EXTREMAL PROBLEMS ON NON-AVERAGING AND NON-DIVIDING SETS

H. L. Abbott

A set A of integers is said to be non-averaging if the arithmetic mean of two or more members of A is not in A. A is said to be non-dividing if no member divides the sum of two or more others. In this paper we investigate some of the many extremal problems which arise in connection with non-averaging and non-dividing sets.

1. Introduction. In [1] the author showed that a modification of an old argument of F. A. Behrend [3] could be used to disprove a conjecture of Erdös and Straus ([4] and [11]) on non-averaging sets. In the present paper the method of Behrend is put in a more general setting and we use it, together with a number of other devices, to derive several new results on non-averaging and non-dividing sets. In all of the questions we consider, however, the results obtained are far from being definitive.

2. The main theorem. The following theorem is a generalization of a result of Behrend on arithmetic progressions. In fact, Behrend's theorem is given as Corollary 3 below.

THEOREM 1. Let l, B and t be positive integers exceeding 1, and suppose (l, B) = 1. Let

$$(1) s = tl^t(B-1)^2$$

and let

$$(2) n=B^t-1.$$

Then there exists a partition of $\{1, 2, \dots, n\}$ into s sets A_1, A_2, \dots, A_s such that for each $m, 2 \leq m \leq l$, and each $i, 1 \leq i \leq s$, no m members of A_i have arithmetic mean in A_i

Proof. Write the numbers 1, 2, \cdots , n in base B so that if $1 \leq a \leq n$, we have

$$a=\sum\limits_{i=0}^{t-1}d_i(a)B^i$$
 , $\ \ 0\leq d_i(a)\leq B-1$.

Let $r = t(B-1)^2$ and partition $\{1, 2, \dots, n\}$ into r sets S_1, S_2, \dots, S_r where

$$S_{j} = \left\{a \colon \sum_{i=0}^{t-1} d_{i}(a)^{\scriptscriptstyle 2} = j
ight\}\;.$$

It will be useful to associate with a the lattice point $(d_0(a), d_1(a), \dots, d_{t-1}(a))$ in E^i . Note that the lattice points corresponding to numbers in S_j lie on a sphere of radius \sqrt{j} .

Next partition S_j into $k = l^i$ sets, two numbers a and b in S_j being placed in the same set if $d_i(a) \equiv d_i(b) \pmod{l}$ for $i = 0, 1, \dots, t - 1$. Thus $\{1, 2, \dots, n\}$ has been partitioned into $kr = tl^i(B-1)^2 = s$ sets A_1, A_2, \dots, A_s .

Suppose that for some $m, 2 \leq m \leq l$, and some $i, 1 \leq i \leq s$, there are distinct numbers y_0, y_1, \dots, y_m in A_i such that

(3)
$$y_0 + y_1 + \cdots + y_{m-1} = m y_m$$
.

Define x_j for $j = 0, 1, \dots, l$ by

$$(\ 4\) \qquad \qquad x_j = egin{cases} y_j & ext{if} & 0 \leq j \leq m \ y_m & ext{if} & m \leq j \leq l \ . \end{cases}$$

It follows from (3) and (4) that

(5)
$$x_0 + x_1 + \cdots + x_{l-1} = lx_l$$

From (5) it follows that

$$\sum\limits_{j=0}^{l-1}d_{\scriptscriptstyle 0}(x_j)=h\,+\,\mu B$$

and

$$ld_0(x_l) = h + \nu B$$

where $0 \leq h \leq B-1$ and $0 \leq \mu$, $\nu \leq l-1$. Thus

(6)
$$\sum_{j=0}^{l-1} d_0(x_j) = (\mu - \nu)B + ld_0(x_l)$$
.

Now $d_0(x_0)$, $d_0(x_1)$, \cdots , $d_0(x_{l-1})$ belong to the same residue class modulo l and consequently l divides the left side of (6). Since (l, B) = 1, we must have $l | \mu - \nu$. However, since $| \mu - \nu | < l$, this gives $\mu = \nu$ and hence

$$\sum\limits_{j=0}^{l-1} d_{\scriptscriptstyle 0}(x_j) = l d_{\scriptscriptstyle 0}(x_l)$$
 .

