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ON BISIMPLE WEAKLY INVERSE SEMIGROUPS

S. MADHAVAN

A regular semigroup £ with a commutative subsemigroup
of idempotents E is called weakly inverse if for any aeS
the set Ea of inverses af of a for which a/a e E is nonempty
and for all, a,beS,Eah<^EbEa and Ea — Eb=*a — b. In this
paper we show that in a weakly inverse semigroup S with
partial identities the ^-class R which contains the partial
identities is a right skew semigroup and conversely, every
right skew semigroup R may be so represented. If R
satisfies the condition that for every a,beR there exists
a c e R such that Ra ΠRb — Re, then our considerations lead
to a construction of bisimple weakly inverse semigroup with
partial identities.

The weakly inverse semigroups have been introduced and in-
vestigated by B. R. Srinivasan [5] and the results we have obtain-
ed generalize same results of Reilly [4] concerning bisimple inverse
semigroups.

2* Preliminaries• We assume that the reader is familiar with
some of the basic results of [2].

Let S be a semigroup. An idempotent e of S is called a
principal idempotent of S if fef — fe for every idempotent / of S
An element a of S is called a principal element of S if there exists
an inverse a' of S such that aar is a principal idempotent of S. It
is easy to show [5] that these two definitions are consistent. If a
is any element of S, then an inverse ar of S will be called a
principal inverse of a if a! a is a principal idempotent of S. If
aeS, then Ea will denote the set of the principal inverses of α.
Following [1] and [5], a semigroup S is called a weakly inverse
semigroup if for every αGS, ί/o ^ D, and for every a,beS we
have

( i ) EabQEbEa,
(ii) Ea = Eb implies a — 6.

The following lemma summarizes some of the results of [5].

LEMMA 2.1. If S is a weakly inverse semigroup, then
( i ) the principal idempotents of S form a semilattice,
(ii) Eaa consists of a single idempotent ea for every aeS,
(iii) every principal left ideal of S has a unique principal

idempotent generator,
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(iv) the set I of the principal elements of S forms an inverse
snbsemigroup of S;

(v) an element aeS is a principal element of S if and only
if a has a unique principal inverse',

(vi) for every a, b e S, we have Eab = EbEaf where

E% = {b'eEb:eabb'ea = eabb'} .

If a is any element of the weakly inverse semigroup S, then
a\ a[, will denote principal inverses of a, whereas a" will denote
the unique principal inverse of a'eEa.

The semigroup T(X) of the partial transformations on the set
X is a weakly inverse semigroup. An element a e T(X) is a
principal element of Γ(X) if and only if it is a one-to-one partial
transformation on the set X. The Semigroup T(X) will be called
the symmetric weakly inverse semigroup on the set X [5]. Let us
recall the main theorem of [5]:

LEMMA 2.2. Let S be a weakly inverse semigroup. For any
a eS let ψa be the partial transformation on S where dom ψa = SEaf

and where for every ίcedom^α, xψa — xa. The mapping S —» T(S),
α —»ψa embeds S isomorphically into the symmetric weakly inverse
semigroup T(S) in such a way that an element aeS is principal
in S if and only if ψa is principal in T(S).

With the notation of Lemma 2.2 we now have the following

LEMMA 2.3. Let S be a weakly inverse semigroup, and let a
and b be elements of S. The following conditions are equivalent:

( i ) EJ> = {ea},
(ii) for every a' e Ea there exists a br 6 Eb such that ar ^ V in Ir

(iii) ψaQψb.

Proof. (i)«(ii). Let α' be any element of Ea. By Lemma 2.1
(vi), there exists a b' eEb such that b'a" eEa,b. Since a'b — ea — a'arr

we have Va" — a'a", and so a! <; V in /.
(ii) => (i). Ler a' be any element of Ea, and let bf be an element

of Eb such that α' ^ V in /. Then a'b - a'V'Vb = a'b" = a'a" = ea.
Therefore (i) holds.

