AN M-IDEAL CHARACTERIZATION OF G-SPACES

Nina M. Roy

Abstract

It is shown that a separable real Lindenstrauss space is a G-space if and only if the intersection of any family of M ideals is an M-ideal. This result extends work of A. Gleit and U . Uttersrud.

1. Introduction. A closed subspace of a Banach space V is said to be an M-ideal if its annihilator is the range of an L-projection on the dual space V^{*}. A real Banach space V is a (Grothendieck) G-space if there is a compact Hausdorff space K and a set $\left\{\left(k_{\alpha}, k_{\alpha}^{\prime}, \lambda_{\alpha}\right)\right.$: $\alpha \in A\}$ of triples, where $k_{\alpha}, k_{\alpha}^{\prime} \in K$ and λ_{α} real, such that V is isometric to the space of all continuous functions f on K which satisfy $f\left(k_{\alpha}\right)=$ $\lambda_{\alpha} f\left(k_{\alpha}^{\prime}\right)$ for all $\alpha \in A$.

Ulf Uttersrud proved in [12] that in a G-space, the intersection of any family of M-ideals is an M-ideal; and he raised the question: Does this property characterize G-spaces among those real Banach spaces V in which $\operatorname{ker}(p)$ is an M-ideal for each extreme point p of the unit ball in V^{*} ? In this paper we give a partial answer by showing that this property characterizes G-spaces among separable real Lindenstrauss spaces (L_{1}-preduals). This generalizes Alan Gleit's result that a separable simplex space is an M-space if and only if the intersection of any family of M-ideals is an M-ideal [5, Theorem 2.3]. Our general approach will follow that of [5]; what makes this possible is a theorem of J. B. Bendnar and H. E. Lacey which describes a real Lindenstrauss space in terms of a barycentric mapping [7, §21, Theorem 8]. Part of their theorem is stated below at the end of $\S 2$. The main results in this paper are Theorems 4.1 and 5.2. The former, an existence theorem, is the analog for Lindenstrauss spaces of [5, Theorem 1.4], and the latter is the M ideal characterization of G-spaces mentioned above.
2. Conventions. Throughout, V will denote a real Lindenstrauss space and K the closed unit ball of V^{*} with the weak* topology. E is the set of extreme points of K, and Z is the weak* closure of E. The homeomorphism $\sigma: Z \rightarrow Z$ is defined by $\sigma(z)=-z$. We denote by C the space $C(Z)$ of all real continuous functions on Z with the uniform norm. For $f \in C$, the functions σf and odd f are defined on Z by $\sigma f(z)=f(\sigma z)$ and odd $f=(f-\sigma f) / 2$. The space $C_{\sigma}=C_{\sigma}(Z)$ consists of the odd functions in C, that is, those $f \in C$ for which $f=\operatorname{odd} f$. We shall frequently regard V as a subspace of C_{o} and
write $f(p)$ in place of $p(f)$, for $p \in Z$ and $f \in V$. The term measure will denote an element of C^{*}, that is, a regular Borel signed measure on Z. For $\mu \in C^{*}$, the measures $\sigma \mu$ and odd μ are defined by $\sigma \mu(B)=$ $\mu(\sigma B)$ and odd $\mu=(\mu-\sigma \mu) / 2$. An odd measure is a measure μ for which $\mu=$ odd μ. The space C_{σ} is the range of the contractive projection P defined on C by $P f=\operatorname{odd} f$. The adjoint P^{*} is an isometry of C_{o}^{*} onto the space of odd measures. Thus we may regard C_{σ}^{*} as the weak* closed subspace of C^{*} consisting of all odd measures. For a subset T of C^{*}, \bar{T} denotes the weak* closure of T (relative to C). Thus if $T \subseteq C_{\sigma}^{*}$, then $\bar{T} \subseteq C_{\sigma}^{*}$. For a subspace X of C_{a}, X^{\perp} is the annihilator of X in C_{σ}^{*}. For $z \in Z, \delta_{z}$ denotes point mass at z, and we define $\gamma_{z}=$ odd δ_{z}. We shall use terminology and results from [11] concerning the Choquet ordering and maximal measures. If $z \in Z$ and μ is any maximal probability measure on K representing z, we define $\pi_{z}=$ odd μ. (This is well-defined by Lazar's theorem [7, §21, Theorem 7].) For $f \in C$, the function f_{π} is defined on Z by $f_{\pi}(z)=\int_{z} f d \pi_{z}$ for each $z \in Z$. Since π_{z} is supported by Z, we may denote $f_{\pi}(z)$ by $\pi_{z}(f)$. It is shown in the proof of the Bednar-Lacey theorem [7, §21, Theorem 8] that for each $f \in C$, the function f_{π} (denoted there by f_{ρ}) is integrable with respect to every $\mu \in C^{*}$. Their theorem includes the following characterization of V, which first appeared as [4, Corollary 3.3]:

