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ON THE LATTICE OF VARIETIES OF BANDS
OF GROUPS

T. E. HALL AND P. R. JONES

In this paper we prove that the lattice of varieties of
bands of groups is modular and apply this to direct decom-
positions of various sublattices. The join of the varieties
of bands and of completely simple semigroup is shown to
be the variety of "pseudo-orthodox" bands of groups.

1* Introduction* When considered as semigroups with an addi-
tional unary operation x —> x~\ where x~x denotes the (unique) inverse
of x in the subgroup to which it belongs, the class CR of completely
regular semigroups (often called unions of groups) forms a variety of
universal algebras, containing as a subvariety thevariety BG of bands
of groups (those completely regular semigroups on which J%f is a con-
gruence) ([12]). In this paper results of Spitznagel [14] on the lattice
of congruences on a band of groups are applied to show that T*(BG),
the lattice of subvarieties of BG, is modular (Theorem 3.1). Petrich
[12, 13] considered various subvarieties of BG but left open the
problem [13, p. 1196] of finding the join of the subvarieties B and
CS (of bands and of completely simple semigroups respectively). We
show that B V CS = POBG, the variety of pseudo-orthodox bands of
groups, and is thus strictly contained in BG. (If V is a variety of
completely regular semigroups and SeCR we shall call S pseudo-V
if eSe e V for every idempotent e of S.) This result is actually an
immediate corollary to our characterization of the join O V NBG of
the varieties of orthodox completely regular semigroups and of
normal bands of groups. Theorem 3.1 is also applied to directly
decompose various sublattices of Ψ*{BG).

2. Preliminaries* For background to this paper the reader is
referred to [13] where defining identities are presented for most of
the varieties encountered here. Various subvarieties of CR are
shown on the diagram on p. 1172 of [13]. For easy reference we
will give a list of our abbreviations for these:

CR: completely regular semigroups
BG: bands of groups

NBG: normal bands of groups
OBG: orthodox bands of groups

B: bands
CS: completely simple semigroups

NB: normal bands
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SLG: semilattices of groups
RG: rectangular groups
SL: semilattices
RB: rectangular bands

G: groups
T: the trivial variety

Further O will denote the variety of orthodox completely regular
semigroups (those whose set of idempotents forms a subsemigroup).

We will otherwise use the terminology and notation of [7] (for
semigroup theory) and [6] (for lattice theory). Throughout Es

denotes the set of idempotents of the semigroup S and (Es) the
subsemigroup of S generated by Es (completely regular, by [3],
when SeCR).

If p is a relation on S then p* will denote the congruence on S
generated by p and if A Q S, p\A will denote the restriction p Π
(A x A) of p to A. The symbol Λ(S) represents the lattice of con-
gruences on S, with c and a) the smallest and largest elements
respectively. A point which will be of importance in §3, in particular,
is that Λ(S) is a sublattice of the lattice Σ(S) of all equivalences on
S ([7], §1. 5).

3* Bands of groups* We will prove the following theorem.

THEOREM 3.1. The lattice T(BG) is modular.

Before beginning the proof we need some lattice-theoretic con-
cepts from [6], §111. 2. If £ is a lattice and aeL then a is said to
be neutral if

( i ) a "separates" L:
if x, y e L then a A x = a A y and a V x = a V y together imply
x = V,

(ii) the map x -^ a V x is a morphism
and

(iii) the map x —> a A x is a morphism.
Elements satisfying (i) and (ii) are called standard. It is almost

immediate that a is neutral if and only if the map x —> (a A x, a V x)
is an isomorphism of L upon a subdirect product of the sublattices
{x e L: x ^ a} and {x e L: x ^ a}. Clearly neutrality is a self-dual
notion. (For equivalent formulations of neutrality see [6], Theorem
III. 2.4.)

We now quote some results of Spitznagel, rephrased in the above
terminology.

RESULT 3.2 [14, Theorem 3.9]. On any band of groups S, the
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congruence S(f is a standard element of Λ(S). Further it is a
neutral element of the sublattice [c, £&] of A(S).