(i) « (ii) ==> (iii). Let x be any element of domfffi. Then there
exists a a' eEa such that x = xa"a\ Let b' be any element of Eh

such that a' ^ b' in J. Then ^ = xa"a' = xa"a'b"b' = xb"b' 6 dom ψb;
moreover xb = xb"b'b = α?6" = xa"a'b" = xa"a'a" — xa"a'a = xα. We
conclude that ψaζZψb.
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(iii) =r> (i) <=> (ii). Let α' be any element of Ea. Since EaQdomψaQ
dom ψb9 we have ea = α'α — α'ψβ = a'ψb — Q>'b. Hence EJo = {eα}.

It follows from Lemma 2.2 and Lemma 2.3 that the relation^
on the weakly inverse semigroup S which is defined by a <; b if
and only if a and 5 satisfy the equivalent conditions of Lemma 2.3,
must be a partial order on S which is compatible with the multi-
plication. We shall call this partial order the natural partial order
on the weakly inverse semigroup S. The natural partial order ^
induces the usual natural partial order on the inverse subsemigroup
/. However, <^does not induce the usual natural partial order on
the idempotents of S in the general case; indeed, if / = f2 is an
idempotent of S which is not principal in S, then / Φ ef, fJ*?ef and
βf 5£ / , whereas ef cannot be below / for the usual natural partial
order on the set of idempotents of S. The above defined natural
partial order on the weakly inverse semigroup S. The above defin-
ed natural partial order on the weakly inverse semigroup S will
henceforth be denoted by ^ .

LEMMA 2.4. If S is any weakly inverse semigroup, then I is
an order ideal of S, ^ .

Proof. Let 6 be any element of /, and suppose that α ^ 5 in I.
Clearly Eb = {&'} is a singletion. If α', a[ are any elements of Ea9

then a <£ δ implies that α' ^ V and a[ ^ 6' in I. Since a'έ%a[ in the
inverse semigroup I, we must have a' — a[. Hence Ea is a singleton,
and by Lemma 2.1 (v) it follows that a el.

LEMMA 2.5. If e is a principal idempotent of the weakly in-
verse semigroup S, and aeS, then ea^a and ae <J a.

Proof. Any element of Eea is of the form α'β for some element
a' eEa by Lemma 2.1(vi). Hence {a!e)a = (afe)(ea) = eea. Thus Eea —
{eea}, and so ea ^ a.

Any element of Eae is of the form ea\ where a' e Ea by Lemma
2.1. (vi). Then eafa = eα/αe = eae, thus Eaea = {eαe}, and so ae <; α.

LEMMA 2.6. Let S be a weakly inverse subsemigroup of the
symmetric weakly inverse semigroup T(X) on the set X. Let us
suppose that for every aeS and for every x e dom a there exists a
principal inverse a! of a in S such that %aa' = x. Then the
natural partial order on S coincides with the inclusion relation
for partial transformations.
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Proof. Let a and β be any elements of S such that a <^ β,
and let us suppose that x e dom a. There exists a! e Ea such that
xaa' — x. From a <; β it follows that a'β — a'a, and so xa —
xaa'a = xaa'β = #/3. Hence α£/3. Let us conversely suppose that
a and β are elements of S such that aQβ. Let α' be any element
of Ea. Clearly dom a'a = dom a'β. If a? e dom α'/3, then a? e dom a! =
dom α'α, and so dom a'a = dom α'/3. From α £ /3 it now follows
that a'a = a'β. Hence Eaa = {eα}, and we conclude that a c yβ.

The following alternative characterization of weakly inverse
semigroups will be used later in this paper.

THEOREM 2.7. For a regular semigroup S the following condi-
tions are equivalent:

( i ) S is a weakly inverse smigroup.
(ii) There exists a commutative subsemigroup E of idempot-

ents of S such that
(a) for every aeS the set Ca of inverses a' of a for which

a'a eE is nonempty,
(b) CabQCbCafor all a,beS,
(c) Ca — Cb implies a — b for all a, b eS.

Proof. That (i) implies (ii) is immediate. Let us now suppose
that (ii) holds. Let e be any element of E, let f — p be any
idempotent of S, and suppose that / ' e Cf. Then

fef = Λf'fW - fe(f'f)f = fe(f'f) = f(f'f)e = fe ,

and so e is a principal idempotent of S. Let / = / 2 be any
principal idempotent of S, and suppose that / ' e Cf. Then / ' / is
the idempotent which belongs to E, and which is j£f '-related to /.
Using the fact that / is principal we have

/' - /'(//') = f'(ff')f(ff') = /'(//')/ - /'/

Thus Cf is the singleton which consists of the element / ' / = / '
which is JZf-related to /; clearly Cff — {/'} and so Cf = Gf>. Hence
/ = / ' eE. We conclude that E is precisely the set of principal
idempotents of S. Consequently, S is a weakly inverse semigroup.