$$
V=\left\{f \in C: f(z)=f_{\pi}(z) \quad \text { for all } z \in Z\right\}
$$

3. Preliminary lemmas.

Lemma 3.1. (1) $\left\|f_{\pi}\right\| \leqq\|f\|$ for each $f \in C$.
(2) The map $f \rightarrow f_{\pi}$ of C into the bounded functions on Z is linear.
(3) If μ is a positive measure and ν is a maximal measure which dominates μ in the Choquet ordering, then $\int_{Z} f_{\pi} d \mu=\int_{Z}(\operatorname{odd} f) d \nu$ for all $f \in C$.
(4) If $f \in C_{o}$ and $z \in E$, then $f_{\pi}(z)=f(z)$.
(5) $V=\left\{f \in C_{\sigma}: f(z)=f_{\pi}(z)\right.$ for all $\left.z \in Z \sim E\right\}$.

Proof. (1) and (2) are easily verified. In (3), the conclusion holds for f the restriction to Z of a continuous convex function on K [7, p. 217] and these functions are uniformly dense in C. Using (1) and (2) as well, one may routinely verify that the conclusion holds for every $f \in C$. To prove (4), let $z \in E$ and let μ be any maximal probability measure representing z. Then $\mu=\delta_{z}[11$, p. 8]. Thus for $f \in C_{\sigma}, f_{\pi}(z)=\pi_{z}(f)=(\operatorname{odd} \mu)(f)=\mu(\operatorname{odd} f)=\mu(f)=f(z)$.

The statement in (5) follows from (4) and the Effros-Bednar-Lacey characterization of V quoted at the end of $\S 2$.

Lemma 3.2. Assume E is a Borel set. Then

$$
V^{\perp}=\left\{\mu \in C_{\sigma}^{*}: \mu(f)=\int_{z \sim E}\left(f-f_{\pi}\right) d \mu \text { for all } f \in C_{\sigma}\right\}
$$

Proof. The inclusion \supseteq is clear by Lemma 3.1(5). The reverse inclusion follows from Lemma 3.1(4) and the fact that the annihilator of V in C^{*} consists of those $\mu \in C^{*}$ such that $\int_{Z} f_{\pi} d \mu=0$ for all $f \in C$. (See proof of [7, §21, Theorem 8].)

Lemma 3.3. Let X be a Borel subset of Z such that $\sigma X=X$, and suppose $\mu, \nu \in C_{\sigma}^{*}$ are related by $\nu(f)=\int_{X}$ fd μ for all $f \in C_{\sigma}$. Then $\nu(B)=\mu(B \cap X)$ for every Borel subset B of Z.

Proof. If two odd measures agree on C_{a}, then they are identical. The conclusion now follows from [5, Lemma 1.1].

Lemma 3.4. Assume V is separable. Let $\mu, \omega \in C_{o}^{*}$ be related by $\omega(f)=\int_{Z \sim E}\left(f-f_{\pi}\right) d \mu$ for all $f \in C_{\sigma}$. Then $\omega(B)=\mu(B)$ for every Borel $B \cong Z \sim E$.

