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THE EQUATIONS Ju = Pu(P^0) ON RIEMANN SURFACES
AND ISOMORPHISMS BETWEEN RELATIVE

HARDY SPACES

TAKEYOSHI SATO

It has been demonstrated by M. Nakai that the Banach
spaces PB (the space of bounded solutions on R of the equa-
tion du = Pu, P>0) and HB (the space of bounded harmonic
functions on R) are isometrically isomorphic whenever the
condition

f P(z)G(z,wQ)dxdy < + oo
JB

is valid for some point w0 in R (z=x + iy). Here, G(z> w) is
the harmonic Green's function on R. In this paper we shall
show, under the preceding condition that the Hardy space
Hp

9 Kp< + oo, of harmonic functions on a hyperbolic Riemann
surface R is isometrically isomorphic to the relative Hardy
space PHI of quotients of solutions of Δu = Pu by the P-ellip-
tic measure w of R.

1* Introduction* Throughout this paper, let R be a hyperbolic
Riemann surface. We consider a density P on R, that is, a non-
negative Holder continuous function on R which depends on the
local parameter z = x + iy in such a way the partial differential
equation

(1.1) Δu = Pu , A = d2/dx2 + d2/dy2 ,

is invariantly defined on JB. Let P Ξ£ 0 on R. A real valued func-
tion u is called a P-harmonic function (or P-solution) in an open set
U of R, if u has continuous partial derivatives up to the order 2
and satisfies the equation (1.1) on U. The totality of bounded P-
harmonic functions on R is denoted by PB. Then, PB is a Banach
space with the uniform norm

(1.2) Hull =sup|tt(s) | .
zeR

Also, HB is the Banach space of the totality of bounded harmonic
functions on R with the uniform norm (1.2).

Many works ([5, 6, 11, 12 and 14] among others) were done on
the comparison theorem, that is, to compare the spaces PB for
different choices of P. For example, in 1960 ([11]) it was proved
that, if two densities P and Q on R satisfy the condition
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(1.3) ( I P(z) - Q(z) I {Gp(z, w0) + G%z, w^dxdy < + -

for some points w0 and w1 in R, then Banach spaces PB and QB are
isometrically isomorphic, where Gp(z, w) and GQ(z, w) are Green's
functions of R with pole w associated with the equations (1.1) and
Δu = Qu(Q ^ 0) respectively. Here, in particular we consider the
case Q = 0 on R. In this case we can conclude that under the
assumption

(1.4) ( P(z)G(z, wQ)dxdy < + c*
JR

for some point wQ in R, the Banach spaces PB and HB ( = QB, Q = 0)
are isometrically isomorphic, where (?(#, w) is the harmonic Green's
function of R with pole w in i2.

Let a pair (R, P), P Ξ£ 0, be hyperbolic. Then there exists the
positive P-solution w on R which takes the constant 1 at the ideal
boundary of R, which we call the P-elliptic measure of R. The P-
elliptic measure w plays a role somewhat analogous to that played
by the constant 1. A w-P-harmonic function is a quotient of a P-
harmonic function by the P-elliptic measure w. The relative Hardy
class PHP, 1 ^ p ^ + °o, of w-P-harmonic functions in R is defined
by the way analogous to that of Hardy class Hp of harmonic func-
tions on R. We are interested in the comparison problem of Banach
space structures of PHI and Hp. In this paper, we shall give the
theorem: under the assumption (1.4) the Banach spaces PHI and Hp,
1 < P ^ + °°, isometrically isomorphic.

Let Δ1 and AP1 are the sets of minimal boundary points of Martin
and P-Martin compactifications, respectively. And, let X and XP be
the harmonic measure on Δx and the P-elliptic measure on ΔP1>

respectively. Since L. L. Nairn [9] proved that Hp and PHI,
1 < P ^ + °°, are isometrically isomorphic to Banach spaces LP(ΔU X)
and LP(ΔP1, XP) respectively, by constructing a measurable trans-
formation defined almost everywhere on ΔP1 into Δ1 we shall
investigate a relation between X and XP under the assumption (1.4),
and so, we can find an isomorphism from PHI onto Hp, 1 < p ^ + ©o.

2* Preliminaries* In 1941 Martin [7] introduced a compacti-
fication in the investigation of nonnegative harmonic functions.
Nakai [10] extended the Martin theory to the setting of P-harmonic
functions. The results of these theories were established by Herve
[4] in the setting of Brelot's axiomatic potential theory. We shall
use extensively the Martin compactification iϋ* and the Nakai's P-
Martin compactification R% of R. We denote by ΔP1 (resp. Δλ) the
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set of minimal points of RP — R (resp. iϋ* — R) and by Kζ (resp.
Kb) the associated Martin kernel of a e ΔP1 (resp. b e 4) with pole z0.
And, let

i£PO, α) = Kζ(z) , s e R and α e z/P1,

and

S, 6) = JBL6(S) , ^ e R and & e Λ .

