PACIFIC JOURNAL OF MATHEMATICS
Vol. 91, No. 1, 1980

EXTREMAL PROBLEMS ON NON-AVERAGING
AND NON-DIVIDING SETS

H.L. ABBOTT

A set A of integers is said to be non-averaging if the
arithmetic mean of two or more members of A is not in A.
A is said to be non-dividing if no member divides the sum of
two or more others. In this paper we investigate some of the
many extremal problems which arise in connection with non-
averaging and non-dividing sets.

1. Introduction. In [1] the author showed that a modification
of an old argument of F. A. Behrend [3] could be used to disprove
a conjecture of Erdos and Straus ([4] and [11]) on non-averaging sets.
In the present paper the method of Behrend is put in a more general
setting and we use it, together with a number of other devices, to
derive several new results on non-averaging and non-dividing sets.
In all of the questions we consider, however, the results obtained
are far from being definitive.

2. The main theorem. The following theorem is a generali-
zation of a result of Behrend on arithmetic progressions. In fact,
Behrend’s theorem is given as Corollary 3 below.

THEOREM 1. Let I, B and t be positive integers exceeding 1, and
suppose (I, By =1. Let

(L) s = tIY(B — 1)
and let
(2) n=B"—1.

Then there exists a partition of {1, 2, ---, n} into s sets A, A,, ---, A,
such that for each m, 2 < m <1, and each 1, 1 £ 1< s, no m mem-
bers of A, have arithmetic mean in A,

Proof. Write the numbers 1,2, ---, % in base B so that if
1< a=<mn, we have

0=Sd@B, 0=d(@=B—1.

Let » = t¢(B — 1)* and partition {1, 2, ---, n} into » sets S, S,, ---, S,
where
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S; = {w gdi(a)z =i} .

It will be useful to associate with a the lattice point (di(a), d\(a), -- -,
d,_.(a)) in Et. Note that the lattice points corresponding to numbers
in S; lie on a sphere of radius 177 .

Next partition S; into & = I* sets, two numbers a and b in S; being
placed in the same set if d,(a) = d,(b) (mod!l) for 1 =0,1, ---, ¢t — 1.
Thus {1, 2, - -+, »} has been partitioned into kr = tI(B — 1) = s sets
Al, AZ: ) A:'

Suppose that for some m, 2 < m <[, and some 2, 1 < 7 < s, there
are distinet numbers %, ¥, - -, ¥ in A, such that

(3) y0+y1+"'+ym—1:mym'
Define x; for j=0,1, ---, 1 by

y; if 0=5j=m
Yo if mZGZ10.

It follows from (8) and (4) that

(4) r; =

(5) Lo+ & + o0 4wy, =y
From (5) it follows that

-1

% do(x;) = h + 1B

and
ld(x) = h + vB

where 0 <h<B—1land 0=y, v=<1!—1. Thus

(6) S de) = (= »)B + i) -

J

Now dy(x,), do(x), - -+, do(x;_,) belong to the same residue class modulo
l and consequently ! divides the left side of (6). Since (I, B) =1,
we must have lj¢# — v. However, since ¢t — v| < I, this gives g = v
and hence

-1
3, da,) = lda) -
This argument may now be repeated to show that
l—1
(7) %dt(xj)zldi(xl) for ¢=0,1,---,t—1.

If P, P, ---, P, are the points of E* corresponding to x,, «,, ---, &,
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then (7) is just the statement that P, is the centroid of P, P, ---, P, ..
Since the points lie on a sphere, we must have P, =P, = --- = P,
and hence x, =, = -+ = x,. It follows that y, =y, = -+ = y. con-
trary to hypothesis. This completes the proof of the theorem.

3. Some consequences of the main theorem.

COROLLARY 1. Demnote by f(n) the size of a maximal non-averag-
ing subset of (1,2, ---, n}. Then f(n) > en'™.

Proof. In Theorem 1 take ¢ =5, B =1*+ 1, so that, by (1) and
(2), s =50 and n = B°— 1 ~ . One of the sets, say A,, contains
at least [n/s] ~1/6 ~ (1/5)rn¥*® numbers. If |A,| =1, let A be any
l-subset of A, and if |4,| < I, let A = A,. In both cases A is non-
averaging and |A| > en'™, as required.