Proof. Let μ_{1} and μ_{2} be maximal measures which dominate μ^{+} and μ^{-}, respectively, in the Choquet ordering. Let $f \in C_{o}$. Then by Lemma 3.1, parts (4) and (3), we have

$$
\begin{aligned}
\omega(f) & =\int_{Z}\left(f-f_{\pi}\right) d \mu=\int_{Z} f d \mu-\int_{Z} f d \mu_{1}+\int_{Z} f d \mu_{2} \\
& =\int_{Z} f d \mu-\int_{Z} f d\left(\operatorname{odd} \mu_{1}\right)+\int_{Z} f d\left(\operatorname{odd} \mu_{2}\right) .
\end{aligned}
$$

Let Borel $B \subseteq Z \sim E$. Then $\omega(B)=\mu(B)-\operatorname{odd} \mu_{1}(B)+\operatorname{odd} \mu_{2}(B)$ by Lemma 3.3. But odd $\mu_{1}(B)=0=$ odd $\mu_{2}(B)$ because $\sigma B \subseteq Z \sim E$ and μ_{1}, μ_{2} are supported by E. (K is metrizable.) Thus $\omega(B)=\mu(B)$.
4. An existence theorem. In the following theorem, $C_{\sigma}^{*}\{Z$; $(Z \sim E) \cup Y\}$ denotes the space of all odd measures whose total variation on $(Z \sim E) \cup Y$ is zero, and E_{A} is the set of those points p in Z such that evaluation at p is an extreme point of the unit in the dual A^{*} of A.

Theorem 4.1. Let V be a separable Lindenstrauss space, and
let $q \in Z \sim E$. Suppose Y is a closed set in Z satisfying

1. $Y \cap(Z \sim E)=\{q\}$.
2. $Y \cap-Y=\varnothing$.
3. $E \sim(Y \cup-Y) \neq \varnothing$.
4. $\pi_{q}(Y)<1 / 2$.

Then $A=\left\{f \in V: f(y)=\pi_{q}(f)\right.$ for all $\left.y \in Y\right\}$ is a nontrivial Lindenstrauss space, A^{*} is isometric to $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$, and $E_{A} \supseteq E \sim$ ($Y \cup-Y$).

The proof will be preceded by several lemmas following, to some extent, the general pattern of Gleit's proof of [5, Theorem 1.4]. Our main objective is to show that $C_{\sigma}^{*} / A^{\perp}$ is isometric to $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$. In Lemmas 4.2-4.4 below, we preserve the notation and hypotheses of Theorem 4.1. In particular, the separability of V implies that π_{q} is supported by E.

Let $S=\left\{\gamma_{y}: y \in Y\right\} . \quad$ (Recall that $\gamma_{y}=$ odd δ_{y}.)

Lemma 4.2. Let $\mu \in \overline{\mathrm{co}}(S)$. Then μ is an odd measure on $Y \cup-Y$ and $\mu(Y)=1 / 2$.

Proof. Clearly μ is odd. Let $\left\{\mu_{n}\right\} \subseteq \operatorname{co}(S)$ be a sequence which converges weak* to μ. Then supp $\mu_{n} \subseteq Y \cup-Y$ for each n, hence supp $\mu \subseteq Y \cup-Y$ [2, III, §3, Proposition 6]. By Urysohn's lemma, there are $g_{1}, g_{2} \in C$ with $g_{1}=1$ on $Y, g_{1}=0$ on $-Y, g_{2}=0$ on Y, and $g_{2}=-1$ on $-Y$. Let $f=\operatorname{odd}\left(g_{1}+g_{2}\right)$. Then $f \in C_{a}, f=1$ on Y, and $f=-1$ on $-Y$. We have $\mu_{n}(f)=1$ for all n, hence $\mu(f)=1$. Thus $1=\int_{Y \cup-Y} f d \mu=\mu(Y)-\mu(-Y)=2 \mu(Y)$.

