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ON LINEAR FORMS AND DIOPHANTINE
APPROXIMATION

JEFFREY D. VAALER

Let x be a vector in Rκ and let Λj(x), 7=1,2, •••,/ be /
linear forms in K variables. We prove that there is a lattice
point u in Zκ

y uφO, for which \Λj(u)\ are all small (or zero)
and the components of u are not too large. The bounds that
we obtain improve several previous results on this problem.

1* Introduction* Let Λι(x)i Λ2(x), , Λj(x) be J linear forms

in K real variables xlf x2, •••,##. We assume that B = (bjk) is a
J x K matrix with complex entries such that

-* K

Aj(x) = Σ bjkxk

• I. A basic

xκ)

problem in Diophantine approximation is to show that there exists a
- /Mvector u= j in the integer lattice Zκ, u^O, such that each | Λό(u) \

is small while the components \uk\ are not too large. Quantitative
results on this problem are known with various hypotheses on the
Λ/s; the usual method of proof involves an application of the pigeon-
hole principle (Baker [1], Lemma 1, p. 13, GeΓfond [3], Lemma 1, p.
11, Mordell [7], Theorem 3, p. 32, Siegel [8], Stolarsky [9], Chapter
2). In the present paper we make improvements on previous results
of this kind by using a generalization of MinkowskΓs linear forms
theorem which we established in [10].

In order to state our main theorem we make the following as-
sumptions. We suppose that the forms Λό are real for j = 1,2, , p
and that the remaining forms consist of q pairs of complex conjugate
forms arranged so that Ap+2i^ = Ap+2j for j = 1, 2, , q. Thus J =
p + 2q. We also suppose that ak ^ 1 for k = 1, 2, , K, β5 > 0 for
j = 1, 2, , /, and /3p+2j^ = βp+2j for j = 1, 2, . , q.

THEOREM 1. Let M be a positive integer and suppose that

(1.1) M 2JΠ aή JΠ ( l + /3J2 Σ αiI &y*I2)} ^ 1

there exist M distinct pairs of nonzero lattice points ±vm —
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(Vίm\
±1 I, m = 1, 2, , M, in Zκ each of which satisfies the following

\VκJ
conditions:

ΐ | ^ / 9 ί f j = l, 2 , - . . . p ,

O \ 1/2

— ) ft , j = p + l,p + 2, -;J,

|tf*J ^ α t , fc = 1, 2, . . . , # .

Next we deduce several corollaries to Theorem 1 which are easier
to use in applications. For simplicity these results are stated for
the case M — 1 .

COROLLARY 2. Suppose that 1 ^ J < K and that the coefficients
bjk satisfy \bjk\ <Ξ T for some positive T. Then for each β, 0 < β ^ T,

exists a lattice point u = I J, % Φ 0, w

^ / 3 , i = 1 , 2 , -- , p ,

l/2

2, ••-, J ,

(1.2) \nh\ ^ (β-'ΊVK + 1Y"K~J) , fc = 1, 2, . , K .

Proof. We apply Theorem 1 with M = 1, ^ = α ^ l , and /3y =
/5 ̂  Γ. Then the left hand side of (1.1) is

(1.3)

If we choose

Π fl + β-2a* Σ I &, fc I2) ^ α 2 / - 2 ^ - 2 + β-2τ2κy

a =

then α ^ 1 and the expression on the right of (1.3) is equal to 1.
Hence the corollary follows from the theorem.

We note that in previous versions of Corollary 2 (see GeΓfond
[3]) the bound on \uk\ was

However, in the special case J = 1 a bound similar to (1.2) was
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obtained by Mahler [6].
If the coefficients bjk are integers we obtain an improvement in

"Siegel's lemma" (Baker [1], Siegel [8], Stolarsky [9]).

COROLLARY 3. Suppose that 1 5Ξ J < K and that the coefficients
bjk are integers satisfying \bjk\ ^ T for some T ^ 1. Then there

?
exists a lattice point u = ( J, u Φ 0, in Zκ such that

\uκ!

(1.4) Λj(u) = 0, i - 1 , 2 , •. . , J ,

and

\uk\ ̂  (ΊVK+ iγ/{κ-j), k = l, 2, . , K .

Proof. We apply Corollary 1 with 0 < /3 < 1, p = J and q = 0.