Let P be a density on R which is not constantly zero on R.
Almost every theorem in this paper will be proved under Nakai's
integral condition:

(2.1) ( P(z)G(z, wddxdy < +00
JR

at some point wλ in R. If this condition holds at some point wt of
R, then it does at all points of R by Harnack's inequality.

We state the definition of P-elliptic measure from the work of
H. Roy den [14]. By a compact region we mean a connected open
set whose closure is compact and whose boundary is composed of
finite number of analytic curves. Let {Rn} be an exhaustion of R,
i.e., a sequence of compact regions such that RnczRn+1 and R —
U?=i i?» We define the function wn to be the P-solution in Rn which
is identically one on dRn. For P ί O we have 0 < wn < 1. Since
the maximum principle implies that the functions wn form a mono-
tone decreasing sequence of positive P-solutions, this sequence con-
verges uniformly on each compact set in R to a nonnegative P-
solution w, which is called the P-elliptic measure of R.

The P-elliptic measure w is either identically zero or else every-
where positive. In the second case we say that the pair (Rf P) is
hyperbolic provided P Ξ£ 0.

The P-elliptic measure w may be characterized as the largest
P-solution which is bounded by 1.

For the P-elliptic measure w of R, there exists a unique measure
XP supported by ΔP1 such that

(2.2) w(z) = \ K p ( z , a)dXP(a) , z e R ,

uP1

which is called the P-elliptic measure on the P-Martin boundary.
And, the harmonic measure is denoted by X, that is, the measure

which represents the constant function 1 and is supported by Ax:

1 = \ K(z,b)dX(b) , z e R .

DEFINITION 2.1. We introduce the set JP0 of point a in ΔP1 such
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that

(2.3) ( P(z)G(zf w,)Kp{z9 a)dxdy < + oo
JR

for some point wx in R, and hence for every point in R.

DEFINITION 2.2. We introduce the set Δ[P of points b in Δx such
that

( P(z)G(z9 wx)K(z, b)dxdy < + oo
JR

for some point w1 in R.

LEMMA 2.1. Let u be a positive P-solution on R such that

(2.4) \ P(z)G(z, w1)u(z)dxdy < + oo
JR

for some point wι in R, and let μ be the canonical measure on ΔP1

which represents u:

c
u(z) = \ K p ( z , a)dμ{a) , z e R .

JjP 1

Then, ΔP1 — ΔP0 is a measurable set of μ-measure zero.

Proof. For each positive integer n, let En be a set of points
a in ΔPι such that

( P(z)G(z9 w^Kp{z, a)dxdy ^ n ,
JR

where w± is a fixed point in R. Since En is measurable and, by
Fubini's theorem,

nμ(En) ^ ^ j ^ P(z)G(z9 wx)Kp{z, a)dxdy) dμ(a)

= ( P(«)G(α, wOίί i^P(ί2, a)dμ(a)\dxdy
JR U 4 P 1 J

= ( P(z)G(z, w1)u{z)dxdy ,
JR

we have

μ(ΔP1 - ΔP0) =

^ — \ P(z)G(zf w1)u(z)dxdy
n JR
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for every positive integer n. Hence, it follows that μ(ΔP1 — ΔP0) = 0.

LEMMA 2.2. Let v be a positive harmonic function on R such
that

c
< +00\ P(z)G(z, w1)v(z)dxdy

for some wx in R and v be the canonical measure on Δι which
represents v:

v(z) = ( K(z,b)dv(b) , zeR .

Then, Δx — Δ[P is a measurable set of v-measure zero.

Proof. This can be shown by the same proof as that of Lemma
2.1.

THEOREM 2.3. Let P be a density on R which satisfies Nakai's
integral condition (2.1). Then, the P-elliptic measure of the set
ΔF1 — ΔPQ is zero:

XP(ΔP1 - ΔPQ) = 0 .

Proof. Since w < 1 on R, from (2.1) it follows that

P(z)G(z, w1)w(z)dxdy

<: 1 P(z)G{z, wjdxdy < +00 .
JR

Therefore, by the fact that w is represented as the integral (2.2)
by the measure XP, Lemma 2.1 gives this theorem.

Lemma 2.2 gives the following:

THEOREM 2.4. Under the same assumption as that in Theorem
2.3, the harmonic measure of the set Δx — Δ[P is zero.

Proof. The constant function 1 and the harmonic measure Z
play the roles of v and v in Lemma 2.2.