The following notation will be used in Lemmas 4.3 and 4.4 and in the proof of Theorem 4.1. We also preserve the definition of S preceding Lemma 4.2. Let $D=\left\{f \in C_{\sigma}: f(y)=\pi_{q}(f)\right.$ for all $\left.y \in Y\right\}$. Let $F=\left\{\mu \in C_{\sigma}^{*}\right.$: there exists an odd measure λ on $Y \cup-Y$ such that $\mu(f)=\int_{Y \cup-Y} f d \lambda-2 \pi_{q}(f) \lambda(Y)$ for each $\left.f \in C_{\sigma}\right\}$. Let $\alpha=1-2 \pi_{q}(Y)$, and let $T=\left\{\gamma_{y}-\pi_{q}: y \in Y\right\}$.

Lemma 4.3. (1) $F=\operatorname{span}(\overline{\operatorname{co}}(T))$.
(2) $D^{\perp}=F$.

Proof. To prove (1), we first show that $\overline{\mathrm{co}}(T) \subseteq F$. Let $\nu \in$ $\overline{\mathrm{co}}(T)$ and let $\lambda=\nu+\pi_{q}$. Then clearly $\lambda \in \overline{\mathrm{co}}(S)$. Hence by Lemma 4.2, λ is an odd measure on $Y \cup-Y$ and $\lambda(Y)=1 / 2$. Therefore $\nu \in F$. Thus span $(\overline{\operatorname{co}}(T)) \subseteq F$ because F is a linear subspace of C_{σ}^{*}. For the reverse inclusion, let $\mu \in F$ and assume $\mu \neq 0$. Then there is a nonzero
odd measure λ on $Y \cup-Y$ such that $\mu(f)=\int_{Y \cup-Y} f d \lambda-2 \pi_{q}(f) \lambda(Y)$ for all $f \in C_{\sigma}$. Since λ is odd, we have $\sigma \lambda^{+}=\lambda^{-}$, hence $\lambda=\operatorname{odd}\left(2 \lambda^{+}\right)$ [4, p. 443]. Also, $\left\|2 \lambda^{+}\right\|=\|\lambda\|$ because $\left\|2 \lambda^{+}\right\|=2 \lambda^{+}(Z)=|\lambda|(Z)+$ $\lambda(Z)=|\lambda|(Z)=\|\lambda\|$. Let λ_{1} and λ_{2} be defined by $\lambda_{1}(B)=2 \lambda^{+}(B \cap Y)$ and $\lambda_{2}(B)=2 \lambda^{+}(B \cap-Y)$ for all Borel $B \subseteq Z$. Then $\lambda_{1}+\lambda_{2}=2 \lambda^{+}$, hence odd $\lambda_{1}+$ odd $\lambda_{2}=\lambda$. Thus λ_{1} and λ_{2} cannot both be zero. We consider first the case where one of λ_{i} is zero. Suppose $\lambda_{1}=0$. Then $\lambda_{2}=2 \lambda^{+}$is a positive measure on $-Y$, and $\left\|\lambda_{2}\right\| /\|\lambda\|=1$. We then have $\lambda_{2} /\|\lambda\| \in \overline{\operatorname{co}}\left(\left\{\delta_{-y}: y \in Y\right\}\right)\left[11\right.$, p. 3], hence odd $\lambda_{2} /\|\lambda\| \in \overline{\operatorname{co}}\left(\left\{\gamma_{-y}: y \in Y\right\}\right)=$ $\overline{\mathrm{co}}(-S)=-\overline{\mathrm{co}}(S)$. Thus $-\lambda /\|\lambda\| \in \overline{\mathrm{co}}(S)$. Then $(-\lambda /\|\lambda\|)-\pi_{q} \in \overline{\mathrm{co}}(T)$, and also $2 \lambda(Y)=-\|\lambda\|$ by Lemma 4.2. Hence $\mu=\lambda-2 \lambda(Y) \pi_{q}=$ $-\|\lambda\|\left((-\lambda /\|\lambda\|)-\pi_{q}\right)$, and so $\mu \in \operatorname{span}(\overline{\operatorname{co}}(T))$. A