REMARK 3.3. Using similar methods to those of Spitznagel it
may be verified that an analogous result is true in any completely
regular semigroup S. For example έ%f separates A(S) (in the above
sense), the map p—*p\/ £ίf is a complete morphism of the sublattice
A{8) of Σ(S) (see §2) into Σ(S) and the map p->pΓi<&? is a com-
plete morphism of the sublattice [c, 2$] of A(S) into Σ(S) (the join
being interpreted as join of equivalences where necessary). A con-
sequence of the last statement will be used in the proof of Theorem
5.3: for any collection {τk}keκ of congruences on S, each contained in
3f, V{τk: k e K) Π Sίf = V{τk ϊ\£έf\kz K), so that in particular, if

Zk π ^f = c f or each k e K then V{τk: k e K) n Sίf = ι.

Now in any variety of algebras the lattice of subvarieties is
dually isomorphic with the lattice of fully invariant congruences
on the free algebra F on a countable set of generators in that
variety, and moreover the lattice of fully invariant congruences on
any algebra A forms a sublattice of the lattice of all congruences
on A. (See, for example [10]. A congruence p on an algebra A is
fully invariant if apb implies aθ p bθ for every endomorphism θ
of A.)

Noticing that both Sίf and £& are fully invariant congruences
on any band of groups, we see from Result 3.2 that in this case £ίf
is a neutral element in the lattice of fully invariant congruences
contained in £^. Since έ%f defines the variety B (within BG) and
3f defines SL, we see that B is a neutral element in the sublattice
[SL, BG] of TiBG). We then have

PROPOSITION 3.4. The sublattice [SL, BG] is a subdirect product
of the sublattices [SL, B] and [B, BG] and is therefore modular.

Proof. The first statement follows from the remarks on the
definition of neutrality. For the second, we quote the result of
[1, 2, 4] that T'iB) is distributive (whence modular) and then note
again that since B corresponds to the fully invariant congruence Sίf
on F (the free band of groups on a countable set of generators),
the sublattice [B, BG] is dually isomorphic with the lattice of all
fully invariant congruences on F contained in <%?, which in turn is
a sublattice of the lattice of all congruences on F contained in J%?.
Since this last lattice is modular [9], so is [B, BG] and therefore
[SL, BG] also.

The proof of Theorem 3.1 will be completed by the following
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proposition, since Y*(SL) consists of just T and SL and is therefore
distributive. Note that this result is true for arbitrary varieties
containing SL (and contained in CR).

PROPOSITION 3.5. The variety SL is a neutral element in 3Γ(CR)
and therefore in any sublattice containing SL. In particular,
therefore, TiβG) is a subdirect product of T{SL) and [SL, BG].

Proof. It will prove convenient here to show directly that the
map X:K->(Kf)SL, KV SL) is an isomorphism of T(CR) into
T(SL) x [SL, CR]. Clearly X is order-preserving.

Suppose, on the other hand, that K, L ζZ CR and K Π SL £ L f l
SL, KVSLQLVSL. Now since T{SL) = {T, SL}, either SL^L or
Lf)SL = T. In the former case K £ K V SL £ L V SL == L. Other-
wise L Π SL = T, whence K Π SL = Γ also. But on any completely
regular semigroup S, £3? is an SL-congruence and if Sj& e T then
S 6 CS. Hence UL, L £ OS, and so KV SL, L V SLQCSV SL =
NBG.

From [13, Theorem 4.7], the map V-^VdCS is a lattice
morphism of T(NBG) upon 3^(CS). Thus K= (KnCS)V (SL Π CS) =
(K V SL) Π CS and similarly L = (Z, V SL) Π CS, whence JSΓV SL £
Ly SL implies K £ L.

Hence X is an order isomorphism and SL is neutral.

COROLLARY 3.6. The lattice y(CS) is modular.

From Theorem 3.1, direct decompositions of various sublattices
of Ψ*(BG) may be obtained by applying the following result.

RESULT 3.7 ([6], Theorem IV. 1.14). If a, b are elements of a
modular lattice L then the sublattice of L generated by [a Λ b, a]
and [a A b, b] is isomorphic to [a Λ b, a] x [a A b, &].

For modular lattices in general, the sublattice generated by
[α Λ b, a] and [a A b, b] need not be [a A b, a V b]. However in our
situation this does occur.

COROLLARY 3.8 ([12], Theorem 3.3). T(OBG) ^ T(B) x T(G).

Proof. Using, for example, the results of [7, Chapter VI], we
have that any orthodox band of groups is a subdirect product of its
maximum if-image and its maximum SL6?-image (since the inverse
completely regular semigroups are just the semilattices of groups).