Since ^(w) is an integer whenever ueZκ it follows that there exists

u e Zκ, u ΦQ, such that (1.4) holds and

(1.5) \uk\^ {β~ιTVK+ l)'/<*-'> , ft = 1, 2, , K .

Now among the finitely many lattice points ueZκ, u Φ 0, which
satisfy (1.4) and (1.5) with β — 1/2 there must be at least one which
satisfies (1.4) and (1.5) for values of β arbitrarily close to 1. Thus
we may take β = 1 on the right of (1.5) for some ueZκ, u Φ 3.

COROLLARY 4. Suppose that 1 <̂  J < K and that Hlf H2, , Hκ

are positive integers. Then there exists a lattice point u = I

- V ^
u Φ 0f in such that

^1/2

j = 1 , 2 , • • • , ? ,

l/2• O \ 1/2/ #

1 ) (£•

Proo/. Let 0 < 0 < 1. We apply Theorem 1 with M = 1, αfc

Hk + θ and

( l/2

Σ | 6 l )
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where

It follows that the left hand side of (1.1) is

( + βy\i + ψrr = i .
ι=i

Thus there exists u e Zκ, u Φ 0, such that

(1.6) \uk\<^Hk, k = l,2, ..,K,

(1.7) I Λ3 (u) | <: γ,(£ (Hk + θf I bjk ή
1'2 , j = 1, 2, . . , v ,

and

(1.8) 14(tΓ) 1 ^ d-) 1 / 2 ^(Σ (ft + β) I2 bjk |2)1/2,

j = p + l, p + 2, •-., J .

Only finitely many ueZκ, u Φ 0, satisfy (1.6) and so, as in the proof
of Corollary 3, at least one of these lattice points must satisfy (1.7)
and (1.8) for all 6̂ , 0 < θ < 1. Thus we may take θ = 1 on the right
hand side of (1.7) and (1.8). Finally we observe that

(1.9)

and

(1.10)

Since K> J

Σ #*
\fc = l

/ κ

we have

+ 1)2

\-i/J

\h

( κ

D
Kl=:

) -1/2

Ύ/J - Π HM
ι=i

(1.11) Π (1 + HrψJ - Π Hι2/J ^ Π (1 + Hr2K/J)1/κ - Π Hr2/J

1 = 1 1=1 1=1 1=1

^ 1 + Π HτVJ - Π # Γ W = 1 ,
i = l 1=1

where we have used Theorem 27 and 10 of [5] in the first and
second inequalities respectively. Putting (1.9), (1.10) and (1.11)
together gives the desired result.

Our upper bound in Corollary 4 sharpens an inequality in
Stolarsky [9], p. 15.

We also remark that Corollary 4 has an interesting geometrical
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interpretation. Let b1} b2} ,bj denote nonzero column vectors in Rκ

with b] = (bdl bj2 .biκ)_. We write Λά{x) - <6y, 5>, 116y11 = (ΣίU ibSkIT2

and recall that | (bh x) | H&ill""1 is the length of the projection of x
onto the subspace spanned by the vector bό. Applying the corollary
with Hλ — H2 = = Hκ — H we find that there is always a non-
zero lattice point u e Zκ with components at most H in absolute
value and having a projection onto the span of each bό of length at
most 2Hι~κ/J.

2* Preliminary results • The remainder of our paper is devoted
to a proof of Theorem 1. This is accomplished by combining the
following lemmas. Here we write δjk for the Kronecker delta and
JB* for the complex conjugate transpose of the matrix B.

LEMMA 5. Let B = (bjk) be a J x K matrix with complex entries
and let D = (dkojk) be a diagonal matrix with dk > 0 for k — l,2, , K.
Then

(2.1) det(J9 + B*B) £ ( f i^) Π (l + Σ dίΊ&i
\l / \ kl=ι

It is possible to bound det (D + B*B) by using Hadamard's
inequality (Bellman [2], Gantmacher [4], p. 252). But the result we
obtain is

and this is generally weaker than (2.1) if 1 <; J < K.