3* Right skew semigroups* A semigroup R is called a right
skew semigroup if for all x, y, a e R, xa = ya implies that there
exists a left identity e of R such that x — ye.

If a is any element of the right skew semigroup R, then α2 = a2

implies that a = ae for some left identity e oί R. This already
indicates that the set of left identities of R is nonempty. If / is
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any idempotent of R, and e any left identity of R, then ef = f
implies that there exists a left identity g of R such that f — eg — g.
We conclude that the set of idempotents of R coincides with the
set of left identities of R. It is then obvious that the set of idem-
potents of R forms a right zero semigroup.

We shall now provide an example of a right skew semigroup.
Let X be a set, and μ an equivalence relation of X. Let jy~fι(X)
be the set of transformations of the set X where

( i ) Ker a = μ,
(ii) (xa, ya) e μ implies (x, y) e μ for all x, y e X.
In the terminology of [4] jy~μ(X) is the semigroup of all

μ-transformations with domain X,

THEOREM 3.1. J7~μ(X) is a subsemigroup of the full transfor-
mation semigroup on the set X which is a right skew semigroup.
Every right skew semigroup R can be represented faithfully by a
semigroup of μ-transformation with domain R.

Proof. It follows from [4] that ,y~μ(X) is a subsemigroup of
the full transformation semigroup on the set X. Let us now sup-
pose that φa — ψa for some φ, ψ, ae^7~μ(X). Since Xψ intersects
every μ-class in at most one element we can choose an idempotent
ε 6 jy~μ(X) such that Xψ £ Xε. From Ker ε = Ker a = μ it follows
that ε and a are ^-related in the full transformation semigroup
on the set X. Therefore φa = ψa implies φε = ψε, where ψε — ψ
since Xψ £ Xε. Obviously ε is a left identity of J?~μ(X). We con-
clude that <yμ(X) is a right skew semigroup.

If R is a right skew semigroup, then

μ = {(&, y)eRxR: xa = ya for some a eR}

— {(#, y) zRxR: xa = ya for all a eR}

is a congruence relation on R, and the right regular representation
of R provides a representation of R by a subsemigroup of J^(R).
Since R contains left identities, the right regular representation of
R is faithful.

A right zero subsemigroup E of a weakly inverse semigroup S
will be called a system of partial identities of S if the following
conditions are satisfied.

( i ) If a in any nonprincipal element of S, and eeE, then
ea = a.

(ii) If / = f2 is any idempotent of <S, then there exists an
eeE such that f <^ e.

We remark that <£ always denotes the natural partial order on
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the weakly inverse semigroup S, as defined in § 2. If S is an in-
verse semigroup, then E must be a singleton. Conversely, if E is
a singleton, then E = {e}, and Ee must be a singleton; by Lemma
2.1 (v) it then follows that e is a principal idempotent; since / ^ e
for every idempotent feS, we conclude t h a t / must be principal
by virtue of Lemma 2.4; Hence S is an inverse semigroup with
identity e. Consequently, a weakly inverse semigroup S with a
system i? of partial identities is an inverse monoid if and only if E
is a singleton.

THEOREM 3.2. If S is a weakly inverse semigroup with a
system E of partial identities, then the &-class R of S which
contains the partial identities is a right skew subsemigroup of S.

Proof. Let a and δ be any elements of R, and let ea be the
principal idempotent which is ^-related to α. There exists an
eeE such that ea ^ e. This condition implies that Eβae — {ea} or,
eae = ea. Consequently ae — a. Since e is .^-related to δ, there
exists a b' eEb such that W = e. Then αδδ' — ae = a implies that
ab is .^-related to α, hence αδ 6 i?. We conclude that R is a sub-
semigroup of S. Let c be any other element of R, and suppose
that ac — δc. Let c' eEc, where ccf = e. Then αc = δc implies that
be z= ae ~ a, where e e R is a left identity of J?. Thus, iϋ is a right
skew subsemigroup of S.