This argument may now be repeated to show that

(7)
$$\sum_{j=0}^{l-1} d_i(x_j) = l d_i(x_l)$$
 for $i = 0, 1, \dots, t-1$.

If P_0, P_1, \dots, P_l are the points of E^t corresponding to x_0, x_1, \dots, x_l

then (7) is just the statement that P_i is the centroid of P_0 , P_1 , \cdots , P_{l-1} . Since the points lie on a sphere, we must have $P_0 = P_1 = \cdots = P_i$ and hence $x_0 = x_1 = \cdots = x_l$. It follows that $y_0 = y_1 = \cdots = y_m$ contrary to hypothesis. This completes the proof of the theorem.

3. Some consequences of the main theorem.

COROLLARY 1. Denote by f(n) the size of a maximal non-averaging subset of $\{1, 2, \dots, n\}$. Then $f(n) > cn^{1/10}$.

Proof. In Theorem 1 take t = 5, $B = l^2 + 1$, so that, by (1) and (2), $s = 5l^9$ and $n = B^5 - 1 \sim l^{10}$. One of the sets, say A_1 , contains at least $[n/s] \sim l/5 \sim (1/5)n^{1/10}$ numbers. If $|A_1| \ge l$, let A be any *l*-subset of A_1 and if $|A_1| < l$, let $A = A_1$. In both cases A is non-averaging and $|A| > cn^{1/10}$, as required.

REMARK 1. Corollary 1 appears in [1]. We point out that Straus [11] proved $f(n) > \exp(c\sqrt{\log n})$ and Erdös and Straus [4] proved $f(n) < cn^{2/3}$. It had been conjectured by Erdös and Straus that $f(n) < \exp(c\sqrt{\log n})$. Corollary 1, of course, shows that this conjecture is false. However, the following interesting question now arises: Does there exist a number α such that $f(n) = n^{\alpha + o(1)}$? It seems certain that such an α exists, but we have not been able to make any progress towards proving it.

COROLLARY 2. Denote by $f_m(n)$ the size of a maximal subset A of $\{1, 2, \dots, n\}$ with the property that no m members of A have arithmetic mean in A. Then, for each fixed $m \geq 2$,

$$f_m(n) > n \exp{(-(2 + o(1))(2\log{m}\log{n})^{1/2})}$$
 .

Proof. In Theorem 1 take l = m and put $B = m^{t/2} + 1$. (We suppose, without loss of generality, that t is even.) Then, by (1) and (2), $s = tm^{2t}$ and $n \sim m^{t^{2/2}}$. One of the sets contains at least $[n/s] \sim (1/t)m^{(1/2)t^2-2t}$ numbers and a simple calculation shows that

$$\frac{1}{t}m^{_{(1/2)}t^2-2t} > n \exp(-(2+o(1))(2\log m \log n)^{_{1/2}})$$

COROLLARY 3. (Behrend). Denote by $r_3(n)$ the size of a maximal subset of $\{1, 2, \dots, n\}$ not containing a three term arithmetic progression. Then

$$r_{s}(n) > n \exp\left(-(2 + o(1))(2\log 2\log n)^{1/2}
ight)$$
 .

Proof. Since $r_3(n) = f_2(n)$, the result follows from Corollary 2.

COROLLARY 4. (Moser [6]). For positive integral k, let W(k) denote the least integer such that if $\{1, 2, \dots, W(k) + 1\}$ is partitioned arbitrarily into k sets, one of the sets contains an arithmetic progression of length 3. Then

$$W(k) > k^{c \log k}$$
 .

Proof. In Theorem 1 put l = m = 2 and determine t by

(8) $t\cdot 2^{3t} \leq k < (t+1)2^{3t+3}$.

By (1), $s = t \cdot 2^{3t}$ and if we put $B = 2^t + 1$ we get, by (2), $n \sim 2^{t^2}$. Then, by a simple calculation using (8), we get $W(k) \ge W(s) \ge n \sim 2^{t^2} > k^{c \log k}$.

