may well be a direct proof of the strict inequality but I extract it from previous work. We may suppose $\lambda=2 d$. Using the table of lower bounds for λ given in Theorem 15.1 of [12] (due to W. A. Manning), we may easily check that, if $d \leqq 6$, then $n \leqq 20$. Suppose $d \geqq 7$ and $n>12$. Then, again by [12, Theorem 15.1] and also (5)

$$
\frac{2}{3} n \leqq 2 d \leqq 6 \sqrt{n}-6,
$$

which implies that $n \leqq 63$. However, if $n \leqq 63$ we cannot have $d \geqq 7[1, \mathrm{p} .164]$. Hence $d \leqq 6$ and $n \leqq 20$. Therefore, either $d=2$ or $d=3$ and G is the Mathieu group M_{11} or $d=4$ and $G=M_{12}$. Finally, if $d=2$ and $\lambda=4$, it follows from G. A. Miller's list [6] of primitive groups with minimal degree 4 that G can be triply transitive only if $n=6$ or $n=8$. This completes the proof.

Proof of Theorem 2. We can take g to be monic. Suppose that $G \neq S_{n}$. By Lemma $9, G \neq A_{n}$ either. (This holds, in fact, even if $p \mid(a, n)$ as does the next deduction.) With reference to σ_{4}, since $r=0$ or $p \nmid c$, then $\sigma_{4}^{p^{r}}$ is a c-cycle and so, if $c>1$, Lemma 10(i) implies that G is ($n-c+1$)-ply transitive.

From now on suppose that $p \nmid(a, n)$ as in the hypothesis of the theorem. Then $\sigma_{3}^{p q}$ is an $(n-a)$-cycle. Accordingly, if $a<n-1$, then G is $(a+1)$-ply transitive.

It follows from the above and (4) that, if both $a<n-1$ and $c>1$, then $2 n / 3 \leqq c \leqq a \leqq n / 3$, a glaring contradiction. Hence, either $a=n-1$ or $c=1$ and, in fact, one of (i)-(iii) in Theorem 2 must hold. In particular, since we know already that f must have the form (2) when $p \nmid a$ (by Theorem 1), then, if $p \nmid a=n-1$ and $c=1$, necessarily $p=2$.

It suffices, therefore, to show that, if $p \mid a$ (but $p \nmid n$), then unless f has the form (3), (i) and (ii) lead to a contradiction. We consider the two cases separately.

We begin with (ii). Thus, suppose

$$
f(X)=g(X)+t X^{a}+u, p \mid a, a<n-1, c=1
$$

Then actually (3) is impossible (since $c=1$) and so $g^{\prime}(X)=0$ has a nonzero root θ. For a nonzero value of β to be chosen, set $u=$ $-g(\theta)-\beta \theta^{a}$. Thus

$$
\begin{equation*}
f(X)=g(X)-g(\theta)+\beta\left(X^{a}-\theta^{a}\right) \tag{11}
\end{equation*}
$$

where $(X-\theta)^{j} \|(g(X)-g(\theta))$, say, for some $j \geqq 2$. Put $a=p^{q} a_{1}$. If $j \neq p^{q}$, then $(X-\theta)^{k} \| f(X)$, where $2 \leqq k=\min \left(j, p^{q}\right) \leqq p^{q}$. Even if $j=p^{q}$ this remains true for almost all β. Of course, it is possible that $f(X)$ (given by (11)) has another multiple factor, a power of ($X-\rho$), say, where $\rho \neq \theta$ and $g^{\prime}(\rho)=0$. By (11), for almost all β, $g(\rho)=g(\theta)$ and $\rho^{a}=\theta^{a}$ which, in particular, implies that $\rho^{a_{1}}=\theta^{a_{1}}$. Hence there are at most $a_{1}-1$ candidates for ρ. Moreover, as for $X-\theta$, the exact power of any such $X-\rho$ dividing $f(X)$ does not exceed p^{q} for almost all β. Consequently, we can choose β so that the part of $f(X)$ comprising its factors of multiplicity exceeding 1 has degree δ, say, where $2 \leqq \delta \leqq p^{q} a_{1}=a$. Apply Corollary 6 to this polynomial to derive the existence of σ in G with $\lambda(\sigma)=\delta$. Hence G has minimal degree $\lambda \leqq \delta \leqq a$. But G is $(a+1)$-ply transitive and so Lemma 10(ii) supplies a contradiction.

