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AN M-IDEAL CHARACTERIZATION OF G-SPACES

NINA M. ROY

It is shown that a separable real Lindenstrauss space is
a G-space if and only if the intersection of any family of M-
ideals is an M-ideal. This result extends work of A. Gleit
and U. Uttersrud.

1* Introduction* A closed subspace of a Banach space V is
said to be an M-ideal if its annihilator is the range of an L-projection
on the dual space V*. A real Banach space V is a (Grothendieck)
G-space if there is a compact Hausdorίf space K and a set {(ka9 K, λβ):
aeA) of triples, where ka, k'aeK and λα real, such that V is isometric
to the space of all continuous functions f on K which satisfy f(ka) =
Kf(k'a) for all aeA.

Ulf Uttersrud proved in [12] that in a G-space, the intersection
of any family of ikf-ideals is an Λf-ideal; and he raised the question:
Does this property characterize G-spaces among those real Banach
spaces V in which ker(p) is an M-ideal for each extreme point p
of the unit ball in F*? In this paper we give a partial answer
by showing that this property characterizes G-spaces among sepa-
rable real Lindenstrauss spaces (Li-preduals). This generalizes Alan
Gleit's result that a separable simplex space is an M-space if and
only if the intersection of any family of M-ideals is an M-ideal [5,
Theorem 2.3]. Our general approach will follow that of [5]; what
makes this possible is a theorem of J. B. Bendnar and H. E. Lacey
which describes a real Lindenstrauss space in terms of a barycentric
mapping [7, §21, Theorem 8]. Part of their theorem is stated below
at the end of §2. The main results in this paper are Theorems
4.1 and 5.2. The former, an existence theorem, is the analog for
Lindenstrauss spaces of [5, Theorem 1.4], and the latter is the M-
ideal characterization of G-spaces mentioned above.

2* Conventions* Throughout, V will denote a real Lindens-
trauss space and K the closed unit ball of F* with the weak* topology.
E is the set of extreme points of K, and Z is the weak* closure of
E. The homeomorphism σ: Z—> Z is defined by σ(z) = —z. We denote
by C the space C(Z) of all real continuous functions on Z with the
uniform norm. For / e C , the functions σf and odd/ are defined
on Z by σf(z) = f(σz) and odd / = (/ - σ/)/2. The space Cσ = Cσ(Z)
consists of the odd functions in C, that is, those f eC for which
/ = odd/. We shall frequently regard V as a subspace of Cσ and
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write f(p) in place of ?>(/), for peZ and ,/ e V. The term measure
will denote an element of C*, that is, a regular Borel signed measure
on Z. For μeC*, the measures σμ and odd μ are defined by σμ(B) —
μ{σB) and odd μ = (μ — σμ)/2. An odd measure is a measure μ for
which μ = odd μ. The space Cσ is the range of the contractive
projection P defined on C by P / = odd/. The adjoint P* is an
isometry of C* onto the space of odd measures. Thus we may regard
C* as the weak* closed subspace of C* consisting of all odd measures.
For a subset T of C*9 T denotes the weak* closure of T (relative
to C). Thus if T £ C*, then T Q C*. For a subspace X of Cσ, X1

is the annihilator of J in Cσ*. For zeZ, δz denotes point mass at z,
and we define yz = odd δz. We shall use terminology and results
from [11] concerning the Choquet ordering and maximal measures.
If z 6 Z and μ is any maximal probability measure on K representing
z, we define πz = odd μ. (This is well-defined by Lazar's theorem
[7, §21, Theorem 7].) For feC, the function fπ is defined on Zby

fπ(z) = \ fdπz for each zeZ. Since πz is supported by Z, we may
JZ

denote fπ(z) by πz(f). It is shown in the proof of the Bednar-Lacey
theorem [7, §21, Theorem 8] that for each / e C , the function fπ

(denoted there by fp) is integrable with respect to every μeC*.
Their theorem includes the following characterization of V, which
first appeared as [4, Corollary 3.3]:

V = {/6C: f(z) = fκ{z) for all zeZ} .

3» Preliminary lemmas*

LEMMA 3.1. (1) \\fπ\\ ^ | | / | | for each feC.

(2) The map f —> fπ of C into the bounded functions on Z is
linear.

(3) If μ is a positive measure and v is a maximal measure
which dominates μ in the Choquet ordering, then I fπdμ = I (odd f)dv

)z Jz

for all feC.
(4) If feCσ and zeE, then fπ(z) = f(z).
(5) V = {feCσ:f(z) = fπ(z) for all zeZ~E}.