similar argument will show that if $\lambda_{2}=0$, then $\lambda /\|\lambda\| \in \overline{\operatorname{co}}(S)$, and $\mu=\|\lambda\|\left((\lambda /\|\lambda\|)-\pi_{q}\right)$ is in $\operatorname{span}(\overline{\mathbf{c o}}(T))$. We now consider the case $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$. Then $\lambda_{1} /\left\|\lambda_{1}\right\| \in \overline{\mathbf{c o}}\left(\left\{\delta_{y}: y \in Y\right\}\right)$ and $\lambda_{2} /\left\|\lambda_{2}\right\| \in \overline{\mathbf{c o}}\left(\left\{\delta_{-y}: y \in Y\right\}\right)$. Hence odd $\lambda_{1} /\left\|\lambda_{1}\right\| \in$ $\overline{\mathrm{co}}(S)$ and - odd $\lambda_{2} /\left\|\lambda_{2}\right\| \in \overline{\operatorname{co}}(S)$. Then $\left\|\lambda_{1}\right\|=2$ odd $\lambda_{1}(Y)$ and $\left\|\lambda_{2}\right\|=$ -2 odd $\lambda_{2}(Y)$ by Lemma 4.2. Hence $\left\|\lambda_{1}\right\|-\left\|\lambda_{2}\right\|=2 \lambda(Y)$. Thus $\lambda=\left\|\lambda_{1}\right\|\left(\left(\operatorname{odd} \lambda_{1} /\left\|\lambda_{1}\right\|\right)-\pi_{q}\right)-\left\|\lambda_{2}\right\|\left(\left(-\operatorname{odd} \lambda_{2} /\left\|\lambda_{2}\right\|\right)-\pi_{q}\right)+2 \lambda(Y) \pi_{q}$, and so $\mu=\lambda-2 \lambda(Y) \pi_{q} \in \operatorname{span}(\overline{\text { co }}(T))$. Hence $F=\operatorname{span}(\overline{\mathrm{co}}(T))$. We now prove (2). Clearly $T \subseteq D^{\perp}$, hence $F \subseteq D^{\perp}$ by (1). Thus $D^{\perp}=$ \bar{F}. To show that F is weak* closed, it suffices to show it is norm closed [3, V. 5.9]. We proceed as in Part A of the proof of [5, Theorem 1.4]. Consider a $\mu \in F$. Then there is an odd measure λ on $Y \cup-Y$ such that $\mu(f)=\int_{Y \cup-Y} f d \lambda-2 \pi_{q}(f) \lambda(Y)$ for each $f \in C_{\sigma}$. By Lemma 3.3, for each Borel set $B \subseteq Z, \mu(B)=\lambda(B \cap(Y \cup-Y))-$ $2 \pi_{q}(B) \lambda(Y)$. In particular, $\mu(Y)=\lambda(Y)\left(1-2 \pi_{q}(Y)\right)=\alpha \lambda(Y)$. Thus for each Borel set $B \subseteq Y \cup-Y$, we have $\lambda(B)=\mu(B)+2 \pi_{q}(B) \mu(Y) / \alpha$. Hence μ uniquely determines λ. Further, since $|\lambda|=\left|\mu+(2 \mu(Y) / \alpha) \pi_{q}\right|$ on $Y \cup-Y$, we get $|\lambda|(Y) \leqq|\mu|(Y)+2|\mu|(Y)\left|\pi_{q}\right|(Y) / \alpha \leqq| | \mu \|+$ $2\|\mu\|\left\|\pi_{q}\right\| / \alpha$. Hence $\|\lambda\|=|\lambda|(Y \cup-Y)=2|\lambda|(Y) \leqq\|\mu\|(2+4 / \alpha)$. It can now be easily verified that F is norm closed. Hence $F=D^{\perp}$.

Lemma 4.4. (1) $D^{\perp}+V^{\perp}=\left\{\mu+\nu: \mu \in D^{\perp}, \nu \in V^{\perp}\right.$, and $\mu=0$ on $Z \sim E\}$.
(2) $A^{\perp}=D^{\perp}+V^{\perp}$.