Finally, suppose that (i) holds that but f does not have form (3). Then

$$
f(X)=g(X)+t X^{n-1}+u, p \mid n-1, c>1
$$

where $g(X)=X^{c} h(X)$, say, with $h(0) \neq 0$ and $\operatorname{deg} h=n-c$. By our assumptions, $g^{\prime}(X)=0$ has at least one and at most $n-c$ nonzero roots. As before, for a β in F to be chosen put $u=-g(\theta)-\beta \theta^{n-1}$. Then $X-\theta$ is a multiple factor of

$$
\begin{equation*}
f(X)=g(X)-g(\theta)+\beta\left(X^{n-1}-\theta^{n-1}\right) \tag{12}
\end{equation*}
$$

Put $n-1=p^{s} n_{1}\left(s \geqq 1, p \nmid n_{1}\right)$. For almost all β, if $(X-\rho)(\rho \neq \theta)$ is also a multiple factor of (12), then

$$
\begin{equation*}
g^{\prime}(\rho)=0, g(\rho)=g(\theta) \quad \text { and } \quad \rho^{n_{1}}=\theta^{n_{1}} \tag{13}
\end{equation*}
$$

which certainly forces $n_{1}>1$. Let $Q(X)$ be that part of $g(X)-g(\theta)$ involving $X-\theta$ and any $X-\rho$ for which ρ satisfies (13). If $n_{1}>1$, even if we take a pessimistic view, we can safely conclude that Q has degree at most $2(n-c)$, equality being possible if $g^{\prime}(X) / X^{c-1}$ is square-free. On the other hand, if $n_{1}=1$, then $\operatorname{deg} Q \leqq n-c+1$, equality occuring only if $g^{\prime}(X)=X^{c-1}(X-\theta)^{n-c}$. Choosing a nonzero β outside a finite subset of F in the usual way, we can exhibit, using Corollary 6, a nonidentical member σ of G for which $\lambda(\sigma) \leqq$ $2(n-c)$ with $\lambda(\sigma) \leqq n-c+1$, in fact, if $n_{1}=1$. Hence G is $(n-$ $c+1)$-ply transitive with $\lambda \leqq 2(n-c)$ which contradicts Lemma 10(ii) (since $c \leqq n-2$) unless $c=n-2$ and $n=6$ or 8 or $c=n-3$ and $n=11$ or $c=n-4$ and $n=12$. However, if $n=6,8$ or 12 , then because $n-1$ is prime, necessarily $n-1=p$. Hence $n_{1}=1$ and $\lambda \leqq n-c+1$ which now is incompatible with Lemma 10(ii). Suppose finally that $n=11$ and $c=8$. Then either $p=2$ which
means that $X^{8} \mid g^{\prime}(X)$ forcing $\lambda \leqq 4$ or $p=5$ which implies that $n_{1}=2$, $\operatorname{deg} Q \leqq 5$ so again $\lambda \leqq 5$. This yields a contradiction either way. (Alternatively, use the fact that $M_{11} \cong A_{11}$.) This completes the proof.

Remarks. When $p \mid n-1$, I can show that (2) holds in the excluded case (iii) unless the roots of $g^{\prime}(X)=0$ can be arranged in s nonsingleton bunches, where $1<s \leqq n_{1}$, the members of each bunch giving rise to identical values of g and n_{1} th powers (without however $g^{\prime}(X)$ being of the form $\left.g_{1}\left(X^{n_{1}}\right)\right)$. Loosely, call any g which satisfies a condition like this awkward. In fact, for large n, (2) holds unless $s=2$. Similarly, if $p \mid a$, we can reach beyond (2) in a description of g. Further, even if $p \mid(a, n)$ or $b \neq 0$, etc., we can obtain information on G and g by analogous arguments. However, the results are too fragmentary to record in detail. Nevertheless, if a specific f not covered by Theorems 1 and 2 is given, an examination of its multiple points may well yield $G=S_{n}$. We conclude this section by beginning the treatment of one case in which $p \mid(a, n)$.

Suppose $p \mid(a, n)$, where $a=p^{q} a_{1}\left(q \geqq 1, p \nmid a_{1}\right)$ but $(n-a) \nmid p^{q}$ (for example, whenever $a<n / 2$); in particular $a<n-1$. Then $1<$ $\lambda\left(\sigma_{3}^{p q}\right) \leqq n-a$. Thus, $\lambda \leqq n-a$. If, additionally, $c>1$, then G is ($n-c+1$)-ply transitive and Lemma 10(ii) provides a contradiction. Thus we must have $c=1$.
4. Polynomials in $X^{r}>1$. Let f be given by (1) as before. For any $r>1$, we wish to find $G_{r}:=G\left(f\left(X^{r}\right), F(t, u)\right)$. Obviously, if $p>0$, we may assume that $p \nmid r$. Note that we no longer assume throughout that F is algebraically closed; nevertheless, we appeal to the results of $\S \S 2-3$ when appropriate. Some devices used in [4] come to the fore.