Proof. (1) and (2) are easily verified. In (3), the conclusion
holds for / the restriction to Z of a continuous convex function on
K [7, p. 217] and these functions are uniformly dense in C. Using
(1) and (2) as well, one may routinely verify that the conclusion
holds for every / e C. To prove (4), let z e E and let μ be any
maximal probability measure representing z. Then μ = dz [11, p. 8].
Thus for feCσ, fβ(z) - π.(f) = (odd/*)(/) - ίi(odd/) = μ(f) = /(*).
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The statement in (5) follows from (4) and the Effros-Bednar-Lacey
characterization of V quoted at the end of §2.

LEMMA 3.2. Assume E is a Borel set. Then

V"={μβ C*: μ(f) = ( (/ - fπ)dμ for all feCσ\.
JZ~E )

Proof. The inclusion 2 is clear by Lemma 3.1(5). The reverse
inclusion follows from Lemma 3.1(4) and the fact that the annihilator

of V in C* consists of those μ e C* such that I fπdμ = 0 for all f eC.

(See proof of [7, §21, Theorem 8].)

LEMMA 3.3. Let X be a Borel subset of Z such that σX = X,

and suppose μ,veC% are related by v(f) = \ fdμ for all feCσ.

Then v{B) = μ(B (Ί X) for every Borel subset BXof Z.

Proof. If two odd measures agree on Cσ, then they are identical.
The conclusion now follows from [5, Lemma 1.1].

LEMMA 3.4. Assume V is separable. Let μ, coeC? be related by

<*>(/) = ^ (/ - fπ)dμ for all feCσ. Then ω(B) = μ(B) for every

Borel B^Z ~ E.

Proof. Let μx and μ2 be maximal measures which dominate μ+

and μ~, respectively, in the Choquet ordering. Let / 6 Cσ. Then by
Lemma 3.1, parts (4) and (3), we have

/ - fπ)dμ =\fdμ-\ fdμ, + \ fdμ,
Jz Jz JZ

= \fdμ-\ fdioάίμd + \ fd(oάdμ2) .
JZ JZ JZ

Let Borel BQZ ~ E. Then ω(B) = μ{B) - oddμ,(B) + oddμz(B) by
Lemma 3.3. But odd μλ(B) = 0 = odd μ2(B) because σB Q Z ~ E and
μlf μ2 are supported by E. (K is metrizable.) Thus ω(β) = μ(B).

4* An existence theorem* In the following theorem, C%{Z;
(Z — E) U Y} denotes the space of all odd measures whose total
variation on (Z ~ E) \JY is zero, and EA is the set of those points
p in Z such that evaluation at p is an extreme point of the unit
in the dual A* of A.

THEOREM 4.1. Let V be a separable Lindenstrauss spacey and
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Y is a closed se
q\.

* 0 .
4.

= {/eF: /(#) = πg(/) for all y e Y) is a nontrivial Linden-
strauss space, A* is isometric to G*{Z\ (Z ~ E)\3 Y}, and EA^E ~
( Γ U - Γ ) .

The proof will be preceded by several lemmas following, to some
extent, the general pattern of Gleit's proof of [5, Theorem 1.4]. Our
main objective is to show that C*/AL is isometric to C*{Z; (Z~ E) U Y}>
In Lemmas 4.2-4.4 below, we preserve the notation and hypotheses
of Theorem 4.1. In particular, the separability of V implies that πg

is supported by E.
Let S = {Ύy: y e Y}. (Recall that yy = oάάδ9.)

LEMMA 4.2. Let μ e cδ(S). Then μ is an odd measure on YU — Y
and μ{Y) = 1/2.

Proof Clearly μ is odd. Let {μj £ co(S) be a sequence which
converges weak* to μ. Then supp μnζ^YΌ — Y for each n, hence
suppμCYU — Y [2, III, §3, Proposition 6]. By Urysohn's lemma,
there are glf g2eC with g1 = 1 on Y, gx — 0 on — Y, g2 = 0 on F, and
g2 = - 1 on - Y. Let / = oddfo + ft). Then / e Cσ, / = 1 on Γ, and
/ = - 1 on - Y. We have μn{f) = 1 for all w, hence jw(/) = 1. Thus

1 = SF U_/^ = KY) - M- Π = 2μ(Y).
The following notation will be used in Lemmas 4.3 and 4.4 and

in the proof of Theorem 4.1. We also preserve the definition of S
preceding Lemma 4.2. Let D = {f e Cσ: f(y) = πq(f) for all y e Y).