REMARK 1. Corollary 1 appears in [1]. We point out that Straus
[11] proved f(n) > exp(cV'log n) and Erdos and Straus [4] proved
f(n) < en”. It had been conjectured by Erdos and Straus that
f(n) < exp(cVlog m). Corollary 1, of course, shows that this con-
jecture is false. However, the following interesting question now
arises: Does there exist a number a such that f(n) = n*+®? It
seems certain that such an a exists, but we have not been able to
make any progress towards proving it.

COROLLARY 2. Denote by f,(n) the size of a maximal subset A
of {1,2, -+, n} with the property that mo m members of A have
arithmetic mean in A. Then, for each fixed m = 2,

Julm) > nexp(—2 + o1))2 log m log n)"?) .

Proof. In Theorem 1 take Il =m and put B=m"*+ 1. (We
suppose, without loss of generality, that ¢ is even.) Then, by (1)
and (2), s = tm* and n ~ m'™. One of the sets contains at least
[n/s] ~ (1/t)ym">#~* numbers and a simple caleculation shows that

—:—m“’z”z‘“ > nexp(—(2 + o(1))(2log m log 7)) .

COROLLARY 8. (Behrend). Denote by 7,(n) the size of a maximal
subset of {1,2, ---, n} not containing a three term arithmetic pro-

gression. Then

() > n exp(—(2 + o(1))(21og 2 log n)?) .
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Proof. Since r,(n) = f,(n), the result follows from Corollary 2.

COROLLARY 4. (Moser [6]). For positive integral k, let W(k)
denote the least integer such that if {1, 2, ---, W(k) + 1} is partitioned
arbitrarily into k sets, one of the sets contains an arithmetic pro-
gression of length 3. Then

Wi(k) > k°'os* .

Proof. In Theorem 1 put I = m = 2 and determine ¢ by
(8) t-2% < k< (¢ + 1)2%+

By (1), s =¢-2% and if we put B =2 +1 we get, by (2), n ~ 2%
Then, by a simple calculation using (8), we get W(k) = W(s) = n ~
2t2 > kc logk .

Theorem 1 may also be used to show that various sets of integers,
which arise in a natural way, contain large non-averaging subsets.
We mention two examples.

COROLLARY 5. Let P={p:p <mn, p prime}. Then P contains
a mon-averaging subset of size at least cn'“[log n.

Proof. In Theorem 1 take ¢ =5 and B = I’ + 1, as in Corollary
1. One of the s sets contains at least [rw(n)/s] ~ n""/5log n primes
and the result follows.

COROLLARY 6. Let Q, denote the set of the kth powers mnot
exceeding m. Then Q, contains a mnon-averaging subset of size at
least ¢,n*+*, where c, is a constant depending only on k.

Proof. In Theorem 1 take ¢ = 4k + 1, B = I** + 1 and note that
one of the s sets contains at least [n'/*/s] ~ I/(4k + 1) ~ (1/4k + 1)n¥/®*+2*
kth powers. The result follows.

REMARK 2. Corollary 6 includes Corollary 1 as the special case
= 1.

4. Additional results on finite non-averaging sets. It would
be of interest to know whether there exists a number g > 0 such
that every set of n integers contains a non-averaging subset of size
at least nf. We cannot answer this question, but we obtain a partial
result in this direction as follows:
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THEOREM 2. Let m = n. Then almost all n-subsets of {1,2,-- -, m}
contain a non-averaging subset of size at least ¢(f(n) log log n)"*/log n,
where f has the same meaning as in Corollary 1 and where almost

all means all but o((?@"))

In order to prove the theorem we shall need the following lemma:

LeMMA 1. There exists a partition of {1,2, ---, n} into k <
2n log n/f(n) non-averaging sets.

Proof. Let A be a maximal non-averaging subsetof (1,2, ---, n} =
N, so that |A| = f(n). For integral A let A + A = {a + M:a € A} and
let A;,=(A+N)NN. It is clear that A, is non-averaging. Let
M =0 and suppose we have defined numbers A, A, -+, N;. Let
D;={d:deN, d¢ A, for 1=0,1,2,---,5}. If D;+# @, then for
every deD; and every ac A, there exists an integer M\ such that
M+a=d and 0 <|x] =#n. Thus for some \*, 0< |\*| =< n, the
equation M* + @ = d has at least |D;|f(n)/2n solutions a€ A, de D,.
Let Njy, =\* and let Dy, ={d:deN, d¢ A, for : =0,1, ---, 5 + 1}.
We have

. o IDa'lf(n): . _f_("b_)
| Dyl =Dy = 2L pyj(1 — LI1)),
Since |D,| =n — f(n) < n(l — f(n)/2n) we get
_ fm)\™*
|D,| < n(l _27) .
Now choose & = [(2n log n)/f(n)]. Then

D) = a(1- %’Z))” <1

Thus |D,| = 0 and the sets A,, 4,, ---, A;, are non-averaging sets
whose union is N. This implies the lemma.