3* Relations between minimal P-solutions and minimal
harmonic functions* To give an isomorphism between PB and QB,
Nakai [11] has defined the transform TPQf for a function / as
follows:
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TPQf(z) = f(z) + - i - ( (P(w) - Q(w))G%w, z)f(w)dudv ,

where w — u + iv. And, Lahtinen [5], Nakai, and Sato [15] showed
some properties of the transformation TPQ. In this paper we
consider only the case in which Q is identically zero on R. Some
usefull properties of Tpo will be shown in this section.

DEFINITION 3.1. Let P be a density on R and / be a continu-
ous function on R for which

(3.1) ( P(w)G(w, s0) I f(w) I dudv < + o o w = u + iv ,

is true at some point z0 in R (then it holds at all points z in R).
Then, the linear transformation Tpof of / is well defined by

(3.2) Tpof(z) = f(z) + -A- f P(w)G(w, z)f(w)dudv .
2π JR

By changing the role of P and 0 we define also the transformation
Top. For a continuous function g on R such that

(3.3) ( P(w)Gp(w, 20) I £(w) I dudv < + <*>

for some point s0 in R, Topg is defined by

(3.4) Tpg(z) = g(z) - — ( P(w)Gp(w, z)g(w)dudv .
2π JR

To derive properties of Tpo we consider an auxiliary sequence
of transformations Tζ°, n = 1, 2, , of a real valued continuous
function / defined on the closure Rn of Rn as follows:

Tζ°f(z) = /(s) + A - j P(w)G(Rn, w, z)f(w)dudv ,

where G(i2TO, w, z) is the harmonic Green function on Rn. It is
evident that, if / is a P-solution on Rn, then Tζ°f is a continuous
function on Rn which is harmonic on Rn and satisfies

(see, for example, Nakai [11] or Lahtinen [5]).

The following lemma is a special case of Lahtinen's lemma in
[5] in which P is acceptable in the sense of his definition.

LEMMA 3.1 (Lahtinen). Let f be a P-solution on R and {/J a
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sequence of P-solutions each defined on Rn such that lim^+O0 fn = /.
//there exists a function u continuous on R such that \fn\ <Ξ u for
each positive integer n and u fullfils the inequality obtained by
replacing f by u in (3.1) at some point in R, then Tpof is well
defined and has the following properties: (1) lim^+oo Tζ°fn — TPof,
(2) Tpof is harmonic on R.

By changing the roles of P and 0, the transformation T°n

p is
defined and we can state the following:

LEMMA 3.Γ. Let g be a harmonic function on R and {gn} be a
sequence of harmonic functions each defined on Rn such that
lim%_+0O gn = g. If there exists a function v continuous on R such
that I gn I <̂  v for each positive integer n and v fullfils the inequality
(3.3) at some point in R, then Topg is well defined and has the
following properties: (1) limn_+00 T

0Pgn = Topg, (2) Topg is P-harmonic
on R.

LEMMA 3.2. Let P be a density on R. If P satisfies Nakai's
condition

(3.5) \ P(z)G(zf wo)dxdy < + oo

for some point w0 in R, then we have

(3.6) G(z, w) = Gp(z, w) + - L t P(ζ)G(ζ, z)Gp(ζ, w)dξdη
ΔTC J R

= Gp(w, z) + -A- \ P(ζ)G(ζ, w)Gp(ζ, z)dξdη ,

for each point (z, w) in R x R with w Φ z, where ζ = £ + iη.

Proof. Green's formula implies that, for (z, w) in Rn x Rn with
z Φ w,

(3.7) G(Rnf z, w) = Gp(Rn, z, w)

+ ± \ P(ζ)G(Rn, C, w)Gp(Rn, ζ, z)dξdη ,

where Gp(Rn, z, w) is Green's function of Rn related to the differen-
tial equation (1.1) and G(Rn, z) is the harmonic Green function of

In order to apply Lebesgue's dominated covergence theorem, let

F(z, w, ζ) - P(ζ)G(ζ, w)Gp(ζ, z) .
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And, let U and V be small discs with centers z and w respectively-
such that Uf]V= 0 . Then, by the minimum principle, Nakai's
condition (3.5) gives that

\ F{z, w, Qdξdη ^ sup Gp(ζ,z)
JV ζedU

X ( P(ζ)G(ζ, w)dξdη < +
JR

and, by Gp(ζ, z) < G(ζ, z) (which follows from the definition of the
Green function),

F(?9 w, ζ)dζdη ^ supG(ζ, w)
B-V ζedV

X ( P(ζ)Gp(ζ, z)dξdη
JR

< sup G(ζ, w)
ζedV

x \ P(ζ)G(ζ, z)dξdη < +co ,
JR

from which it follows that

(3.8) ( F(z, w, Qdξdη = ( F{z, w, Qdξdη
JR JV

+ \ F(z, w, Qdξdη < + oo ,
JR-V

Therefore, since

P(QG(Rn, ζ, w)Gp(Rn, ζ, z) £ F(z, w, ζ)

for each positive integer n and

lim P(ζ)G(Rn, ζ, w)Gp(Rn, ζ, z) - P(ζ)G(ζ, w)Gp(ζ, z) ,

Lebesgue's dominated convergence theorem shows (3.6) as n tends
to +oo in (3.7).