Let x_{1}, \cdots, x_{n} be the zeros of $f(X)$ and define

$$
H_{r}=G\left(f\left(X^{r}\right), \quad F\left(t, u, x_{1}, \cdots, x_{n}\right)\right)
$$

Then $H_{r} \cong G_{r} / G$. For each $x_{j}, j=1, \cdots, n$, let y_{j} be an r th root of $x_{j} . G_{r}$ and H_{r} are groups of permutations of $\left\{\zeta^{i} y_{j}, i=0, \cdots, r-1\right.$, $j=1, \cdots, n\}$, where ζ is a primitive r th root of unity. With reference to (1), let $\delta(=\delta(F))$ be the least positive divisor of r for which $(-1)^{n} \alpha_{0} / \alpha_{n}$ is an (r / δ) th power in $F\left(\alpha_{0}, \alpha_{n}\right)$. Evidently, if either $a=n$ or $b=0$, then $\delta=r$. Put $\eta=\left((-1)^{n} \alpha_{0} / \alpha_{n}\right)^{\delta / r}$. We know that usually $G=S_{n}$. The following lemma [4, Lemma 5] then narrows down the possibilites for H_{r}. In it, D denotes the discriminant of f and so is a polynomial in $F[t, u]$ and C_{m} is a cyclic group of order m.

Lemma 11. Suppose that $F=F(\zeta)$ and that $G=S_{n}$. Then either

$$
\begin{equation*}
H_{r}=C_{r}^{n-1} \times C_{\varepsilon}, \tag{14}
\end{equation*}
$$

where

$$
\varepsilon=\left\{\begin{array}{cl}
\delta / 2, & \text { if } \delta \text { is even and } \eta D \text { is a square in } F(t, u), \\
\delta, & \text { otherwise } ;
\end{array}\right.
$$

or, for some prime q dividing r,

$$
\begin{equation*}
H_{q}<C_{q} \tag{15}
\end{equation*}
$$

In fact we are able to eliminate the possibility that (15) holds ${ }^{1}$ and obtain our final theorem which is certainly applicable whenever f is one of the polynomials shown to have $G=S_{n}$ by either Theorem 1 or Theorem 2.

Theorem 12. Suppose f given by (1) is such that $G=S_{n}$. Let $r>1$. Then

$$
H_{r} \cong C_{r}^{n-1} \times C_{\varepsilon} \times \Phi,
$$

where $\varepsilon=\delta$ or $\delta / 2, \delta=\delta(F(\zeta))$ and Φ is the galois group of the cyclotomic extension $F(\zeta) / F$. In fact, $\varepsilon=\delta$ unless $p>0, \delta$ is even and $g(X), X^{a}$ and X^{b} are linearly dependent over $F\left(X^{p}\right)$.

Note. Of course δ is odd whenever r is odd. Although more investigation would further limit the possibilities in which $\varepsilon=\delta / 2$ could happen, some restriction is necessary, particularly for awkward g (see below).

Proof. The result is derived from Lemma 11 in a manner based on Lemma 6 of [4] to which reference is made. By symmetry, we may assume that, if $a=n$, then $b=0$.

We note first that, if $g(X), X^{a}$ and X^{b} are linearly independent over $F\left(X^{p}\right)$, then the care we took in Lemma 7 to ensure that $\beta_{3} \neq 0$ (and $\beta_{2} \neq 0$, if $a=n$) now repays us with the conclusion that the part of the discriminant D which is prime to u (and t) has a nontrivial irreducible factor of multiplicity 1 . Hence ηD cannot be a square in $F(t, u)$ and hence, granted (14) holds, we must have $\varepsilon=\delta$.

Accordingly, it suffices to assume that $F=F(\zeta)$ and show that (15) is impossible. Suppose, to the contrary, that q is a prime divisor of r for which (15) holds. Replacing F by its algebraic closure does not affect this property, so we may assume that, in fact, F is