Theorem 1 may also be used to show that various sets of integers, which arise in a natural way, contain large non-averaging subsets. We mention two examples.

COROLLARY 5. Let $P = \{p: p \leq n, p \text{ prime}\}$. Then P contains a non-averaging subset of size at least $cn^{1/10}/\log n$.

Proof. In Theorem 1 take t = 5 and $B = l^2 + 1$, as in Corollary 1. One of the s sets contains at least $[\pi(n)/s] \sim n^{1/10}/5 \log n$ primes and the result follows.

COROLLARY 6. Let Q_k denote the set of the kth powers not exceeding n. Then Q_k contains a non-averaging subset of size at least $c_k n^{1/8k^2+2k}$, where c_k is a constant depending only on k.

Proof. In Theorem 1 take t = 4k + 1, $B = l^{2k} + 1$ and note that one of the s sets contains at least $[n^{1/k}/s] \sim l/(4k + 1) \sim (1/4k + 1)n^{1/8k^2+2k}$ kth powers. The result follows.

REMARK 2. Corollary 6 includes Corollary 1 as the special case k = 1.

4. Additional results on finite non-averaging sets. It would be of interest to know whether there exists a number $\beta > 0$ such that every set of *n* integers contains a non-averaging subset of size at least n^{β} . We cannot answer this question, but we obtain a partial result in this direction as follows: THEOREM 2. Let $m \ge n$. Then almost all n-subsets of $\{1, 2, \dots, m\}$ contain a non-averaging subset of size at least $c(f(n) \log \log n)^{1/2}/\log n$, where f has the same meaning as in Corollary 1 and where almost all means all but $o\binom{m}{n}$.

In order to prove the theorem we shall need the following lemma:

LEMMA 1. There exists a partition of $\{1, 2, \dots, n\}$ into $k < 2n \log n/f(n)$ non-averaging sets.

Proof. Let A be a maximal non-averaging subset of $\{1, 2, \dots, n\} = N$, so that |A| = f(n). For integral λ let $A + \lambda = \{a + \lambda: a \in A\}$ and let $A_{\lambda} = (A + \lambda) \cap N$. It is clear that A_{λ} is non-averaging. Let $\lambda_0 = 0$ and suppose we have defined numbers $\lambda_0, \lambda_1, \dots, \lambda_j$. Let $D_j = \{d: d \in N, d \notin A_{\lambda_i} \text{ for } i = 0, 1, 2, \dots, j\}$. If $D_j \neq \emptyset$, then for every $d \in D_j$ and every $a \in A$, there exists an integer λ such that $\lambda + a = d$ and $0 < |\lambda| \le n$. Thus for some λ^* , $0 < |\lambda^*| \le n$, the equation $\lambda^* + a = d$ has at least $|D_j|f(n)/2n$ solutions $a \in A, d \in D_j$. Let $\lambda_{j+1} = \lambda^*$ and let $D_{j+1} = \{d: d \in N, d \notin A_{\lambda_i} \text{ for } i = 0, 1, \dots, j + 1\}$. We have

$$|D_{j+1}| \leq |D_j| - rac{|D_j|f(n)|}{2n} = |D_j| \left(1 - rac{f(n)}{2n}\right).$$

Since $|D_0| = n - f(n) < n(1 - f(n)/2n)$ we get

$$|D_j| \leq n \Big(1 - rac{f(n)}{2n}\Big)^{j+1}$$

Now choose $k = [(2n \log n)/f(n)]$. Then

$$|D_k| \leq n \Bigl(1 - rac{f(n)}{2n} \Bigr)^{k+1} < 1 \; .$$

Thus $|D_k| = 0$ and the sets $A_{\lambda_0}, A_{\lambda_1}, \dots, A_{\lambda_k}$ are non-averaging sets whose union is N. This implies the lemma.

REMARK 3. The idea used in the above proof seems to have been first used by G.G. Lorentz [6]. Subsequently it has been used by a number of other authors in many different situations. See, for example, [9] or [10] for a general discussion of the method and further references to the literature. We point out also that, with careful attention to detail the bound $k \leq (n/f(n))(1 + \log f(n))$ can be obtained.