LEMMA 3.3. Let f be a continuous function on R such that

(3.9) \ P(z)G(z, wx) I f(z) I dxdy < + oo

/or some point w1 in R. Then, it holds that

(3.10) ( P(z)Gp(z, wQ) I Tpof(z) I dxdy < + oo

/or αϋ points w0 in R.
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Proof. By the definition of Tpof, we have

(3.11) [ P(z)Gp(z, w0) I TPof(z) \ dxdy
JR

P(z)Gp(z,w0)\f(z)\dxdy

+ \ P(z)Gp(z, w0) {-A- \ P(w)G(w, z) I f(w) \ dudv] dxdy .

Here, the first term of the right side of this inequality is finite by
the inequality Gp(z, w0) < G(z, w0) on R.

To apply Fubini's theorem to the second term we define a func-
tion F{z, w) by

F{z9 w) = -Lp(z)P(w)Gp(z, wo)G(w, z)\f(w)\ .
ΔΊί

Since, by Lemma 3.2,

(3.12) ί \\ F{z, w)dxdy\dudv

= Π T M P(z)Gp(z,w0)G(z,w)dxdy\p(w)\f(w)\dudv

= [ φ ) J G K wo) - Gp(w, ̂ 0)} \f(w)\dudv

<\ P{w)G{w,wo)\f{w)\dudv

Fubini's theorem shows that the second term of the right side of
(3.11) is equal to (3.12). Hence, we established the lemma.

LEMMA 3.4. Let f be a positive P-harmonic function on R
which satisfies the same condition as that in Lemma 3.3. Then we
have

Top(Tpof) =f on R .

Proof. Lemma 3.3 shows the inequality (3.10), and so, Lemma
3.1 and 3.1' imply that TOP(Tpof) is well defined and is P-harmonic,
since

Tpof = lim Tζ°f

n—>+oo

and

Tζ°f< TPaf
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for every n. Furthermore,

(3.13) Γop(ΓPoy.) = l i m T°n

P(Tζ°f)
n—>+oo

on R.
The definitions of Tζ° and T°f give that

T°S(T?f)\dRn = T?f\dRn = f\dR%.

Since T°n

p(Tζ°f) is P-harmonic on J?%, the maximum principle implies
that

T°T(T?f)=f on Rn,

which completes the proof by (3.13).

LEMMA 3.5. Let g be a continuous function on R such that

(3.14) ( P(z)G(z, w±) I g(z) \ dxdy < + oo
JR

for some point wx in R. Then, it follows that

\ P(z)G(z, wQ) I Topg(z) \ dxdy < + oo ,
JR

where w0 is any point in R.

Proof This can be provided in the same way as that of Lemma
3.3.

DEFINITION 3.2. We define the space Po (resp. H'P) consisting of
positive P-solutions / (resp. positive harmonic functions g) on R
with the property (3.9) (resp. (3.14)), and define the space HP con-
sisting of positive harmonic functions g on R such that

P(z)Gp(z, wM

for some point w1 in R.

LEMMA 3.6. Let g be a harmonic function in HP such that T0Pg
belongs to the space Po. Then, it follows that

Tp\Tpg) =g on R .

Proof Since the function Topg satisfies the condition (3.1) in
Definition 3.1, TP0(T0Pg) is well defined, and Lemmas 3.1, 3.1' show
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the equality in this lemma by the same way as that in the proof
of Lemma 3.4.

LEMMA 3.7. HP c TP0(P0) c HP.

Proof. Lemmas 3.3, 3.5 and 3.6 show this lemma.

THEOREM 3.8. Tpo is a one-to-one transformation from Po onto
JΓP 0(P0), and T0P coinsides with its inverse transformation.

Proof. Lemma 3.4 shows this theorem.

LEMMA 3.9. Let g and gx be harmonic functions on R. If
g ^ 0i on R and g, gx belong to the space HP. Then, it follows
that

Topg ^ Tpg1 on R .

Proof. Since

Tpg\dRn = g\dRn ^ gλ\dRn = Tn

pg,\dRn ,

the maximum principle for P-solutions shows that

Tlpg ^ Tpgx on Rn

for each n. Thus, from Lemma 3.Γ it follows that

Topg ^ Γ 0 ^ on R .

THEOREM 3.10. If a minimal P-solution Kρ belongs to the space
Po (i.e., aeJp0), then TPOKP is a minimal harmonic function on R,
that is, there exists a unique point b in Δ± such that

TPOKP = T

poKζ(zo)Kb on R .