[^0]algebraically closed. Actually, (15) can be interpreted to say that any member of H_{q} has cycle pattern ($1^{(n q)}$) or ($\boldsymbol{q}^{(n)}$. We distinguish two cases.
(i) $b \neq 0$. Put $a-b=p^{k} d(k \geqq 0, p \nmid d)$. Then $\mu\left(X^{a}-X^{b}\right)=$ $\left((n-a)^{(1)},\left(p^{k}\right)^{(d)}, b^{(1)}\right)=\mu$, say, while, as a cycle pattern of degree $q n$ we have
$$
\mu\left(X^{q^{a}}-X^{q^{b}}\right)=\left((q(n-a))^{(1)},\left(p^{k}\right)^{(d q)},(b q)^{(1)}\right)=\mu_{r},
$$
say. Thus (cf. [4, Lemma 6]), by Corollary 6, there exists σ in G_{q} with $\mu(\sigma)=\mu_{r}$ whose restriction in G has $\mu(\sigma)=\mu$. Let $m=$ l.c.m. $\left\{p^{k}, n-a, b\right\}$. Since $q \neq p, q$ does not divide both m / b and $m /(n-a)$. Accordingly, σ^{m} is in H_{q} while $\mu\left(\sigma^{m}\right)=\left(1^{(q(n-j))}, q^{(j)}\right)$, where $1 \leqq$ $\min (b, n-a) \leqq j \leqq n-a+b \leqq n-1$, a contradiction.
(ii) $b=0$. Since $g(X) / X^{a}$ is certainly not a constant we can always express $g(X) / X^{a}$ as $h^{p^{i}}(X)$, where $i \geqq 0$ and $h(X)$ is a rational function not in $F\left(X^{p}\right)$. Accordingly, $h^{\prime}(X)$ is not identically zero and we can pick $\beta \in F$ such that $\beta \neq-h(\theta)$ for any nonzero θ for which $h^{\prime}(\theta)=0$. Now with c as in Theorem 2, put $n-c=p^{k} d(k \geqq 0, p \nmid d)$. Then, as in case (i),
\[

$$
\begin{aligned}
& \mu\left(g(X)+\beta X^{a}\right)=\left(\left(p^{k}\right)^{(d)}, c^{(i)}\right)=\mu \\
& \mu\left(g\left(X^{q}\right)+\beta X^{a q}\right)=\left(\left(p^{k}\right)^{(d q)},(c q)^{(1)}\right)=\mu_{r}
\end{aligned}
$$
\]

say. Thus there exists σ in G_{r} with $\mu(\sigma)=\mu_{r}$ whose restriction in G has cycle pattern μ. Put $m=p^{k} c$. Then $\sigma^{m} \in H_{r}$ and $\mu\left(\sigma^{m}\right)=$ $\left(1^{(q(n-c))}, q^{(c)}\right), 1 \leqq c<n$; again a contradiction. This completes the proof.

We conclude with an example for which $\varepsilon=\delta / 2$ in (14) with f not even of the shape (2). Let $p=5, r=2$ and F be algebraically closed. Put

$$
f(X)=X^{8}-X^{6}+2 X^{4}+t X^{5}+u
$$

Then $G=S_{8}$ but $D=\alpha u^{3}\left(t^{2}-(u+2)^{2}\right)^{2}(\alpha \in F)$ so that $u D$ is a square in $F(t, u)$. Hence $\varepsilon=1=\delta / 2$ in this case!

References

1. R. Carmichael, Introduction to the theory of Groups of Finite Order, Dover, 1956.
2. J. W. S. Cassels and A. Frohlich (Editors), Algebraic Number Theory, Academic Press, New York and London, 1967.
3. S. D. Cohen, Uniform distribution of polynomials over finite fields, J. London Math. Soc., (2), 6 (1972), 93-102.
4. -, The distribution of the galois groups of integral polynomials, Illinois J. Math., 23 (1979), 135-152.
5. R. Levingston and D. E. Taylor, The theorem of Marggraff on primitive permutation groups which contain a cycle, Bull. Austral. Math. Soc., 15 (1974), 125-128; MR 54 (1977), \#12, 870.
6. G. A. Miller, On the primitive groups of class 4, Amer. Math. Monthly, 9 (1902), 63-66.
7. Limits of the degree of transitivity of substitution groups, Bull. Amer. Math. Soc., 22 (1915), 68-71.
8. E. T. Parker, On quadruply transitive groups, Pacific J. Math., 9 (1959), 829-836.
9. J. H. Smith, General trinomials having symmetric Galois group, Proc. Amer. Math. Soc., 63 (1977), 208-212.
10. K. Uchida, Galois group of an equation $X^{n}-a X+b=0$, Tohoku Math. J., 22 (1970), 670-678.
11. H. Wielandt, Abschätzungen für den Grad einer Permutationsgruppe von vorgeschriebenem Transitivitätsgrad, Schr. Math. Sem. Inst. angew. Math. Univ. Berlin, 2 (1934), 151-174.
12. -, Finite Permutation Groups, Academic Press, New York and London, 1964.

Received May 9, 1979.
University of Illinois
Urbana, IL 61801
Permanent address:
University of Glasgow
Glasgow G12 8QW
Scotland

[^0]: ${ }^{1}$ There are occurrences of (15) with f not of the form (1); these have been classified by the author and W. W. Stothers.