Let F = \μ e C*: there exists an odd measure λ o n Γ U - 7 such that

μ(f) = [ fdx - 2πg(f)X(Y) for each fecΛ. Let a = 1 - 2πq(Y),
JFU-F )

and let Γ = {yy - πg: y e Y}.

LEMMA 4.3. (1) F = span(co(Γ)).
( 2 ) DL =F.

Proof. To prove (1), we first show that cό(Γ) £ F. Let v e
co(Γ) and let χ=v+πq. Then clearly λ e co(S). Hence by Lemma 4.2,
X is an odd measure o n 7 U - Γ and X(Y) = 1/2. Therefore veF.
Thus span(cό(Γ)) £ F because F is a linear subspace of C*. For the
reverse inclusion, let μ 6 F and assume μ Φ 0. Then there is a nonzero
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odd measure λ o n Γ U - Γ such that μ(f) = [ fdX - 2πq(f)X(Y)
JFU-F

for all f eCσ. Since X is odd, we have σX+ = λ~, hence X = odd(2λ+)
[4, p. 443]. Also, ||2λ+ | | = | |λ| | because ||2λ+ | | = 2X+(Z) = \X\(Z) +
X{Z) = \X\(Z) = | |λ| |. Let λx and λ2 be defined by λx(B) = 2λ+(£ Π Y)
and λ2(5) = 2X+(B Π-Y) for all Borel B Q Z. Then λx + λ2 = 2λ+,
hence odd λx + odd λ2 = λ. Thus \ and λ2 cannot both be zero. We
consider first the case where one of xt is zero. Suppose Xλ = 0. Then
λ2 = 2λ+ is a positive measure on — Y, and 11 λ211/| | X \ \ — 1. We then have
Wl|λ|| ecδ({δ_,: ye Y}) [11, p. 3], hence oddλ2/||λ|| ecδ({y_y: y e Y}) =
cδ(-S) = -cδ(S). Thus-λ/| |λ | |eco(S). Then (-λ/||λ||) -πqeco(T),
and also 2λ(Γ) = — | |λ| | by Lemma 4.2. Hence μ = X — 2X(Y)πq =
— ||λ||((—λ/||λ||) — πq), and so ^6span(co(Γ)). A similar argument
will show that if λ2 = 0, then λ/||λ|| eco(S), and μ = | |λ||((λ/||λ||) -πq)
is in span(co(Γ)). We now consider the case \ Φ 0 and λ2 Φ 0. Then
WIKH 6 Έδ({dy: y e Γ}) and λ2/l[λ2|| 6 cδ({δ_y: y e Y}). Hence odd λ1/l|λ1(| 6
cδ(S) and -odd λ2/||λ2|| ecδ(S). Then HλJI = 2oddλ1(F) and ||λ2 | | =
-2oddλ 2 (Γ) by Lemma 4.2. Hence \\\\\ - \\X2\\ = 2λ(Γ). Thus
X - H^liαoddWIIλill) - πq) - yλ2 | |((-oddλ2/||λ2 | |) - πq) + 2X(Y)πq,
and so μ = X - 2λ(Γ)ττg 6span(co(Γ)). Hence F = span(co(Γ)). We
now prove (2). Clearly T £ D1, hence F £ D1 by (1). Thus DL =
F. To show that F is weak* closed, it suffices to show it is norm
closed [3, V. 5.9]. We proceed as in Part A of the proof of [5,
Theorem 1.4]. Consider a μeF. Then there is an odd measure X
on Y U - Y such that μ(f) = \ fdX - 2πq(f)X(Y) for each / 6 Cσ.

Jru-r

By Lemma 3.3, for each Borel set B £ Z, μ(B) = λ(J5 Π (Y U - Y)) -
2πq{B)X{Y). In particular, μ(Y) = λ(Γ)(l - 2πq(Y)) = aX(Y). Thus
for each Borel set 5 £ ΓU - Γ, we have λ(B) = ^(5) + 2πq(B)μ(Y)/a.
Hence /̂  uniquely determines λ. Further, since | λ | = | μ + (2μ( Y)/a)πq \
o n Γ U - Γ , we get |λ | (Γ) ^ |jeι|(Γ) + 2|jEi|(D|7Γf|(Γ)/α ^ | |μ | | +
2||/^|| ||τrj|/α. Hence |(λ|| = | λ | (ΓU - Γ) = 2 |λ | (Γ) ^ | |^ | |(2 + 4/α).
It can now be easily verified that F is norm closed. Hence F = D

l l

LEMMA 4.4. (1) D1 +V1 = {μ + v: μeD1,ve V1, and μ = 0 on
Z - E}.