Proof. Let g be a positive harmonic function on R such that

(3.15) 0 < g ^ TPOKP on R .

By Lemmas 3.4 and 3.9 we have

0 < Tpg ^ VP(TP«KP) = Kζ on R ,

and so, T0Pg = aKp on R, where a is a positive constant. Then,
since (3.15) implies geHP by Lemma 3.3, from Lemma 3.6 it follows
that
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g = TP0(T0Pg) = aTP0Kζ ,

which shows that TPOKP is a minimal harmonic function on R.

LEMMA 3.11. Let f and fλ be P-harmonic functions on R. If
f ^ /i on R and /, fλ belong to the space Po, then it follows that

£ Tpofi on R .

Proof. By Lemma 3.1 this can be proved similarly as Lemma
3.8.

THEOREM 3.12. // a minimal harmonic function Kb belongs to
TP0(P0), then T0PKb is a minimal P-harmonic function on R and is
contained in the space Po.

Proof This can be proved similarly as Theorem 3.10 by Lemma
3.11.

Theorems 3.10 and 3.12 can be paraphrased by saying that the
transformation Tpo: Po —> HP gives a one-to-one mapping from the
set of minimal P-harmonic functions in Po onto the set of minimal
harmonic functions in ΓP0(P0).

The following theorem says that the P-elliptic measure w of R
is transformed into the constant function 1 on R by Tpo.

THEOREM 3.13. // the pair (R, P) is hyperbolic, then Tpow = 1
on R.

Proof. By w = \imn^+OQwnf Lemma 3.1 implies that

Tpow = lim Tζ°wn = 1 on R .
n~>•+oo

4* Relation between the P-elliptic and harmonic measures*

DEFINITION 4.1. Let A0P be a set consisting of points 6 in Δx

such that the minimal harmonic function Kb belongs to the set
TP0(P0):

In the following, it will be shown that J0P is measurable. We
shall use the same notations XP and X for the restrictions of the
P-elliptic and harmonic measures to the measurable sets JP0 and A0P
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respectively, and consider two measure spaces (ΔP0,ZP) and (J0P, Z).
The purpose of this section is to show that there exists a

measur ability preserving transformation t from (JP0, ZP) onto (J0P, Z)
such that Xpof1 is absolutely continuous with respect to Z.

Theorems 3.10 and 3.12 give the following definitions.

DEFINITION 3.2. We define a transformation

tPol ΔP0 > ΔQp

by assigning to a in ΔP0 a point b = £P0(α) in JOp such that TP0Kζ(z0)
Kb - Tpoi£f on Λ.

DEFINITION 3.3. We define a transformation

by assigning, to b in z/0P, a point a = tOP(b) in JP0 such that
T0PKb(z0)Kζ = T0PKb on Λ.

It is clear, by Theorems 3.8, 3.10 and 3.12, that tQP is the
inverse of tPQ: t0P = ίPJ.

LEMMA 4.1. Under Nakai's condition:

(4.1) \ P(z)G(z, wjdxdy < + °o
JR

for some point wλ in R (then it holds at all points in R), the
function TP0Kζ(w0) of a in JP0 is lower semi-continuous on APQ,
where w0 is any fixed point in R.

Proof. Let Dr(w0) be the disc centered at w0 and having radius
r. By Harnak's inequality there is a positive constant a such that,
for all z in Dr(w0) and for all points a in ΔPQ,

a-"Kp(w0, a) £ Kp(z, a) ^ aKp(w0, a) .

Thus, for each point a in zfP0

(4.2) \ P{z)G{z, wo)Kp{z, a)dxdy
JDr(w0)

^ aKp(w0, a) x \ P(z)G(z, wQ)dxdy .
JDr(w0)

Since (4.1) implies that
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lim \ P(z)G(z, wo)dxdy = 0 ,
r-*0 JDr(w0)

for any ε > 0 we can find a positive number δ = d(ε) such that

(4.3) ( P{z)G{z, wo)dxdy < ε .
JD§{w0)

The function Kp(z, a) is finitely continuous on (Rn — Dδ(w0)) x
ΛPQ, so that for any ε > 0 there exists a neighborhood U(a) of α
such that

\Kp(z,a')- Kp{z,a)\ <ε

for a' eU(a) Γi ΛP0 and 2 e Rn — Dδ(w0). Therefore, from (4.2) and
(4.3) it follows that

I ( P(z)G(z, wo)Kp(z, af)dxdy - ( P(z)G(z9 wo)Kp(z, a)dxdy
\JRn JRn

^ ( P(z)G(z9 w0) I Kp(z, a') - Kp(z, a) \ dxdy
jRn—D§(w0)

