THE BEST TWO-DIMENSIONAL DIOPHANTINE APPROXIMATION CONSTANT FOR CUBIC IRRATIONALS

William W. Adams

Let $1, \beta_{1}, \beta_{2}$ be a basis of a real cubic number field K. Let $c_{0}=c_{0}\left(\beta_{1} \beta_{2}\right)$ be the infimum over all constants $c>0$ such that

$$
\left|q \beta_{1}-p_{1}\right|<(c / q)^{1 / 2}, \quad\left|q \beta_{2}-p_{2}\right|<(c / q)^{1 / 2}
$$

has an infinite number of solutions in integers $q>0, p_{1}, p_{2}$. Set

$$
C_{0}=\sup _{\beta_{1}, \beta_{2}} c_{0}\left(\beta_{1}, \beta_{2}\right) .
$$

The purpose of this note is to observe that combining a recent beautiful result in the geometry of numbers of A. C. Woods with the earlier work of the author, we obtain

Theorem. $\quad C_{0}=2 / 7$.
It is generally conjectured that the best 2 -dimensional diophantine approximation constant is also $2 / 7$ but the result here can only be taken as further evidence for the conjecture.

The statement that $C_{0} \geqq 2 / 7$ is due to Cassels [2]. Moreover, it is shown in [1] that if $1, \beta_{1}, \beta_{2}$ is the basis of a nontotally real cubic field K, then

$$
c_{0}\left(\beta_{1}, \beta_{2}\right) \leqq 1 / 23^{1 / 2}<2 / 7
$$

Thus we may restrict our attention to totally real fields K. The following was also proved in [1]: for a full submodule $M \subseteq K$ (a rank 3 free Z-module) set
then

$$
C_{0}^{2}=\operatorname{Sup}_{K, M} \frac{4 m_{+}(M) m_{-}(M)}{D_{M}}
$$

where D_{M} is the discriminant of M and $N=N_{Q}^{K}$ is the norm from K to \boldsymbol{Q}. Thus it suffices to show that for all full modules M contained in a totally real cubic number field K, we have

$$
m_{+}(M) m_{-}(M) \leqq \frac{D_{M}}{49} .
$$

The recent result of A. C. Woods states: if Λ is any lattice in 3 -space of determinant d then for all real numbers $u>0$ there is a point (x_{1}, x_{2}, x_{3}) in Λ, not the zero point, such that

$$
-\frac{1}{u} \leqq \frac{7}{d} x_{1} x_{2} x_{3} \leqq u \quad \text { and } \quad x_{3} \geqq 0 .
$$

Embed M into 3 space as usual: for $\xi \in M, \xi \rightarrow\left(\xi_{1}, \xi_{2}, \xi\right)$ where ξ_{1}, ξ_{2} are the conjugates of ξ. The image of M is a lattice Λ_{x} of determinant $d=D_{11}^{112}$. Set, for any $\varepsilon, 0<\varepsilon<m_{+}(M), \quad u=$ $\left(7 / D_{11}^{1 / 2}\right)\left(m_{+}(M)-\varepsilon\right)$ in Woods theorem, and we obtain a point $\xi \in M$ so that

$$
-\left(\frac{7}{D_{11}^{1 / 2}}\left(m_{+}(M)-\varepsilon\right)\right)^{-1} \leqq \frac{7}{D_{x / 2}^{112}} N \xi \leqq \frac{7}{D_{12}^{1 / 2}}\left(m_{+}(M)-\varepsilon\right)
$$

and $\xi>0$. By definition of $m_{+}(M)$, we have $N \xi<0$ and so

$$
m_{-}(M) \leqq|N \xi| \leqq\left(\frac{1}{m_{+}(M)-\varepsilon}\right) \frac{D_{M}}{49} .
$$

Letting $\varepsilon \rightarrow 0$ we see that

$$
m_{+}(M) m_{-}(M) \leqq \frac{D_{\mu}}{49},
$$

thereby proving the theorem.

References

1. W. W. Adams, Simultaneous Diophantine Approximations and Cubic Irrationales, Pacific J. Math., 30 (1969), 1-14.
2. J. W. S. Cassels, Simultaneous Diophantine Approximations, J. London Math. Soc., 30 (1955), 119-122.
3. A. C. Woods, The asymmetric product of three homogeneous linear forms, Pacific J. Math., to appear.

Received June 25, 1980.
University of Maryland
College Park, MD