We now proceed to show the converse for Theorem 3.2. We
shall show that, given any right skew semigroup R, we can con-
struct a weakly inverse semigroup with a system of partial ident-
ities in such a way that the ^-class which contains the partial
identities is a right skew semigroup which is isomorphic to R.

In the remainder of this section R will denote a right skew
semigroup, and E the set of idempotents of R. We know from
Theorem 3.1, that the right regular representation p maps R iso-
morphically into the symmetric weakly inverse semigroup T(R).
For any a e T(R), let Ea denote the set of principal inverses of a
in T(R). Define

(RpY = {af G Ea: aeRp and aa! e Rp} ,

and let

)" = {a"eEa,:a'e(Rp)'}.

Let 2 be the subsemigroup of T(R) which is generated by the
elements of Rp\J(Rp)f\J(βp)". We shall show that the semigroup Σ
is a weakly inverse semigroup with a system of partial identities, and
that Rp is the ^?-class of Σ which contains the partial identities.
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LEMMA 3.3. For every aeRp and every ε = e2eRp there exists
an a' eEa Γ\{Rp)' such that aa' = e-Rp is an &-class of Σ

Proof. Let a eRp, and ε = ε2 e Rp. Then a = ap and ε = ep
for some a, e = e2 eR. The mapping a': Ra —> Re, xa —> xe is a well-
defined one-to-one partial transformation on the set R, and it is
easy to see that a' eEa Π {Rp)' and aa' = ε. This already indicates
that Rp is contained in an ^-Class of Σ

If aeRp then obviously doma = R, and a is a right transla-
tion of R. Let α be any element of Rp, and let a'eEa, where
aa'eRp. Let s e dom α and sa' — q. Since a'a is the restriction
to domα' of the identity mapping, we have sa'a = qa = s. For
any r eR, {rq)a = r{qa) — rs, and so rs 6 dom a'. Moreover, {rs)a' =
{rq)aa' = r{qaa!) — r{sa!) and so we may conclude that, whenever
sedomα', then rsedomα' for all reR, and (rs)α'= r(sα'). In
other words, α' is a partial right translation for all a'e{Rρ)'. Let
a" e{Rp)", where a"eEa>, with a'eEa and aa'eRp. Since α"α'e
#α α,, where aa'eRp and (aa')(a"a') e Rp it follows that a"a'e(Rp)'
is a partial right translation of iϋ. Thus α" = {a"a')a being a com-
position of partial right translations of i? must also be a partial
right translation of iϋ. We showed that every element of Rp\J
(Rp)' Π {Rp)" must be a partial right translation of R. Thus, all
elements of Σ are partial right translation of R. If ξ is any ele-
ment in the ̂ ?-class which contains Rp as a subset, then dom ξ — R,
and so ξ must be a right translation of R. If ζ is any fixed left
identity of R, then //? is an idempotent of Rp, and there exists a
f'eJ? such that ζζ' = fp. If g is any left identity of R, then #£ =
gξξ'ξ = 0/£ = / ί If r is any element of R, then there exists a left
identity e oί R such that re = r, and then r£ = (re)f = r(ef) — r{fξ).
We conclude that ς = (fζ)ρeRρ. Thus B̂ o is an ^-class of 21.

LEMMA 3.4. // aeRp and β'e{Rρ)', then β'a = β'a", where
a" e {Rp)" Π E«, for some a' e {Rp)' n Ea for which aa' e Rp. If β" e
{Rp)", then β"a = βf'a\', where a[' e {Rp)" n Eaί for some a[ e {Rρ)r Π Ea

for which aa[ e Rp.

Proof. There exists a βeRp such that β' e {Rp)' Π Eβ and
{β"} = JB7̂ . By Lemma 3.3 there exists aa' in Ea Π (JB/o)' such that
aaf = /3/3'. Let α" be the unique element of Ea. Clearly a" e {Rp)".
From aa' = /3/3' it follows that β'^fa'^fa"a', and so /3'α = β'a"a'a' =
β'a".

Since i?/? is a right skew semigroup, there exists a left identity
ε of Rp such that β = /3ε. By Lemma 3.3, there exists ααj in EaΓ\
{Rp)' such that aa[ = ε. Let αj' be the unique element of Ea>γ.
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Clearly a['e(Rρ)" and β"a = β"aa[a = β"aa[aΐ==β"εaϊ = β"
β"β'βa[' = β"a['.