REMARK 3. The idea used in the above proof seems to have been
first used by G. G. Lorentz [6]. Subsequently it has been used by a
number of other authors in many different situations. See, for ex-
ample, [9] or [10] for a general discussion of the method and further
references to the literature. We point out also that, with careful
attention to detail the bound & < (n/f(n))(1 + log f(n)) can be obtained.

Proof of Theorem 2. The argument is similar to that used in
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[8] and [2], but is somewhat more complicated. Let w = m/n and
partition {1, 2, ---, m} into intervals I, I, ---, I, where

L={a(a—1w<a=aw).

The first part of the argument involves showing that the elements
of almost all n-subsets of {1, 2, --., m} are fairly well distributed
among the intervals I,. More precisely, we shall prove that if

__[nloglogn
9 - [
(9) K 2log n
and if T denotes the number of n-subsets of {1, 2, ---, m} which have

elements in fewer than g of the intervals I, then

=)

We may clearly suppose m = 2, since otherwise 7' = 0. We have

(10) T= g (:’) byt +-Z-.+b =n z,];]; <[w b—|~— 1]>

where, in the inner sum, the summation is over all compositions of
n into j parts. In fact, (10) can be established as follows: <7;’> is
the number of ways of selecting j of the intervals I,, say I, L, -, L,
and TJi- 1<[wb_i— 1]> is the number of ways of selecting =» integers,
b, of which are in I,,. From (10) we get

reSw w  ferbt

=L bybgfertbi=n i=1 b,;!
= #Z_ll ni(w + 1" > (3
j=1 fn,' bytdgteec b j=n bx! b2! e bjl
(w + % 1 p . .
2 w'3”, by the multinomial theorem

< (w + 1) n/.l—](# — 1)t

n!
< (2’w)"n##n
n!
< _.L(?_W&)”nm log log n)/(2 1og #) (M)n , by (9)
=T\ n 2log n

=) =)
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=o<mn<1—ﬁ>%>, as m = 2n

"! m
=0 <<m>> , as required.
n

Let N be an n-subset of {1, 2, ---, m} which has elements in at
least g of the intervals I, and let A = {a: I, N N # @}. For each
a € A choose a, €I, N and let A" = {a,: « € A}. We now show that A’
contains a non-averaging subset of size at least ¢(f(n) log log n)"*/log n.
Since A’ £ N, the theorem will then follow.

Partition {1, 2, ---, n} into & < 2n log n/f(n) non-averaging sets
via Lemma 1. One of these sets, say C, must be such that

(11) quCﬁA|g[%]>L(ﬁ()hl)(;__g%%g_%.

Let h =[V q] and for «acCN A let
L =IPUIPU--- UL

where
1Y = {a: (a—%>w<a§<a~p—;l>w} .

Then, by the pigeon hole principle, there exists an integer v, and a
set A*cCnA, |A*] = h, such that a,e I for each acA*. Let
A, = {a,: a€ A*}. We claim that A, is non-averaging.

Suppose that a., o, - -, @, (P = h — 1) are distinct members of
A, satisfying

(12) Aoy T Qoy + * 0+ Cap_ | = D, -
We have
(. — X . W
an = (= 2)w+b,, 0<b =X
Thus (12) can be written as
»—1 p—1
13) w(pa, — S a) = —pb, + 310,

The conditions 0 < b, < w/h and 2 < p < h — 1 imply that the right
side of (13) lies strictly between —w and w and must thererfore be
0. It follows that

P—1

;}ai:pap'
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However, the numbers «, «, ---, a, are in C and C is non-averaging.
This is a contradiction. It follows that A, is non-averaging. More-
over, by (11),

4, = h = [V q¢] > e(f(n) log log n)"*/log n .

This completes the proof.
We conclude this section with an additional application of Lemma
1, which complements Corollary 5.

THEOREM 3. Let P={p:p =<mn, p prime}. Then p contains a
non-averaging subset of size at least cf(n)/(log n).