(2) A 1 = J 5 1 + F ± .

Proof. To prove (1), let μeD1. We will show μ = μι + μ2,
where ^ 6 D1, ^2 e F 1 , and μ^B) = 0 for every Borel B Q Z ~ E. By
Lemma 4.3(2), we have /*(/) = λ(/) - 2ττg(f)λ(Γ) for all feCσ9 where
X is an odd measure on YD —Y. Let λx = λ — 2λ({(j})γ9 and let
Λ = λx — 2X1(Y)πq. Then λx is an odd measure on ΓU — Y and
(̂{<?}) = 0. Thus fteΰ1 by Lemma 4.3(2), and μΛf) = μ(f) -
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2λ({ϊ})(7«(/) - πq(f)) for all / e C , Letting μ2 = 2λ(M)(τg - πq), we
have ft 6 V1 by Lemma 3.1(5). Let Borel B Q Z ~ E. Then λx(J5) =
0 = πq(B), hence ft(B) = 0. This establishes (1). To prove (2), note
that 4 = ΰ ( Ί 7 , hence A1 is the weak* closure of DL + V1. To
show DL + V1 is weak* closed, we may use sequences (by the Krein-
Smulian theorem) because C is separable and DL + V1 is convex [3,
V. 7.16]. Let {ωj Q D1 +V1 converge weak* to ω. Then the
sequence {||α>J|} is bounded [3, V. 4.3]. Further, by (1) we have
for each n, ωn = ft + vn, where μneDλ, vne F 1 , and ωn = vn on
Z~E. Let feCσ with | | / | | ̂  1. Then by Lemma 3.2, ωjf) =

A(/) + ( (/ ~ Λ)Λ» Hence
JZ~E

\ (\μn{f) = \ /&»„- \

= I [ fdωn + f fπdω
\ JE JZ~E

<k \ωn\(E) + \ω%\{Z~E) =

Thus | |ft || ^ Hω.H, hence the sequence {||ft||} is bounded. Then the
weak* closure of {μn} is compact and metrizable, hence some subse-
quence of {μn} converges weak* to an element of D1. Assume, for
simplicity of notation, that {μn} cnnverges weak* to μeD1. The
sequence {||vj|} is bounded because \\vn\\ 5g \\ωn\\ + lift 11 for each n.
Hence some subsequence of {vn} converges weak* to an element
v e V1. Then ω = μ + v e DL + V1.

Proof of Theorem 4.1. We first show that A* is isometric to
C*{Z; (Z~E)ΌY}. Since A* is isometric to C*/A-S it will suffice
to construct an isometry of C*{Z; (Z ~ E) U Y} onto Cί/AL =
C*I(D^ + V1) (Lemma 4.4(2)). Let θ: C?{Z; (Z~E){jY}-± Cϊ/A1 be
defined by θ(μ) = μ + A1 for each μ e C*{Z; (Z - E) U Γ}. Clearly
^ is linear, and we claim that θ is a bisection. For, suppose θ(μ) = 0.
Then

μ e CD1 + F1) Π Ci{Z; (Z - E) U Γ} .

By Lemmas 4.4(1) and 3.2, there is / ^ e D 1 such that μ(f) = ft(/) +

( (f-f*)dμ for all / e C σ . But | ^ | ( Z - J5) = 0, hence μ = ft.

Then by Lemma 4.3(2), μ = χ — 2x(Y)πq, where λ is an odd measure

on Y U - Y. Then μ(Γ) = αλ(Γ). Hence λ(Γ) = 0 since μ(Y) = 0.

Therefore ^ = λ. But | ̂  | (Y U - Y) = 0, hence λ = 0, and so μ = 0.

Hence θ is one-to-one. To show that θ is onto, let v 6 C* and let

I;* 6 C? be defined by !>*(/) = \ fπdv for all f eCσ Define a measure
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Xu on Y U - Y by

K({Q}) = K({-q}) = 0 , and λ>(5) = *,(£) + »(B) + 2πq(B)X»(Y)

for each Borel subset B of (ΓU - Γ ) ~ {g, -g}, where \(Y) =
λ v ( F ~ {q}) is found by consistency. Let ωveC* be defined by