LEMMA 3.5. Let I be the subsemίgroup of Σ which is generated
by the elements of {RpY U {RpYf- Then I is an inverse subsemigroup
of Σ, and all the elements of I are principal in Σ. Moreover Σ =

Proof. It is clear that / consists of elements which are principal
in T{R), and so must be a subsemigroup of the symmetric inverse
semigroup on the set R, i.e., the semigroup of all one-to-one partial
transformations on the set R. Since I is generated by a set of elements
together with their inverses, / must be an inverse subsemigroup of
the symmetric inverse semigroup on the set R. Since all the idem-
potents of / are principal in T(R) we must have all the elements
of I are principal in Σ. That Σ = (Rp)I U / follows immediately
from Lemma 3.4.

LEMMA 3.6. For any ξeΣ, let Gξ denote the set of inverses ς
of ζ in Σ such that ζ'ξel. Then Gξ = EξΓ\Σ Φθ- For every
a 6Rp and every ζeI we have Gaζ = GζGa.

Proof. If ζ 6 Σ, then ξ e I or ξ e (Rp)L If ζel, then Gζ = Eξ =
EξOiΣ is the singleton {ξ'} where ξr is the unique inverse of ξ in I.
Let us now suppose that ζ = aζ, where a e Rp and ζel. By Lemma
3.3 Ga Φ Π If C is the unique inverse of ζ in I and a! e Ga c Ea Π Σ,
then ζ'a! is an element of I which is an inverse of αζ, where ζ'α'αζ
is an idempotent of /. Consequently • Φ GζGa^Gaζ^EaZΓ)Σ. Let
us now suppose that (αζ)' is any element of EaζΓ\Σ. Since Ea^
EζEa — ζ'Ea, where ζ' is the unique inverse of ζ in /, we must
have that (αζ)' is of the form ζ'a[ for some a[eEa. Obviously
(aζ)(ζ'a[) 6 Σ, and so αζζ'αj = βx βn9 where βt e Rp U (Rpϊ U {Rp)"
for all i = 1, , n. Since aζζ'a' e{Rp)I\J I we may suppose that
βne(Rρ)r or βne{Rp)". In both cases βn£fβ for some βeRp.
There exists a left identity ε of Rp such that βε = β, and then
αζζ'αίε = aζζ'a[. Let α2' be any element of (RpY Π Ea such that
ααj = ε. Clearly a'2 e Ga and aζζ'a[ = aζζ'aίe = aζζ'alaal = αζζ'α^.
Since also ζ'αίei7αζ: we have ζ'a[aζ = ζ'αsαζ, and we conclude that
(αζ)' - ζ'αί - ζ'α; 6 GζGα. Thus Π Φ GζGa = GβC - #α C Π -Γ.

LEMMA 3.7. Σ is a weakly inverse semigroup.

Proof. Let ζ,η be any elements of Σ. If ζ, ηel, then it is
clear that Gζμ = GμGζ. If ξ, η e {Rρ)I, then £ = αζ and y = βθ for
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some a, βeRp and ζfθel by Lemma 3.4, there exists a β"el,
with Gpn<^Gh such that ζβ = ζβ", and so

Gξη = Gaζβθ = Gaζβ''θ = Gζβ»θGa = Gβ>rΘGζGa

by Lemma 3.6. The two other cases may be dealt with in a
similar way, hence it follows from Σ = (Rp)I\JI that Gξη^G^Gς for
all ξ, μeΣ.

Let f = αζ, α e Jfy>, ζ e I, be any element of (Rp)I, and let us
suppose that Ĝ  is a singleton. If xaζ = yaζ for some x,yeR,
then #α = #α since ζ is a one-to-one partial transformation. Put-
ting a = α^, we then have #α = ya, and since iϋ is right skew this
implies x = ye for some left identity e of R. If e = βjO, then Lemma
3.3 guarantees that there exists a a' eGa such that αα' = e. If ζ'
is the unique element of Gζ, then ζVe(?α ζ . If u = yaζζ'a', then
uaζζ'a' = yaζζ'a', hence wαζ = ?/αζ. Again we may conclude that
y — uX for some left identity λ of Rp, and that there exists a α( e Gα

such that aa[ = λ. Since both ζ'α' and ζ'αj belong to Gaζ, and since
GαC is a singleton, we must have ζ'α' = ζ'αj. Therefore

y = uX = 7/αζζ'α'λ = yaζζfa[aa[ = yaζζ'a[ = yaζζ'a' = u

and so

from which we have that x = y. Thus f = αζ is a one-to-one partial
transformation on R, which implies that ζ is a principal element of
TO.