Proof of Lemma 5* Let Iκ denote the K X K identity matrix.
We will begin by proving that

(2.2) det (J* + B*B) S Π (1 + Σ I h
3=1 \ k=l

If Q is a K x K unitary matrix, that is if Q*Q = QQ* = Iκ, then
the left and right hand sides of (2.2) are unchanged when B is
replaced by BQ. Since B*B is a positive semi-definite Hermitian
matrix we may choose the unitary matrix Q so that Q*B*BQ is a
diagonal matrix. In particular we may choose Q (see Gantmacher
[4], p. 274) so that

Q*B*BQ = (BQr(BQ) = (xkδjk)

where
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^ = λ/2 = * * * = λjJtf S> V ' = ~~~ Aίjif+2 -—

Thus rank (B) = rank (B*B) = M £ K. (Of course if rank (B) = 0
then (2.2) is trivial so we may suppose that 1 <; M.) By replacing
B by BQ it follows that we may assume without loss of generality
that B*B = (Xkδjk), or equivalently that

\Δ.O) y j VljUιk — Λjk0jk .
1 = 1

Taking j = k ̂  M + 1 in (2.3) we find that bjk = 0 if k = M + 1,
AT+2, ••-,#.

Next we define wjk — Xkί/2bjk so that by (2.3) the J x M matrix
W = (wjk) has ikf orthonormal columns (and so M 5S J) . It follows
from BesseΓs inequality that

(2.4) Σ | w Λ | 2 ^ l ,

for j = 1,2, ,J. Since / x + B*B = ({1 + Xk}δjk) we have

det (/x + B*B) = Π (1 + λ,) = fl (1 + λ,)Σi=i|wί*12

J k = l J f c = l

= π(π(lutΓ

Thus to establish (2.2) it suffices to show that

(2.5) Π (1 + λ*)1"'*1* ̂  1 + Σ Ibn.\ι

k=l k=l

for each j = 1, 2, , J. If Σf=i l ^ fcl2 = 0 then (2.5) is trivial since
the left hand side is one. If Σf=1 \wdk\

2 > 0 then by the arithmetic-
geometric mean inequality (see [5], Theorem 9) we have

(
In the last inequality we have used (2.4) together with the observa-
tion that (1 + (c/x))* is an increasing function of x for x > 0 and
any fixed c ̂  0. This proves (2.2).

To complete the proof of the lemma we note that

det (D + B*B) = det (Z>1/2) det (Iκ + D-1/2B*BD~1/2) det (Din)

= (Π dk) det (Iκ +
\k=l J
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Next we suppose that Lά(x)9 j = 1, 2, , N are N linear forms
in K variables,

Lό{%) = Σ ajkxk ,

so that A = (αifc) is an i\Γ x if matrix. We assume that the forms
L3 are real for j = 1,2, , r and that the remaining forms consist
of s pairs of complex conjugate forms arranged so that Lr+2j_1 =
Lr+2j for j — 1, 2, , s. Let εx, ε2, , ε^ be positive with er+2j_ι —
er+2j for j = 1,2, , s. We define the N x N diagonal matrix E
by E = (cjδjk) where cά = εj1 if i = 1, 2, , r and c, = (2/ττ)1/2ε71 if
j =, r + 1, r + 2, •-, N.

LEMMA 6. Let M be a positive integer and suppose that

M\detA*E2A\1/2^l .

Then there exist at least M distinct pairs of nonzero lattice points

±vm, m — 1, 2, , M, in Zκ such that

for each j — 1,2, , N and each m = 1,2, , M.

For a proof of Lemma 6 we refer to [10].

3* Proof of Theorem 1* Let N = J + K. We apply Lemma
6 with

L3(x) = x3- , i = 1, 2, •••, JBΓ,

Lκ+j(x) = /1/ϊ) , i = 1, 2, , J .

Thus r = K + p and s = g. The matrix A can then be partitioned

as

(3.1) A -

We also let

e3 = aj9 j = l, 2, . . . , 2 Γ ,

βπ+i = ft , i = 1, 2, « , p ,

I 2 \ 1 / 2

i = ( —) ft , i = P + 1, p + 2, . - , / .
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Using (3.1) it follows that

(3.2) A*E2A = D + (GB)*(GB)

where D = {a~k

 2djk) is & K x K diagonal matrix and G = (βj^^) is a
J x J diagonal matrix. Combining (1.1), (3.2) and Lemma 5 we find
that

M2 det (AE2A*) ^ 1 .

Thus the conclusion of Theorem 1 follows as an application of Lemma
6.
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