Proof. By Lemma 1, {1,2, ---, #n} can be partitioned into % <
2n log n/f(n) non-averaging sets. One of these must contain at least
[(n)/k] > e¢f(n)/(log »)* primes and the result follows.

5. Infinite non-averaging sets. In all of what follows «a and g
are numbers such that »n* € f(n) € nf. We prove first the following
result, a weaker version of which was announced in [1].

THEOREM 4. There exists an infinite non-averaging set A of
positive integers whose counting function satisfies

A(w) >> wa/(1+ﬂ)2 X

Proof. Let m >1 be a positive integer. Let n, = m and let
n, = [mmith + 1] fork = 2, 3, ---. Let A, be a maximal non-averaging
subset of (1,2, ---, n,} and, for k=2, let A, be a maximal non-
averaging subset of {n, + 1, n, + 2, : -+, n; + n4y}. Let A = U, 4.
Suppose now that m is chosen so that |A4,] < (m/2)ni_,.

We now show that A is a non-averaging set. Suppose there are
distinet numbers a, a, ---, a,€ A such that

(14) A+ a4+ -0 Ay, =ta, .

We may assume aq, < a, < --- < a,_,. Let a,,€A, Suppose first
that k¥ = 8. It is clear that not all of a,, a,, - -+, a,_, are in A,. Thus
we may determine r», 1 <»<t—1, such that e, <, < -+- < 00, <
Ny + Npe < 0y + 120, < -+ <y 0y + nyy. Then

E—rn, < g+ a,+ -+ +a;,,
< ra,., + {t— r)a,,
< 20y + @ — 1) + Ngy)
(14) =t —r)n, + ¢+ 70
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< (t — r)ng, + 2tn,_,

<@t —1mn, +mnitt, as =< |4, < 7-’7’2—7%,@_1

<t —r + Ln,
=tin,.

If a,e Ayand I = k then ta, > tn, > a, + a, + -+ + a,_,, by (14) while
if 1<k—1 we have ta, <ty + %) < 2tn,_, < mnuits < n, <
t— < a +a, + -+ + a,_,, by (14). This is a contradiction. The
above argument does not apply verbatim to the case k¥ < 2, but the
same method works. Thus A is non-averaging.

Let z be given and let & be determined by =, <z < n4,. We
may suppose that x is so large that £ = 3. Then, if n, < x < 0, + %4,
we get A@) = A(my) = |4 > ni, > nltrety gouts® while if
Ny + My < TS Nypy, we get A@) = | AL > ni, > ¥+, This com-
pletes the proof of the theorem.

We consider next the problem of establishing the existence of
an infinite non-averaging set of primes whose counting function grows
at least as fast as z° for some ¢ > 0. In order to achieve this we
shall need to make use of the following deep result on the distribu-
tion of the primes, which we state as a lemma.

LEMMA 2. If 0 = 7/12, the interval [z, x + 2] contains at least
cx’llog x primes for all sufficiently large x.

REMARK 4. The bound 6 = 7/12 in Lemma 2 is due to Huxley
[5] who improved earlier results of Hoheisel, Ingham and Montgomery.
See [5] for an account of the history of the problem. In the appli-
cations, we can actually get by with the bound 6 = 3/5 of Montgomery.

THEOREM 5. There exists an infinite non-averaging set P of
primes whose counting function satisfies

P(x) > x¥%+9%/(log x)* .

Proof. Note first that since n,_, ~ 1/m)n}*+# and since
1/1+ ) =38/5 (B<2/3), the number of primes in the interval
{n. +1, -+, n, + n4,} is, by Lemma 2, at least ¢ni“+?/log n,. By
Lemma 1, {n, + 1, ---, n, + n;_,} can be partitioned into fewer than
2n,_, log n,_,/f(n,_,) non-averaging sets. One of these sets must
therefore contain at least c¢f(n,_,)/(log n,_,)* primes. Let P, be this
set of primes and let P = Ui, P,. The argument used in Theorem
4 shows that P is non-averaging and that P(x) > 2¥“+»*/(log ).



10 H. L. ABBOTT

6. Non-dividing sets. Denote by g(n) the size of a maximal
non-dividing subset of {1,2, ---,n}. Straus [11] proved that if
{a, a,, -+, a,} is a non-averaging subset of (1,2, ---, [n/k]}, then
{n —a,n— a, -+, n — a;} is a non-dividing set. Thus if & < f([n/k])
we have g(n) = k. It follows that the following theorem holds:

THEOREM 6. g(n) > n¥/4+,

Our next result is the analogue of Theorem 3 for non-dividing
sets.