<»(/) - ( (/ - Λ)Λ> + [ /dλ> - 2τr,(/)λ,(Γ)

for each / 6 Cσ. Then a), e F 1 + D 1 by Lemmas 3.1(5) and 4.3. Thus
v - ωv 6 v + A1. To show v - ωv e C?{Z; (Z - £7) U Γ}, let B be any
Borel subset of (Z ~ # ) U Γ and let J5X = B n (Γ - {g}). Then ωv(B) =
α)v(B Π (Z - JS)) + ^(BJ = v(B n(Z~ E)) + ^(BJ by Lemmas 3.3
and 3.4. And ωu{Bλ) = - ^ ( E J + λΛBJ - 2τrg(51)λ,(F) = v{B,) by
Lemma 3.3 and the definition of Xu. Hence ωv{B) = v(S Π (Z ~ J&)) +
v(JB2) = v(B). Thus v - α>, 6 C?{Z; (Z - S) U Γ}. Since θ(v - α)v) =
v + A1, we have that θ is onto.

To prove that θ is an isometry, let μ e C%{Z; (Z ~ E) U Y). Then
\\θ{μ)\\ = \\μ + A>-\\=mί{\\v\\:veμ + A^. Thus | | ^ ) | | ^ | |/<| | . For

t h e r e v e r s e i n e q u a l i t y , w e s h o w | | v | | ^ \\μ\\ f o r a l l v e ^ + A 1 . L e t
veμ-t A1. Then θ(v — ωv) — v + A1 = μ + A1, hence v — ωv = μ. Let
J Γ = Γ U - r . Then ||JM|| - | |v-α>J| - |v~ft), |(^-X) ^ | v | ( ^ - X ) +
I α>v I (J57 — X). If 5 is any Borel subset of E — X, then by Lemma
3.3, <0vtB) = v ( δ n (Z - E)) - vπ{B) + λy(SΠ X) - 2πq(B)Xu(Y) =
-^(-B) - 27Γg(.B)λjχΓ). Hence ω, = -vπ - 2X,(Y)πq on E ~ X, conse-
quently, \ωv\ = \vπ + 2λv(y)7Γg| on £7 ̂  X From the definition of Xv

we have

λv(Γ) = λ,(Γ ~ {g}) = ( P , ( Γ - {g}) + v{Y

Thus

X) ^ | ^ | ( J ? - X) + 2 1 ^ ^ - {g})

And I πq \ (E ~ X) <: a because

\πq\(E~X) +2πq(Y)^ \πq\(E ~ X) + 2\πq\(Y)
- \πq\(E~X) + \πq\(X) = \πq\(E) = \\πq\\ ^ 1 .

Hence

X) ^ \px

= |υ,|(JS?~ X) + |υ,|(X~{g, -g}) + |y|(X~{g, -g})
{g, -g}) ^ ||y,|| + |υ|(X ~ {g, -5}) .
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Also IKII ^ M ( Z ~ E) because for | | / | | ^ 1, | ^ ( / ) | = ^ Jπdv\ ^
\v\(Z~E). Therefore \ωu\(E ~ X) £ \v\(Z ~ E) + \v\(X~\q, -q}),

and so \\μ\\ ^ \ι>\(E ~ X) + \v\(Z ~ E) + M ( X ~ {g, -9}) = MCZ) =
||v||, thus completing the proof that 0 is an isometry.

Continuing to denote Γ U - Γ b y l , let C*{Z; {Z ~ E) U X} be
the space of all measures whose total variation on (Z ~ E) U X is
zero. Gleit has shown that this is an L-space [6, Proposition 1.1].
The space C*{Z; (Z ~ E) U Y) is the range of the contractive pro-
jection P on C* {Z; (Z ~ E) \J X} defined by P(μ)=oάdμ. Thus
Cΐ{Z\ (Z ~ E)\J Y} is isometric to an 7^-space [7, §17], hence A is
a Lindenstrauss space.

For each peZ ~ {0}, the evaluation functional (measure) yp is
an extreme point of the unit ball in C* [7, §10, Lemma 3]. Let
peE ~ X. Then yp eCσ*{Z; (Z ~ E) \J Y), hence 7P is an extreme
point of the unit ball in C?{Z; (Z ~ E) U Y). Further, yp is mapped
onto 7PIA = p IA by the composition of isometries

0: C*{Z; (Z~E)ΌY} > C*/A^ and Cϊ/A^ > A* .

Thus p 6 J5 .̂ Hence EA^E ~ X.
Finally, A is nontrivial because Έ ~ X Φ 0 ; and this concludes

the proof of Theorem 4.1.