+ \ P(z)G(z, WoWiz, a')dxdy

+ ( P(z)G(z, wo)KF(z, a)dxdy

^ ε x \ P(z)G(z, wQ)dxdy
jRn-Dδ(w0)

+ a(Kp(w0, a') + Kp(w0, a)) x ί P(z)G{z, wo)dxdy
JDδ(w0)

^ ε x ( P(z)G(z, wo)dxdy + ε x α(iΓp(w0, α') + ϋC 2 ' ^ , α))

This inequality shows the continuity of the function on JP0:

\ P(z)G(zf wo)Kp(z, a)dxdy ,

by which the relation

lim ί P(z)G(zf wQ)Kp(z, cήdxdy
n-*+<χ> jRn

= ( P(z)G(zf wo)Kp(z, a)dxdy
JR

implies that TP0Kζ(w0) is lower semi-continuous on JP0.

LEMMA 4.2. The function T0PKb(w0) of b in J0P is upper semi-
continuous on ΔQP, where w0 is a fixed point in R.
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Proof. Applying the inequality

P(z)Gp(z, w)dxdy ^ 2π
JB

for all w in R, which is stated in My berg [8], we can prove this
lemma in the same way as that of the proof of Lemma 4.1. This
Myberg's inequality plays the role of Nakai's condition (4.1) in
Lemma 4.1.

Let ΔP and Δ be the P-Martin and Martin ideal boundaries of
R, respectively. We identify these ideal boundaries ΔP and Δ with
subsets of the product space of the real lines. Let {wj be a
countable dense set of points in R. To a point a in ΔP (resp. δ in
Δ) we assign a point mP(a) (resp. rao(6)) of the product space ΠΓ=i Ii
(Ii is the real line for all i) whose ith coordinate is Kp(wu a) (resp.
K(wi9 b)) for each i. Then, the mappings

mP: ΔP • Π Ii

and

m 0 : Δ • Π Ii

are continuous and one-to-one, and also their inverse mappings

Tϊtp1'. mo(ΔP) >• Δ P

and

mi"1: mo(Δ) • Δ

are continuous. Therefore, the mappings

mP: ΔP > mP(ΔP)

and

m0: Δ • mo(Δ)

are homeomorphisms.

For a point mP(a) in mP(ΔP0) we assign a point in mo(ΔOP) whose
ith coordinate is K(wu tP0(a)) for each i; this mapping will be denoted
by

sP0: mP(Δp0) • mo(ΔQP) .
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And, the mapping

s0P: mo(ΔOP) > mP(ΔPQ)

is defined by the same way as that of sP0, that is, for a point mo(δ)
in mo(ΔOP) we assign a point in mP(ΔP0) whose ith coordinate is
Kp(wif tQP(b)) for each i. I t is evident that s0P is the inverse mapping
of sP0.

In the following we shall always assume Nakai's condition (4.1).

THEOREM 4.4. The mapping

tPQ: Δ P Q • Δ 0 P

is measurability preserving.

Proof. Since m^1 is continuous on mo(Δ) and, by Lemma 4.1,
the i th coordinate of the point sP0omP(a), aeΔP0:

K(wif tP0(a)) = Tp»Kp

a{w,) X {T^KζiZo)}-1

is a measurable function on ΔP0 for each i, that is, s P 0 °m P is
measurable on ΔP0, the relation

m^1 o s P 0 o mP = tP0 o n Δ P 0

shows that tPQ is measurable on ΔP0.
Similarly, from

tpl = tQP = m^1 ° s0P © m0 on z/Op

and Lemma 4.2, it follows that tpl is measurable on Δ0P. Then the
transformation tP0: ΔP0 —> Δ0P is measurability preserving.

LEMMA 4.4. ΔQP is measurable, so that (Δ0P, X) is a measure
space, where X also denotes the restriction to ΔQP of the harmonic
measure on Δλ.

Proof. Since ΔP0 is measurable, this follows from the preceding
lemma and the fact that Δ0P = t^P(ΔP0).

THEOREM 4.5. The set Δ1 — Δ0P is of harmonic measure zero:

- 4 P ) = 0 .

Proof. Since Δ[P consists of points 6 in Δ1 such that the minimal
harmonic function Kb belongs to the set HP (where Δ[P and HP are
defined in §§2 and 3, respectively), Lemma 3.7 shows that
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Δ1 — Δ0P c Aι — Δ[P ,

which gives 1(Δ1 — Δ0P) = 0 by Theorem 2.4.

LEMMA 4.6. Let u be a P-harmonic function in PQ, and let μ
be the canonical measure representing u:

u(z) = I Kpiz, a)dμ(a) .
UP1

Then,

Tpou(z) = \ TP0Kζ(z)dμ(a) , zeR .