THEOREM 7. Let P={p:p < n, p prime}. Then P contains a
non-dividing set of size at least en®"*?/(log n).

Proof. By Lemma 1 it is possible to partition {1, 2, - - -, [#Y"9]}
into fewer than n"~*/“*® log n non-averaging sets A4,, 4,, ---, 4,. By
the result of Straus, the sets B; = {n — a;: a; € A;} are non-dividing.
By Lemma 2, the set {n — [nY"+®], - - -, n} contains at least ¢n'*+*/log n
primes. Thus one of the B’s must contain at least ¢n®“*?/(log n)*
primes, as required.

A simple argument shows that there exist no infinite non-dividing
sets of integers. Call a set A quasi-non-dividing if no member of A
divides the sum of two or more smaller members of A. We investi-
gate infinite quasi-non-dividing sets. Our first result is the following
theorem:

THEOREM 8. There exists an infinite quasi-non-dividing set A
whose counting function satisfies A(x) > xV°.

Proof. It is a simple matter to verify that if » > 1 is a positive

integer and k is determined by (k 9 1> <mn= <]20> then{n — k + 1, ---,

n — 1, n} is a quasi-non-dividing set. Thus, if A(z) denotes the size
of a maximal quasi-non-dividing subset of {1, 2, - --, n}, then h(n) =
en'?. Also it is an easy consequence of a result of Szemeredi [12]
that h(n) < en'™

Let m > 1 be a positive integer and let A, be a maximal quasi-
non-dividing subset of {1, 2, ---, m}. Suppose we have defined sets
A, A, -+, A,. Let t,=3c440a, and let p, be the least prime
exceeding .. Let A, be a maximal quasi-non-dividing subset of
1,2, ---, ¢} and let A4,., = {p,a:acA},}. Put A=, 4, It is
now a simple matter to verify that A is quasi-non-dividing. More-
over, the observation made in the first paragraph together with the
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fact that, for large », p, ~ t,, enables one to show in a straight-
forward way that A(x) > x“°. We suppress these details.

Our final theorem establishes the existence of a reasonably dense
quasi-non-dividing set of primes.

THEOREM 9. There exists an infinite quasi-non-dividing set P of
primes whose counting function satisfies P(x) > x***4+9%/(log x)2.

Proof. Let m be a large positive integer and let n, = m. For
k=2, let n, = [n*tV¥]. Let P, be a maximal non-dividing set of
primesin {1, 2, ---, n,}. Suppose that we have defined P, P,, ---, P,_,.
By Lemma 1, it is possible to partition (1,2, ..., [#y/“*®]} into
s, € g%+ log n, non-averaging sets A® ... A¥. The sets
B ={n, — a;:a,€ AP} are then non-dividing sets which cover
{n, — [nf "], ---, 0, — 2, n, — 1} = I,. The primes in I,, of which,
by Lemma 2, there are ¢, > ni“**/log n, in number, are distributed
over the ¢(ni_,) reduced residue classes mod ni_,. Thus one of the
B’s must contain a set P, of primes of size at least [f./s,6(ni_)] >
ng/ @ 2)(log n,), and which all belong to the some residue class
modulo %;_,. Let P = Uz, P.

We now show that P is quasi-non-dividing. Suppose there are
primes p,, ;, -+, P, € P such that p, <p, <--- <p,and p, + p, +-- -+
Py = mp,. Let p,eP,. If p,_,¢P, we get py+ o+ -+ + 0, <
0 <ty < 0, < my, — [0 9] < p,, which is a contradietion.
Thus p;_, € P,. Determiner,l1<r <t — 1lsuchthato,, 0,4, -, D:. € P,
and P, Py, * ¢, Doy € P, It then follows easily that m = ¢ — » and
hence that

15) po+pit s F P =E— )P — (D Dot D)

Since p,, D41, -+, 0. all belong to the same residue class modulo
ni_,, the right side of (15) is divisible by =i.,. However,
Do+ -0+ Py < 10y, < Wi, and this is a contradiction. Thus P is
quasi-non-dividing. Furthermore, one may easily check that P(x) >
z¥+@% (Jog x)?.  The details we suppress. This completes the proof
of the theorem.
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