Proof of Theorem 2. The argument is similar to that used in

[8] and [2], but is somewhat more complicated. Let w = m/n and partition $\{1, 2, \dots, m\}$ into intervals I_1, I_2, \dots, I_n where

$$I_{\alpha} = \{a: (\alpha - 1)w < a \leq \alpha w\}$$

The first part of the argument involves showing that the elements of almost all *n*-subsets of $\{1, 2, \dots, m\}$ are fairly well distributed among the intervals I_{α} . More precisely, we shall prove that if

(9)
$$\mu = \left[\frac{n \log \log n}{2 \log n}\right]$$

and if T denotes the number of *n*-subsets of $\{1, 2, \dots, m\}$ which have elements in fewer than μ of the intervals I_{α} then

$$T = o\left(\binom{m}{n}\right)$$
.

We may clearly suppose $m \ge 2n$, since otherwise T = 0. We have

(10)
$$T \leq \sum_{j=1}^{\mu-1} {n \choose j} \sum_{b_1+b_2+\cdots+b_j=n} \prod_{i=1}^{j} {[w+1] \choose b_i}$$

where, in the inner sum, the summation is over all compositions of n into j parts. In fact, (10) can be established as follows: $\binom{n}{j}$ is the number of ways of selecting j of the intervals I_{α} , say I_{α_1} , I_{α_2} , \cdots , I_{α_j} and $\prod_{i=1}^{j} \binom{[w+1]}{b_i}$ is the number of ways of selecting n integers, b_i of which are in I_{α_i} . From (10) we get

$$T \leq \sum_{j=1}^{\mu-1} n^{j} \sum_{b_{1}+b_{2}+\dots+b_{j}=n} \prod_{i=1}^{j} \frac{(w+1)^{b_{i}}}{b_{i}!}$$

$$= \sum_{j=1}^{\mu-1} \frac{n^{j}(w+1)^{n}}{n!} \sum_{b_{1}+b_{2}+\dots+b_{j}=n} \frac{n!}{b_{1}! b_{2}! \cdots b_{j}!}$$

$$= \frac{(w+1)^{n}}{n!} \sum_{j=1}^{\mu-1} n^{j} j^{n}, \text{ by the multinomial theorem}$$

$$\leq \frac{(w+1)^{n}}{n!} n^{\mu-1} (\mu-1)^{n+1}$$

$$\leq \frac{(2w)^{n}}{n!} n^{\mu} \mu^{n}$$

$$\leq \frac{1}{n!} \left(\frac{2m}{n}\right)^{n} n^{(n\log\log n)/(2\log n)} \left(\frac{n\log\log n}{2\log n}\right)^{n}, \text{ by (9)}$$

$$= \frac{m^{n}}{n!} \left(\frac{\log\log n}{\sqrt{\log n}}\right)^{n} = o\left(\frac{m^{n}}{n! 2^{n}}\right)$$

$$= o\Big(rac{m^n}{n!}\Big(1-rac{n}{m}\Big)^n\Big)$$
, as $m \ge 2m$
 $= o\Big(inom{m}{n}\Big)$, as required.

Let N be an n-subset of $\{1, 2, \dots, m\}$ which has elements in at least μ of the intervals I_{α} and let $A = \{\alpha : I_{\alpha} \cap N \neq \emptyset\}$. For each $\alpha \in A$ choose $a_{\alpha} \in I_{\alpha} \cap N$ and let $A' = \{a_{\alpha} : \alpha \in A\}$. We now show that A'contains a non-averaging subset of size at least $c(f(n) \log \log n)^{1/2}/\log n$. Since $A' \subseteq N$, the theorem will then follow.