Thus if S e K and K £ OBG, then S e (K n B) V (K n SL6?). But
by, for example, (6) of [13],
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K n SLG = ((K n SLG) n SL) V ((K n SLG) n c»)
= (x n SL) v (# n G),

so S e (X n #) V (K n (?) (since SZ, £ iff).
Therefore ϋΓ = (jRΓ n #) V (JK" Π SLG) and so if belongs to the

sublattice generated by T(B) and T(G). Hence T{B) and 3 (̂G)
generate T^iBG) and since 2? Π 6? = T an application of Result 3.7
yields the result.

REMARK 3.9. Since the description of T^(NBG) as a direct
product of T(βL) and T(CS) ([13], §4) was essentially used in the
proof of Theorem 3.1, we cannot of course apply the theorem to
that situation.

4* A closure operator* For each subvariety U of CR we let
P(U), or just PU, be the class consisting of those completely regular
semigroups S whose (completely regular) subsemigroups eSe belong
to U for every e e Es.

PROPOSITION 4.1. For any variety UζZCR, PU is a variety
containing U. In fact the operator U-+PU is a closure operator
on T(CR).

Proof, If SePU(UQ CR), T is a (completely regular) subsemi-
group of S and eeEτ then eeEs and eTe is a (completely regular) sub-
semigroup of eSe and so belongs to U. If T is a morphic image of S,
under φ, say, and eeEτ then by a lemma of Lallement [8], e = fψ for
some fe Es, whence eTe = (fSf)φ e Z7. That Pί7 is closed under direct
products is immediate upon noting that an element of a direct
product of semigroups is idempotent if and only if each of its com-
ponents is idempotent. Hence PU is a variety.

Clearly U^PU, and UQV implies PUQPV. If SeP(PU)
and eeEs then eSeePU. But eeEeSe and so eSeeU. Therefore
eSe e U, whence P(Ptf) = PZ7.

We call PU the variety of pseudo-U semigroups.

LEMMA 4.2. P(BG) = #<?.

Proo/. Let SeP(BG), x,yeS, xβ^y and S G S . NOW a ; . ^
implies sx,^?sy. Let β = xαr1 = ^/i/"1. Then since He SS βSte, a band
of groups, we have

esx = {ese)x3$f {ese)y — esy .

But esx^sx^fsy^esy so (since ̂ F-classes of S are completely simple)



332 T. E. HALL AND P. R. JONES

Therefore sx3ίfsy. Similarly xs^fys and thus
is a congruence, that is SeBG.
As noted above BG £ P(BG) and the result follows.
As a result of this lemma, if UQBG, then PU^BG also.

Observe that P{T) = RB and P(G) = CS. By Theorem 4.1 of [11],
a completely regular semigroup S is a normal band of groups if and
only if it satisfies "i^-majorization": if e, f, g e Es, e^zf, e ̂  g,
fSfg then f— g. Clearly this is equivalent to saying each ^-class
of eSe contains precisely one idempotent for every e e Es, that is
each eSeeSLG. Hence

LEMMA 4.3. P(SLG) = NBG and P(SL) = NB.

If UeT*(CR), a congruence on a semigroup S will be called a
U-congruence if Sfp e U. If S is completely regular then S has a
least ZJ-congruence. We now show how to derive the least P ̂ -con-
gruence on S in terms of ZJ-congruences on the subsemigroups eSe,
eeEs.

PROPOSITION 4.4. If UQCR and SeCR then the least PU-con-
gruence on S is the congruence generated by the union of the least
U-congruences on the subsemigroups eSe, eeEs.

Proof. Denote by pe the least {/-congruence on eSe, e e Es, and
put p = (U {pe: e e Es})\ T = S/p.

If feEτ then, as above, / ' = ep for some eβEs and so fTf~
(eSe)l(p\eSe). Since pe £ p\eSe, there is a morphism of eSe/pe upon
eSe/(p\eSe) and thus since eSe/ρee U, fTfe U. Hence T e P t f and p
is a PΪAcongruence.

Now let T be an arbitrary PZ7-congruence. For each eeE8,
τ\eSe is a congruence on eSe and in fact a ϊ7-congruence, since
eSe/(τ\eSe) ̂  (βr)(S/r)(er) e if (since eτeEs/τ and S/τePU). There-
fore pβ £ r|eSe £ r for each e eJSk and ( θ £ r , by definition.