Proof For a point z in ϋ?, let Fz be a function defined by

FM(w, a) = P{w)G(w9 z)Kp(w, a)

for (w, α) in iϋ x JP 0. Since Lemma 2.1 shows that 4 ~ ΛP0 has
measure zero, it follows that

I ]\ Ft(w, a)dμ{a)\dudv = \ P(w)G(w, z)u(w)dudv < +oo .
JR (jJpo ) JR

Then Pubini's theorem gives that

Tpou(z) = ( Kp(z, a)dμ{a) + \ \\ —Fz(w, a)dμ(a)\dudv

κp(z, a) + - i - ( P(w)G(w, z)Kp(w, a)dudv\dμ(a)
27Γ J Λ J

= ί TP0Kζ(z)dμ(a) ,

By the uniqueness in the Martin integral representation, we
obtain the following usefull theorem:

THEOREM 4.7. Let u be a P-harmonic function in Po, and let
v denote the harmonic function TPOu. If the measures which
represent u and v are denoted by μu and μv9 respectively:

u(z) = \ Kp(z, a)dμu(a) ,
JAP1

v(z) = \ K(z, b)dμv(b) ,

then the measure assigned to the restricted measure μu \ ΔP0 of μu by
the measurability preserving transformation tPQ is absolutely con-
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tinuous with respect to μv; dμ = T^Kf-i^iz^dμ o tPl(b).

Proof. Since tP0: JPQ —> J0P is measurable, from Lemma 4.6 and
the definition of tP0, it follows that

v(z) = Tpou(z) = ( TP0Kp(z)dμu(a)

= \ K{z, tPΰ(a))Tp<>Kp(z0)dμM = \ K{z,\

From the uniqueness of the canonical measure which represents v,
this theorem follows.

Theorems 4.7 and 4.3 are reduced to the following theorem:

THEOREM 4.8. Let μu and μυ be measures defined in Theorem
4.7. Then, tP0 is a measurablity preserving transformation from
the measure space (JP0, μu) onto the measure space (A0P, μv) such that
dμv =

COROLLARY 4.9. Let (R, P) be a hyperbolic pair. tPQ is a
measurability preserving transformation from the measure space
{APQ, XP) onto the measure space (z/0P, X) such that dX—TPQKf~i

Proof. By Theorem 3.13, Theorem 4.8 shows this corollary.

5* Comparisons between relative Hardy spaces* In [13]
Parreau gave a characterization for harmonic functions in Hardy
space on a Riemann surface, using the Martin boundary ([7]) and
related kernel; in [9] L. L. Nairn proved the similar results for the
axiomatic functions of Brelot, using essentially Gowrisankaran's
results ([3]) on axiomatic Martin boundary and fine limits. Since
typical examples of Brelot's axiomatic setting are given by harmonic
functions and by solutions of the differential equation Δu = Pu{P ̂  0)
on an open Riemann surface R, any result established in [9] for
Brelot's axiomatic setting holds for each of these two special cases
without further verification. Restating definitions and theorems in
[9] in the case of harmonic functions and P-solutions, we recall the
definitions of Hardy spaces, the relative Hardy spaces and some
theorems for functions in these spaces.

For an exhaustion {Rn} of R and a fixed point z0 in R, we
denote by μζtβQ and μn>ZQ the P-elliptic measure and harmonic measure
on 3Rn relative to zQ and Rn, respectively. Clearly,
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I dμζ,β0 ^ 1 and 1 dμ = 1
JdBn JdBn

for all positive integers n.

DEFINITION 5.1. A hamonic function g on R belongs to the
Hardy space Hp, 1 <£ V ^ + °° > if and only if the 2/-norms with
respect to the harmonic measures μntβQf of the restrictions of g to
the boundaries dRn, are uniformly bounded in n. In other words, g
belongs to Hp if and only if there exists a constant M, independent
of n, such that ||flrp,»|| ^ M for all n, where

= IS I
U 3 B Λ

and

\\g\\co,n = s

a ^ P l ^ i

We proceed to define the relative Hardy spaces for the equation
Δu — Pu and harmonic functions. For a fixed positive P-harmonic
function u on R we define the relative u-P-elliptic measure with
respect to zoeRn and Rn by

P,u = U w . , P

and for a fixed positive harmonic function v on R we define the
relative v-harmonic measure with respect to z0 e Rn and Rn by

For the positive P-harmonic function u ^-P-harmonic functions are
quotients of P-harmonic functions on R by u, and for the positive
harmonic function v v-harmonic functions are quotients of harmonic
functions on R by v.