Partition $\{1, 2, \dots, n\}$ into $k < 2n \log n/f(n)$ non-averaging sets via Lemma 1. One of these sets, say C, must be such that

(11)
$$q = |C \cap A| \ge \left\lfloor \frac{\mu}{k} \right\rfloor > \frac{f(n) \log \log n}{(\log n)^2} .$$

Let $h = [\sqrt{q}]$ and for $\alpha \in C \cap A$ let

$$I_{lpha} = I^{\scriptscriptstyle(1)}_{lpha} \cup I^{\scriptscriptstyle(2)}_{lpha} \cup \, \cdots \, \cup \, I^{\scriptscriptstyle(b)}_{lpha}$$

where

$$I^{\scriptscriptstyle(
u)}_{lpha} = \left\{a\!:\!\left(lpha - rac{
u}{h}
ight)\!w < a \leqq \!\left(lpha - rac{
u-1}{h}
ight)\!w
ight\}\,.$$

Then, by the pigeon hole principle, there exists an integer ν_0 and a set $A^* \subset C \cap A$, $|A^*| = h$, such that $a_{\alpha} \in I_{\alpha}^{(\nu_0)}$ for each $\alpha \in A^*$. Let $A_1 = \{a_{\alpha}: \alpha \in A^*\}$. We claim that A_1 is non-averaging.

Suppose that $a_{\alpha_0}, a_{\alpha_1}, \cdots, a_{\alpha_p} \ (p \leq h-1)$ are distinct members of A_1 satisfying

(12)
$$a_{\alpha_0} + a_{\alpha_1} + \cdots + a_{\alpha_{p-1}} = p a_{\alpha_p}.$$

We have

$$a_{lpha_i} = \Big(lpha_i - rac{{oldsymbol
u}_0}{h} \Big) w + b_i$$
 , $\ 0 < b_i \leqq rac{w}{h}$.

Thus (12) can be written as

(13)
$$w\left(p\alpha_{p}-\sum_{i=0}^{p-1}\alpha_{i}\right)=-pb_{p}+\sum_{i=0}^{p-1}b_{i}.$$

The conditions $0 < b_i \leq w/h$ and $2 \leq p \leq h-1$ imply that the right side of (13) lies strictly between -w and w and must therefore be 0. It follows that

$$\sum\limits_{i=0}^{p-1} lpha_i = p lpha_p$$
 .

However, the numbers $\alpha_0, \alpha_1, \dots, \alpha_p$ are in C and C is non-averaging. This is a contradiction. It follows that A_1 is non-averaging. Moreover, by (11),

 $|A_1| = h = [\sqrt{q}] > c(f(n) \log \log n)^{1/2} / \log n$.

This completes the proof.

We conclude this section with an additional application of Lemma 1, which complements Corollary 5.

THEOREM 3. Let $P = \{p: p \leq n, p \text{ prime}\}$. Then p contains a non-averaging subset of size at least $cf(n)/(\log n)^2$.

Proof. By Lemma 1, $\{1, 2, \dots, n\}$ can be partitioned into $k < 2n \log n/f(n)$ non-averaging sets. One of these must contain at least $[\pi(n)/k] > cf(n)/(\log n)^2$ primes and the result follows.

5. Infinite non-averaging sets. In all of what follows α and β are numbers such that $n^{\alpha} \ll f(n) \ll n^{\beta}$. We prove first the following result, a weaker version of which was announced in [1].

THEOREM 4. There exists an infinite non-averaging set A of positive integers whose counting function satisfies

 $A(x) \gg x^{\alpha/(1+\beta)^2}$.

Proof. Let m > 1 be a positive integer. Let $n_1 = m$ and let $n_k = [mn_{k-1}^{1+\beta} + 1]$ for $k = 2, 3, \cdots$. Let A_1 be a maximal non-averaging subset of $\{1, 2, \cdots, n_1\}$ and, for $k \ge 2$, let A_k be a maximal non-averaging subset of $\{n_k + 1, n_k + 2, \cdots, n_k + n_{k-1}\}$. Let $A = \bigcup_{k=1}^{\infty} A_k$. Suppose now that m is chosen so that $|A_k| < (m/2)n_{k-1}^{\beta}$.

We now show that A is a non-averaging set. Suppose there are distinct numbers $a_0, a_1, \dots, a_t \in A$ such that

(14)
$$a_0 + a_1 + \cdots + a_{t-1} = ta_t$$
.