If f and )y are any elements of Σ such that Gξ = Gv, and if
η el, then Gξ = Gv = Ev is a singleton. By the foregoing this
implies that ζ must be principal in T(R), hence Gξ — Eζ. Since

is a weakly inverse semigroup Eξ = ̂  then implies that

Let us now suppose that ξ — aζ and rj = βθ, where a, βeRp
and ζ, θel, and Gξ = Gη. Every element of Gξ is of the form
ζ'α' = £' with ζ' 6 Gζ, α' e Gα. Thenf' 6 Gη, and so ̂  = ξ'ξ. Since αα'
is a left identity for Rp we also have aa'η = aa'βθ = βθ = η. Since
ζ'ζ is the restriction of the identity transformation to domζ'ζ we
have ξζ' = αζζ'α' c αα'. Therefore

One can show dually that ηQζ, and thus ζ = η. Since Σ =
I\M we may conclude that Gf = Ĝ, implies f = η for all ξ,ηeΣ.
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By Theorem 2.7 and Lemma 3.6 we have that Σ is a weakly
inverse semigroup.

We shall call Σ the weakly inverse hull of the right skew semi-
group R.

LEMMA 3.8. The set of idempotents of the &-class Rp of form
a system of partial identities of Σ.

Proof. Let ξ — aζ, a e Rp, ζel, be any element of (Rp)I, and
let xeάomaζ. If e is any left identity of R such that x = xe.,
then there exists a a! eGa such that aa! = ε — ep. If ζ' is the uni-
que element of Gc, then ζ'a! e Gς and xaζζ'a' = xaa' = xe' — xe — x.
Hence for every ξ e {Rp)I and every x e dom ξ there exists a
principal inverse ξ' of ξ in Σ such that xξξ' = x. Clearly if ξ e I,
and x e dom ξ, then also x = ί»<J<j' where f' is the unique element of
(τζ. Since Σ = (Rp)I U / we conclude from Lemma 2.6 that the
natural partial order on Σ coincides with the inclusion relation for
partial transformations.

Since every idempotent of the ^-class Rp is a left identity for
Rp, it must also be a left identity for the elements of the set {Rp)
I which contains all the nonprincipal elements of Σ.

Every idempotent of Σ is of the form ξξ' where ζ e {Rp)I or
ζ e/and ξ' eGζ. If ξ = aζ where aeRp and ζel, then ς' is of the
form ζ'α' where af eGa and ζ'eG ζ . Clearly

in this case, and so ξξ' ^ aa' e Rp. Let us now suppose that ζel.
Then ξζ'el, and ξξ' is of the form ξξ' = βlf •—,&„, where & e
(i^) ' U {Rρ)'\ i = 1, , n. In all cases βn£fβ for some /^ei?^.
Since Rp is a right skew semigroup there exists an idempotent ε
in Rp such that βe = β. Then ξξ'e = ξξ'. Since ξξ' el is the re-
striction of the identity transformation to domfξ', we must have
ff' = ξξ'ε £ e, and so f£' ^ ε e i?^.

We conclude that the set of idempotents of Rp forms a system
of partial identities for Σ.

We summarize the results of Lemmas 3.3, 3.4, 3.5, 3.6, 3.7 and
3.8 in the following theorem.

THEOREM 3.9. Let R be any right skew semigroup and let Σ
be the weakly inverse hull of R. Then Σ is a weakly inverse semi-
group which contains R as a subsemigroup and as an &-class, and
the set of idempotents of R forms a system of partial identities
for Σ.
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4. Bisimple weakly inverse semigroups w i t h part ia l identit ies.

In this section we characterize the right skew semigroups whose
weakly inverse hull is a bisimple weakly inverse semigroup.