Hence ^ is the least PίAcongruence on S.
A result which is clearly relevant to this proposition and which

is required in the next lemma is the following.

PROPOSITION 4.5. If S is any semigroup, eeEs and p is a con-
gruence on eSe, then p* \ eSe — p.

Proof. Clearly pQp*\eSe. Conversely, suppose (x, y)ep*\eSe.
Then there exists a sequence

x = x0 • xx > x 2 > > xn = y
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of elements of S such that for each i(l :g i <| n), x?_x = s^α^ and
xi — sfiiti for some si} tt e S1, (ai9 δγ) G /?. Since £#e = a? and eye = ?/,
the sequence may be replaced by the sequence

x = e#oe > ec^e > e#2e > • exne = # ,

where for each i, ex^e — es^^e = (es^a^et^), since ai e eSe, and
exte = (es^biietiβ) similarly. Since (aif bt) e p and esβ, ette e eSe,
(ex^e, exte) 6 p, 1 ^ i ^ n, hence (x, y) e p, as required.

The next lemma is required in §5.

LEMMA 4.6. If SeCR, eeEs and p is a congruence on eSe such
that pϊ\2ίf = c (on eSe) then p* Π ^f = c on S.

Proof. Suppose (x, y) ep* Π 2ίf, x, y eS, xφy. Then as above,
x = Sittx*! for some s^ ^ e S 1 , a^eeSe. Therefore Jx ^ Jai^ Je and
since S is a semilattice of completely simple semigroups, exe&x.
Let w e jβea.e Π ix and let v! be the inverse of u in Rxf] Lexe. Then

uyuf e iίea;e and we have (noting that eSe consists of complete
of S) (uxu', uyu') e p*\eSe. By the previous proposition,

p*\eSe = p, so ua u' = uyu', whence x = u\uxuf)u = u'(uyu')u = y, a
contradiction.

5* Lattice joins* In this section we find the join O V NBG,
and as a corollary 056? V NBG. From the results of [13], it may
be observed that OBG V NBG = BV CS.

Since, as was seen in §4, NBG = P(SLG) and SL6? £ O w e have
iVB6? £ PO and so O V iVBG £ PO. In particular 0JB6? V NBG £
P0BG(=P0Γ\BG). In view of the next example, OBG V NBG is
properly contained in BG.

EXAMPLE 5.1. Let C be a nonorthodox completely simple semi-
group and S = C1. Since < ^ is a congruence on C, it is also a con-
gruence on S, that is SeBG. But SίPOBG since S = l.S.l is not
orthodox.

Consider now the property:

( * ) apbβ^app-'b f o r al l p e (Es)9 a,beS .

Any band of groups satisfies (*) since of course p£έfpp~x and £$f is a
congruence on a band of groups. Moreover any orthodox completely
regular semigroup also satisfies (*), for then (Es) —Es and p = pp-\

We now show (*) may be expressed in terms of identities and
so the class / of all completely regular semigroups satisfying (*)
forms a subvariety of CR containing, as we have just seen O V BG.

For each n ^ 1 let In be the identity
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where pn = (XiXΓ1)^^1) ' C^^1)? α, b, xi e S, i :> 1. Since any
product p = ex en of idempotents of S can be expressed in the
form p = (βiβf1) * O A 1 ) it is evident that a completely regular
semigroup has property (*) if and only if it satisfies the set {/J^i
of identities. The main property of such semigroups which we
exploit is the following.

LEMMA 5.2. If Sel then the congruence on S generated by
^"<ES> is contained in £ίf. Hence the least O-congruence on S is
contained in

Proof. Since Sίf is an equivalence on S it is sufficient to show
that if (p, q) e J g ^ p then apb^faqb for all a, b e S1. But p^fpp~ι =
qq~x§ίfq, so apbSίfapp~ιb = aqq~xb^faφy using (*).

The least O-congruence is clearly generated by all pairs
{{ef)\ef), e,feEs. Since ((e/)2, ef) e &?<&£ the second statement
follows immediately.