We may assume $a_0 < a_1 < \cdots < a_{t-1}$. Let $a_{t-1} \in A_k$. Suppose first that $k \ge 3$. It is clear that not all of $a_0, a_1, \cdots, a_{t-1}$ are in A_k . Thus we may determine $r, 1 \le r \le t-1$, such that $a_0 < a_1 < \cdots < a_{r-1} \le n_{k-1} + n_{k-2} < n_k + 1 \le a_r < \cdots < a_{t-1} \le n_k + n_{k-1}$. Then

$$(t-r)n_k < a_0 + a_1 + \cdots + a_{t-1} < ra_{r-1} + (t-r)a_{t-1} < 2rn_{k-1} + (t-r)(n_k + n_{k-1}) = (t-r)n_k + (t+r)n_{k-1}$$

If $a_t \in A_l$ and $l \ge k$ then $ta_t > tn_k > a_0 + a_1 + \cdots + a_{t-1}$, by (14) while if $l \le k-1$ we have $ta_t \le t(n_{k-1} + n_{k-2}) \le 2tn_{k-1} < mn_{k-1}^{1+\beta} < n_k \le (t-r)n_k < a_0 + a_1 + \cdots + a_{t-1}$, by (14). This is a contradiction. The above argument does not apply verbatim to the case $k \le 2$, but the same method works. Thus A is non-averaging.

Let x be given and let k be determined by $n_k < x \leq n_{k+1}$. We may suppose that x is so large that $k \geq 3$. Then, if $n_k < x \leq n_k + n_{k-1}$ we get $A(x) \geq A(n_k) \geq |A_{k-1}| \gg n_{k-2}^{\alpha} \gg n_k^{\alpha/(1+\beta)^2} \gg x^{\alpha/(1+\beta)^2}$, while if $n_k + n_{k-1} < x \leq n_{k+1}$, we get $A(x) \geq |A_k| \gg n_{k-1}^{\alpha} \gg x^{\alpha/(1+\beta)^2}$. This completes the proof of the theorem.

We consider next the problem of establishing the existence of an infinite non-averaging set of primes whose counting function grows at least as fast as x^c for some c > 0. In order to achieve this we shall need to make use of the following deep result on the distribution of the primes, which we state as a lemma.

LEMMA 2. If $\theta \ge 7/12$, the interval $[x, x + x^{\theta}]$ contains at least $cx^{\theta}/\log x$ primes for all sufficiently large x.

REMARK 4. The bound $\theta \ge 7/12$ in Lemma 2 is due to Huxley [5] who improved earlier results of Hoheisel, Ingham and Montgomery. See [5] for an account of the history of the problem. In the applications, we can actually get by with the bound $\theta \ge 3/5$ of Montgomery.

THEOREM 5. There exists an infinite non-averaging set P of primes whose counting function satisfies

$$P(x) \gg x^{\alpha/(1+\beta)^2}/(\log x)^2$$
.

Proof. Note first that since $n_{k-1} \sim (1/m)n_k^{1/(1+\beta)}$ and since $1/(1+\beta) \geq 3/5$ ($\beta \leq 2/3$), the number of primes in the interval $\{n_k + 1, \dots, n_k + n_{k-1}\}$ is, by Lemma 2, at least $cn_k^{1/(1+\beta)}/\log n_k$. By Lemma 1, $\{n_k + 1, \dots, n_k + n_{k-1}\}$ can be partitioned into fewer than $2n_{k-1}\log n_{k-1}/f(n_{k-1})$ non-averaging sets. One of these sets must therefore contain at least $cf(n_{k-1})/(\log n_{k-1})^2$ primes. Let P_k be this set of primes and let $P = \bigcup_{k=1}^{\infty} P_k$. The argument used in Theorem 4 shows that P is non-averaging and that $P(x) \gg x^{\alpha/(1+\beta)^2}/(\log x)^2$.

6. Non-dividing sets. Denote by g(n) the size of a maximal non-dividing subset of $\{1, 2, \dots, n\}$. Straus [11] proved that if $\{a_1, a_2, \dots, a_k\}$ is a non-averaging subset of $\{1, 2, \dots, [n/k]\}$, then $\{n - a_1, n - a_2, \dots, n - a_k\}$ is a non-dividing set. Thus if $k \leq f([n/k])$ we have $g(n) \geq k$. It follows that the following theorem holds:

THEOREM 6. $g(n) \gg n^{\alpha/(1+\alpha)}$.