DEFINITIONS 5.2. A %-P-harmonic function / ' belongs to the
relative Hardy class PHζ, 1 ^ p ^ +°o, if and only if the ZAnorms
with respect to the relative w-P-elliptic measure μζ;?0, of the restric-
tions of / ' to the boundaries dRn are uniformly bounded in n. In
other words, / ' belongs to PHζ if and only if there exists a constant M,
independent of n, such that | | / ' | | £ » ^ M for positive integers, where

II/ΊI?. = IS \f'\pdμζ;ά1/F , 1 ^ v < +oo ,
\JdRn )
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DEFINITION 5.3. A v-harmonic function gf belongs to the rela-
tive Hardy space Hi, 1 ^ p <; + <χ> 9 if and only if the ZZ-norms with
respect to the relative ΐ -harmonic measure μlSQ9 of the restrictions
of gf to the boundaries dRn are uniformly bounded in n. In other
words, gf belongs to Hξ if and only if there exists a constant M,
independent of n, such that HflΠL* ^ M for all n, where

\W\Ln = {( \0'\*dμlS* , 1 ^ p < +oo ,
\JdRn )

Nairn gave the extended characterization of functions in Hardy
spaces, showing the role of uniform integrability. We shall recall
her theorems and restate them in our case. In the following, fine
filters defined by the P-Martin compactification and minimal P-
harmonic functions Kζ, a e ΔP1, is called P-fine filters.

THEOREM 5.1. Let u be a fixed positive P-harmonic function
on R. A u-P-harmonic function f belongs to the space PHI, 1 <
p <J +00, %f and only if / ' is the solution of a Dirichlet problem
relative to u with the P-minimal boundary ΔP1, the P-fine filters in
R and boundary function / ' in LP(ΔP1, μu), where μu represents u
in the integral representation

u{z) = I Kp(z, a)dμu{a) .

And, the correspondence f —» / ' is an isometric isomorphism of the
Banach space PHI onto LP{ΔPU μu).

THEOREM 5.2. A harmonic function g belongs to the space Hp,
1 < P ^ + °°, if and only if g is the solution of a Dirichlet problem
with the minimal boundary Δlf the fine filters in R and boundary
function g in LP(Δ1,T). And, the correspondence g—>g is an
isometric isomorphism of the Banach space Hp onto Lp(Δlf X).

THEOREM 5.3. Let v be a fixed positive harmonic function on
R. A v-harmonic function gf belongs to the space Hξ, 1 < p ^ + <*>,
if and only if gr is the solution for a Dirichlet problem relative to
v with the minimal boundary Δlf the fine filters in R and boundary
function gf in Lp(Δlf μυ), where μv represents v in the integral
representation

= \ K{z,b)dμv{b) .
JΔ
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And, Hξ is a Banach space ίsometrically isomorphic to Lp(Jlf μv).

THEOREM 5.4. Let u and v be functions on R satisfying the
same conditions as those in Theorem 4.7. // Nakai's condition:

(5.1) ( P(z)G(z, wQ)dxdy < + oo
JR

for some point w0 in R is satisfied, then the Banach space PHζ,
1 < P ^ +°°, is isometrically isomorphic to the Banach space Hξ.

Proof For a function / ' in PHζ, 1 < p <; + oo 9 there exists a
boundary function / ' in LP(ΔPU μu), with which the relative Dirichlet
problem gives / ' . The function {TopKb(zo)}υpf'°tϊl is defined on J0P

and satisfies, by Lemma 2.1 and Theorem 4.8, that

\ ΓpKb(z0) I / ' o t ; j \>dμv = \ I / ' \*dμu = \ \ff \»dμu ,
JΔQP Jzίpo JdP1

ess. sup I /'©tplI = ess. sup | f'\ ,
Δΰp ΔP1

where the essential supremums are taken with respect to μu and μυ

respectively. This shows that fΌtpl belongs to LP(ΔU μv), since
L*(ΔU μυ) = LP(JOP, μv) by Lemma 2.2.

To a w-P-harmonic function / ' in PHI we assign the solution
for the Dirichlet problem relative to v with the boundary function
{T0PKb(z0)}1/pffotPl Then, this solution is a function in the space
Hi by Theorem 5.3. Denoting this function by TPQ(f), we define a
linear transformation

TP0:PHl >H*.

The fact that TP0 is an isometric isomorphism from PHζ onto Hξ is
easily verified by theorems prepared in §4.

THEOREM 5.5. Let (R, P) be a hyperbolic pair. If Nakai's
condition (5.1) is satisfied, then the Banach space PHζ, 1 < p ^ + °o,
is isometrically isomorphic to the Banach space Hp, where w is the
P-elliptic measure.

Proof. By Corollary 4.9 we can prove this theorem by the
same way as that in the proof of Theorem 5.4.

Since PHζ = PB and H°° = HB, it is clear that this theorem
contains Nakai's result ([11]): under the condition (5.1) PB and HB
are isometrically isomorphic.
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