5* The characterization* In this section, ωz denotes the measure
defined by ωz = 2πt for each zeZ. Properties of ωz were studied
and used effectively in [4]. In the proof of Lemma 5.1 below, Γβ

and 1° denote the annihilators of Iβ and I, respectively, in V*. This
lemma is the analog for Lindenstrauss spaces of [5, Lemma 2.2].

LEMMA 5.1. Let V be a Lindenstrauss space. Let qeZ~E,
g ^ O . Suppose there exist p e supp ωq Π E and a net {qβ} £ E ~
{p, —p} which converges weak* to q. Suppose, further, there is an
element f eV such that p (/) Φ 0 and qβ(f) = 0 for all β. Then
there exists a family of M-ideals Iβ such that Π Iβ is not an M-ideaL
If the net is a sequence, then the family of M-ideals is countable.

Proof. Let Iβ = {g e V: qβ{g) = 0}. Then Γβ = span(^), hence Iβ

is an Λf-ideal [9, Theorem 5.8]. Let I — {\Iβ, and suppose I were
an M-ideal. Then 1° would be a weak* closed L-summand in 7*
containing q. Let Lq be the intersection of all weak* closed L-
summands containing q, and let Hq = LqΠ K. Then Lq is a weak*
closed L-summand [1, Proposition 1.13] and Hq is the smallest weak*
closed biface containing q [1, pp. 168, 169]. We have supp ωq £ Hq

[4, Lemma 5.6], hence p 6 Lq. Then, since Lq £ 7° and / 6 7, it follows
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that p(f) = 0. But this contradicts the hypothesis p(J) φ 0, so we
conclude that I is not an Af-ideal.

THEOREM 5.2. Let V be a Lίndenstrauss space, and consider
the statements:

(1) V is a G-space.
(2) The intersection of any family of M-ideals is an M-ideal.
( 3) The intersection of any countable family of M-ideals is an

M-ideal.
One has that (1) => (2) => (3). If V is separable, then (3) => (1).

Proof. (1)=>(2) was proved by Uttersrud [12, Theorem 10].
(2) => (3) is obvious.
Not (l)=>not (3) (V separable). Suppose V is not a G-space.

Then there exists qeZ ~[0,l]E [4, Theorem 6.3]. Since q Φ 0,
ωg/||α)J| is a maximal probability measure [4, p. 444], hence is sup-
ported by E. Thus supp ωqf]Eφ 0 . Then since q g [0, 1]E and
ωq(f) = f(q) for all / e V, there must be two linearly independent
points, say px and p2, in supp ωq Π E. Since qeZ ~ E, there is a
sequence {qn} £ E ~ {±plf ±p2} which converges weak* to q. Let
Y = [q%: n = 1, 2, •} U {q}. We may assume Yd - Y = 0 . We also
have πq(Y) < 1/2. To see this, let μ be any maximal probability
measure representing q. Then ωq <; μ [4, p. 443], hence supp ωq £
suppμ. Since Y is closed and ί?x, p2£ Y, it follows that μ(Y) < 1.
Then, since πq = odd ̂ , we have πq(Y) < 1/2. Let A = {/ e F: /(y) =
ττg(/) for all y e Y}. Then by Theorem 4.1, A is a nontrivial subspace
of V and plf p2 eEA. We note t h a t pλ\Aφ ±p2\ A because yPl Φ ±ΎPz.

(See the end of the proof of Theorem 4.1.) Hence there are/i, f2e A
with f(p^ = 1 = f2(p2) and f(p2) = 0 = f2(Pi)> We consider the two
cases f2{q) = 0, f2{q) Φ 0. Suppose /2(g) = 0. Let f = f2. Then feV
because / e A, and f(qn) = 0 for all n because f(q) = 0 and / 6 A.
Taking p2 = p in Lemma 5.1, we see that Lemma 5.1 implies that
(3) is not true. Now suppose f2(q) Φ 0. Let f = f - (fMlfM)U
Then / e V and f{q) = 0. Hence f(qn) = 0 for all n because feA.
Also, /fa) = /i(Pi) ^ 0. Thus with p = p19 Lemma 5.1 implies that
(3) is not true.

REMARK. In [10, p. 78], there is an example of a Lindenstrauss
space which is not a G-space and which illustrates well the above
proof.

COROLLARY 5.3 [5, Theorem 2.3]. A separable simplex space is
an M-space if and only if the intersection of any family of M-
ideals is an M-ideals.
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Proof. This follows from Theorem 5.2 above and the diagram
of classes of Lindenstrauss spaces in [8, p. 181].
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