Our next result is the analogue of Theorem 3 for non-dividing sets.

THEOREM 7. Let $P = \{p: p \leq n, p \text{ prime}\}$. Then P contains a non-dividing set of size at least $cn^{\alpha/(1+\alpha)}/(\log n)^2$.

Proof. By Lemma 1 it is possible to partition $\{1, 2, \dots, [n^{1/(1+\alpha)}]\}$ into fewer than $n^{(1-\alpha)/(1+\alpha)} \log n$ non-averaging sets A_1, A_2, \dots, A_k . By the result of Straus, the sets $B_i = \{n - a_j; a_j \in A_i\}$ are non-dividing. By Lemma 2, the set $\{n - [n^{1/(1+\alpha)}], \dots, n\}$ contains at least $cn^{1(1+\alpha)}/\log n$ primes. Thus one of the B's must contain at least $cn^{\alpha/(1+\alpha)}/(\log n)^2$ primes, as required.

A simple argument shows that there exist no infinite non-dividing sets of integers. Call a set A quasi-non-dividing if no member of Adivides the sum of two or more smaller members of A. We investigate infinite quasi-non-dividing sets. Our first result is the following theorem:

THEOREM 8. There exists an infinite quasi-non-dividing set A whose counting function satisfies $A(x) \gg x^{1/6}$.

Proof. It is a simple matter to verify that if n > 1 is a positive integer and k is determined by $\binom{k-1}{2} < n \leq \binom{k}{2}$ then $\{n-k+1, \dots, n-1, n\}$ is a quasi-non-dividing set. Thus, if h(n) denotes the size of a maximal quasi-non-dividing subset of $\{1, 2, \dots, n\}$, then $h(n) \geq cn^{1/2}$. Also it is an easy consequence of a result of Szemeredi [12] that $h(n) \leq cn^{1/2}$.

Let m > 1 be a positive integer and let A_1 be a maximal quasinon-dividing subset of $\{1, 2, \dots, m\}$. Suppose we have defined sets A_1, A_2, \dots, A_r . Let $t_r = \sum_{a \in JA_i} a$, and let p_r be the least prime exceeding t_r . Let A_{r+1}^* be a maximal quasi-non-dividing subset of $\{1, 2, \dots, t_r\}$ and let $A_{r+1} = \{p_r a : a \in A_{r+1}^*\}$. Put $A = \bigcup_{r=1}^{\infty} A_k$. It is now a simple matter to verify that A is quasi-non-dividing. Moreover, the observation made in the first paragraph together with the fact that, for large r, $p_r \sim t_r$, enables one to show in a straightforward way that $A(x) \gg x^{1/6}$. We suppress these details.

Our final theorem establishes the existence of a reasonably dense quasi-non-dividing set of primes.

THEOREM 9. There exists an infinite quasi-non-dividing set P of primes whose counting function satisfies $P(x) \gg x^{\alpha^{2/8(1+\alpha)^{2}}}/(\log x)^{2}$.

Proof. Let m be a large positive integer and let $n_1 = m$. For $k \ge 2$, let $n_k = [n_{k-1}^{4(1+1/\alpha)}]$. Let P_1 be a maximal non-dividing set of primes in $\{1, 2, \dots, n_1\}$. Suppose that we have defined P_1, P_2, \dots, P_{k-1} . By Lemma 1, it is possible to partition $\{1, 2, \dots, [n_k^{1/(1+\alpha)}]\}$ into $s_k \ll n_k^{(1-\alpha)/(1+\alpha)} \log n_k$ non-averaging sets $A_1^{(k)}, \dots, A_{s_k}^{(k)}$. The sets $B_j^{(k)} = \{n_k - a_i: a_i \in A_j^{(k)}\}$ are then non-dividing sets which cover $\{n_k - [n_k^{1/(1+\alpha)}], \dots, n_k - 2, n_k - 1\} = I_k$. The primes in I_k , of which, by Lemma 2, there are $t_k \gg n_k^{1/(1+\alpha)}/\log n_k$ in number, are distributed over the $\phi(n_{k-1}^2)$ reduced residue classes mod n_{k-1}^2 . Thus one of the B's must contain a set P_k of primes of size at least $[t_k/s_k\phi(n_{k-1}^2)] \gg n_k^{(\alpha/(\alpha+1))/2}/(\log n_k)^2$, and which all belong to the some residue class modulo n_{k-1}^2 . Let $P = \bigcup_{k=1}^{\infty} P_k$.