THEOREM 4.1. Let S be a bisimple weakly inverse semigroup
with a system of partial identities. Then the &-class R of S
which contains the partial identities is a right skew subsemigroup
of S, where for every a, b eR there exists a c eR such that RbΓ\Rb =
Re.

Proof. It follows from Theorem 3.2 that R is a right skew
subsemigroup of S. Let a, b eR, and let {ea} = Eaa, {eb} = Ehb. The
principal idempotents form a commutative subsemigroup of S, and
so Saf)Sb = SeaΓ\Seb = Seaeb. Since R is an ̂ -class of the bisimple
semigroup S, there exists a c e R such that Seaeb = Sc and thus Sa Π
Sb — Sc for some c e R.

Let x eRΠSa. Then x = sa for some s eS. Since S is bisimple
there exists a t eLs (Ί R, and since R is a right skew semigroup,
there exists an idempotent e of R such that te — t. Then se — s,
with e = e2eR. Let α' be any inverse of α in S such that aa' — e.
Then x = sα and #α' = saaf = se = s imply that s eR. Thus x eRa,
and so Saf\Rξ^Ra. Prom this follows that SaΠR = Ra. Similarly
Sb Π R = i?& and Sc Π i? = ifc. Hence from Sa Π Sb = Sc we have
RaΠ Rb = Re.

THEOREM 4.2. Lβί R be a right skew semigroup such that for
every a, b eR, Ra f]Rb = Re for some c eR, and let Σ be the weakly
inverse hull of R. Then Σ is a bisimple weakly inverse semigroup
which contains R as a subsemigroup and as an &-Class, and the
set of idempotents of R forms a system of partial identities for Σ.

Proof. From Theorem 3.9, it follows that we only need to show
that Σ is a bisimple semigroup.

Let a and β be any elements of Rp, and let βr e (RpY ΠEβ. Let
7 be an element of Rp such that (Rp)a Π (Rp)β — (Rp)l Putting
Gaa = {ea}, Gββ = {eβ} and GrJ = {er} the foregoing implies that
eaeβ = eγ since then er[resp. ea, eβ] is the identity mapping on Ry =
RaΠRβ fresp. Ra, Rβ\. If (aβ'β)' is any element of Gaβ>β = β'βGa,
then {aβ'β)raβ'β = eβeaeβ = eγ. Therefore aβ'&aβ''βJ^Prϊ, and so aβ'
belongs to the .^-class which contains Rp as an .^-class. Let a!
be any element of {RpY Π Ea such that aa' = ββr; then βf£/?af and
β'af^fa'aS^a, and so β'a belongs to the ^-class which contains
Rp. If a[ is any element of {Rp)' Π Ea, then a[β'S^{aa[)βf

f where
aa[ e Rp, and by the foregoing we can again conclude that a[βr
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belongs to the ^-class which contains Rp. We showed that the
products of any two elements of Rp U (RpY belongs to the «£ -̂class
which contains Rp. Let ξ be any element of this ^-class, and let
ζ be any element of Rp U (RpY* If 7 is an element of Lζ Π Rp, then
7ζ belongs to the £^-class which contains Rp. Since ξζ^fyζ this
implies that also ξζ belongs to this i^-class. By induction we can
then easily show that the subsemigroup of Σ which is generated by
the elements of Rpl)(RpY is contained in this i^-class. If aeRp,
a! e (RpY Π Ea and {α"} = Ea>, then a" = a"a'a, where α"α' e Eaa,9 and
so α" is a product of elements of Rpl)(RpY. Hence Σ is generated
by the elements of Rp U {RpY, and so I7 is bisimple.

EXAMPLE. Let A be a right concellative semigroup with an
identity e, and let us suppose that <; is a total order on the set A
where for any aeA,Aa = {xeAa^x}. Let B be a semigroup
which is isomorphic to A, and let p: A—> B be an isomorphism of
A onto B. We shall suppose that there exists a k e A such that
xφ = x for all x e Afe, and that Af] B = Ah. On R = A U 5 we de-
fine a multiplication which extends the separations on A and on B
by

ah = (α9>)6 if α e i and 6 6 JS

)^ if aeB and 6 e A .

It is easy to check that R is a right skew semigroup which satisfies
the conditions of Theorem 4.2.
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