Our main theorem for this section is now

THEOREM 5.3. A completely regular semigroup SeO V iVZ?6? if
and only if S is pseudo-orthodox and satisfies (*). That is, O V
NBG =

Proof. That any semigroup in O V NBG is pseudo-orthodox and
satisfies (*) has been established. The converse will be proved by
showing that any such completely regular semigroup S is a subdirect
product of an orthodox semigroup and a normal band of groups;
this will follow from our proof that, on such a semigroup, the least
O-congruence and the least iVB6?-congruence have trivial intersection
(see, for example [5], Theorem 20.2).

By the previous lemma the least O-congruence on S, a, say, is
contained in £$f. Let 7) be the least iVB6r-congruence on S. Since
NBG = P(SLG), Ύj is the congruence generated by the union of the
least &L6r-congruences on the subsemigroups eSe, eeEs (using
Proposition 4.4). Since SLG is precisely the class of completely
regular semigroups which are also inverse semigroups, the least
SυLίr-congruence on eSe is just the least inverse congruence ίf,5,.
Moreover since S e PO, each eSe is orthodox and therefore ^/eSe Π

= c on eSe (see, for example [7, p. 191]). By Lemma 4.6,

e

At this stage we apply the comment made in Remark 3.3: if
keK is a collection of congruences contained in & on a completely
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regular semigroup S, and if τk f] έ%? = c for all ke K, then
V{τk: k 6 K) Π ̂  = c (the join denoting the join in the lattice of
congruences on S).

Therefore η n Sίf = ( V ^ Λ Π <%? = c and so for any SePOI
we have η 0 a Qη f) §ίf — c, as required.

COROLLARY 5.4. B V CS = OBG V JVBG = POBG.

Proof. As noted earlier, BG £ /.

COROLLARY 5.5 (to the proof).

( i ) Any semigroup in POI is a subdirect product of an orthodox
semigroup and a normal band of groups (in fact of the maximum
orthodox morphic image and the maximum NBG morphic image).

(ii) Any pseudo-orthodox band of groups is a subdirect product
of a band and a normal band of groups.

Proof, (i) is immediate. From the proof of the theorem we
see that if SePOBG then S is a subdirect of an orthodox band of
groups and a normal band of groups. However more strongly, rj Π
^tf = c, where η is the least iVB6?-congruence and, in a band of
groups, £έf is the least B-congruence. Thus (ii) follows.

Before completing this section we show that pseudo-orthodoxy
and property (*) are independent. As noted earlier every band of
groups satisfies (*) but need not be pseudo-orthodox (Example 5.1).
We now give an example to show that pseudo-orthodoxy need not
imply (*).

EXAMPLE 5.6. Let C be a nonorthodox completely simple semi-
group and let c —> c be a bijection of C upon a disjoint set R.
Define a product on S = C U R by extending that on C, putting
right zero product on R and

ab = (ab) ,

ab = b , for all a,beC.

It is routine to verify that S is a pseudo-orthodox completely regular
semigroup.

Now let e, f be two idempotents of C whose product is non-
idempotent and let h be the idempotent in Hef. Then

e(ef) = ef and eh — eh — h

since C is completely simple. Hence S does not satisfy (*), for
(ef, h)e^^<Esy but (e(ef)eh)i^f (since R has trivial subgroups).
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Finally a direct decomposition similar to that of T{OBG){

(Corollary 3.8) may be found for [RB, POBG], using Corollary 5.5.

COROLLARY 5.7. [RB, POBG] ̂  [RB, B] x [RB, CS].

Proof. Since B n CS = RB it will be sufficient, by Result 3.7,
to show that [RB, B] and [RB, CS] generate [RB, POBG].

Let K S PftBG and S e K. By Corollary 3.8, S is a subdirect
product of the maximum J5-image and the maximum NBG-image, so
that Se (K n B) V (IT Π iV#<?) and ϋΓ = (K n 5) V (X Π

Applying (6) of [13],

K n ΛBG = {{K n ΛIM?) n sir) v ((K n JVBG) n cs)

= (jc n sx) v (if n
so # = (JΓ n B) v (JΓ n

Thus if Ke[RB, POBG], K belongs to the lattice generated by
[RB, B] and [RB, CS], as required.

REMARK 5.8. By generalizing the methods of [12] this corollary
may be proved directly (with rather more difficulty).

Added in Proof. Since this paper was accepted, the authors
have learned that our Corollary 5.4 has also been obtained by V. V.
Rasin, "On varieties of bands of groups", in XV All-Union Algebra
Conference, 1979.
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