We now show that P is quasi-non-dividing. Suppose there are primes $p_0, p_1, \dots, p_t \in P$ such that $p_0 < p_1 < \dots < p_t$ and $p_0 + p_1 + \dots + p_{t-1} = mp_t$. Let $p_t \in P_k$. If $p_{t-1} \notin P_k$ we get $p_0 + p_1 + \dots + p_{t-1} < tp_{t-1} < tn_{k-1} \leq n_{k-1}^2 < n_k - [n_k^{1/(1+\alpha)}] \leq p_t$, which is a contradiction. Thus $p_{t-1} \in P_k$. Determine $r, 1 \leq r \leq t-1$ such that $p_r, p_{r+1}, \dots, p_{t-1} \in P_k$ and $p_0, p_1, \dots, p_{r-1} \notin P_k$. It then follows easily that m = t - r and hence that

(15)
$$p_0 + p_1 + \cdots + p_{r-1} = (t-r)p_t - (p_r + p_{r+1} + \cdots + p_{t-1})$$
.

Since p_r , p_{r+1} , \cdots , p_t all belong to the same residue class modulo n_{k-1}^2 , the right side of (15) is divisible by n_{k-1}^2 . However, $p_0 + \cdots + p_{r-1} < rn_{k-1} < n_{k-1}^2$ and this is a contradiction. Thus P is quasi-non-dividing. Furthermore, one may easily check that $P(x) \gg x^{\alpha^{2/8(1+\alpha)^2}/(\log x)^2}$. The details we suppress. This completes the proof of the theorem.

References

1. H. L. Abbott, On a conjecture of Erdös and Straus on non-averaging sets of integers, Proceedings of the Fifth British Combinatorial Conference, (to appear).

^{2.} H. L. Abbott, A. C. Liu and J. Riddell, On sets of integers not containing arithmetic progressions of prescribed length, J. Australian Math. Soc., 28 (1974), 188-193.

^{3.} F.A. Behrend, On sets of integers which contain no three terms in arithmetical progression, Proc. Nat. Acad. Sci. U.S.A., **32** (1946), 331-332.

4. P. Erdös and E.G. Straus, *Non-averaging sets II*, Combinatorial Theory and its Applications, Vol. II, Colloquia Mathematica Societatis Janos Bolyai, 4 (1970), 405-411. 5. M. N. Huxley, *The Distribution of Prime Numbers*, Oxford Mathematical Monographs, Part IV.

6. G.G. Lorentz, On a problem in additive number theory, Proc. Amer. Math. Soc., 5 (1954), 838-841.

7. L. Moser, On a theorem of van der Waerden, Canad. Math. Bull., 3 (1960), 23-25.

8. J. Riddell, On sets of integers containing no l terms in arithmetic progression, Neiuw. Arch. voor Wisk., (3), 17 (1969), 204-209.

9. J. Spencer, Puncture sets, J. Combinatorial Theory, A17 (1974), 329-336.

10. S.K. Stein, Two combinatorial covering theorems, J. Combinatorial Theory, A16 (1974), 391-397.

11. E.G. Straus, Non-averaging sets, Proceedings of Symposia in Pure Mathematics, Vol. XIX, American Mathematical Society, (1971), 215-222.

12. E. Szemerédi, On a conjecture of Erdös and Heilbronn, Acta Arithmetica, 17 (1970), 227-229.

Received April 14, 1976.

UNIVERSITY OF ALBERTA Edmonton, Alberta Canada