Proof. To prove (1), let $\mu \in D^{\perp}$. We will show $\mu=\mu_{1}+\mu_{2}$, where $\mu_{1} \in D^{\perp}, \mu_{2} \in V^{\perp}$, and $\mu_{1}(B)=0$ for every Borel $B \subseteq Z \sim E$. By Lemma 4.3(2), we have $\mu(f)=\lambda(f)-2 \pi_{q}(f) \lambda(Y)$ for all $f \in C_{a}$, where λ is an odd measure on $Y \cup-Y$. Let $\lambda_{1}=\lambda-2 \lambda(\{q\}) \gamma_{q}$ and let $\mu_{1}=\lambda_{1}-2 \lambda_{1}(Y) \pi_{q}$. Then λ_{1} is an odd measure on $Y \cup-Y$ and $\lambda_{1}(\{q\})=0$. Thus $\mu_{1} \in D^{\perp}$ by Lemma 4.3(2), and $\mu_{1}(f)=\mu(f)-$
$2 \lambda(\{q\})\left(\gamma_{q}(f)-\pi_{q}(f)\right)$ for all $f \in C_{q}$. Letting $\mu_{2}=2 \lambda(\{q\})\left(\gamma_{q}-\pi_{q}\right)$, we have $\mu_{2} \in V^{\perp}$ by Lemma 3.1(5). Let Borel $B \subseteq Z \sim E$. Then $\lambda_{1}(B)=$ $0=\pi_{q}(B)$, hence $\mu_{1}(B)=0$. This establishes (1). To prove (2), note that $A=D \cap V$, hence A^{\perp} is the weak* closure of $D^{\perp}+V^{\perp}$. To show $D^{\perp}+V^{\perp}$ is weak* closed, we may use sequences (by the KreinSmulian theorem) because C is separable and $D^{\perp}+V^{\perp}$ is convex [3, V. 7.16]. Let $\left\{\omega_{n}\right\} \subseteq D^{\perp}+V^{\perp}$ converge weak* to ω. Then the sequence $\left\{\left\|\omega_{n}\right\|\right\}$ is bounded [3, V. 4.3]. Further, by (1) we have for each $n, \omega_{n}=\mu_{n}+\nu_{n}$, where $\mu_{n} \in D^{\perp}, \nu_{n} \in V^{\perp}$, and $\omega_{n}=\nu_{n}$ on $Z \sim E$. Let $f \in C_{\sigma}$ with $\|f\| \leqq 1$. Then by Lemma 3.2, $\omega_{n}(f)=$ $\mu_{n}(f)+\int_{z \sim E}\left(f-f_{\pi}\right) d \omega_{n} . \quad$ Hence

$$
\begin{aligned}
\mid \mu_{n}(f) & =\left|\int_{Z} f d \omega_{n}-\int_{Z \sim E}\left(f-f_{\pi}\right) d \omega_{n}\right| \\
& =\left|\int_{E} f d \omega_{n}+\int_{Z \sim E} f_{\pi} d \omega_{n}\right| \\
& \leqq\left|\omega_{n}\right|(E)+\left|\omega_{n}\right|(Z \sim E)=\left|\omega_{n}\right|(Z)=\left\|\omega_{n}\right\|
\end{aligned}
$$

Thus $\left\|\mu_{n}\right\| \leqq\left\|\omega_{n}\right\|$, hence the sequence $\left\{\left\|\mu_{n}\right\|\right\}$ is bounded. Then the weak* closure of $\left\{\mu_{n}\right\}$ is compact and metrizable, hence some subsequence of $\left\{\mu_{n}\right\}$ converges weak* to an element of D^{\perp}. Assume, for simplicity of notation, that $\left\{\mu_{n}\right\}$ cnnverges weak* to $\mu \in D^{\perp}$. The sequence $\left\{\left\|\nu_{n}\right\|\right\}$ is bounded because $\left\|\nu_{n}\right\| \leqq\left\|\omega_{n}\right\|+\left\|\mu_{n}\right\|$ for each n. Hence some subsequence of $\left\{\nu_{n}\right\}$ converges weak* to an element $\nu \in V^{\perp}$. Then $\omega=\mu+\nu \in D^{\perp}+V^{\perp}$.

Proof of Theorem 4.1. We first show that A^{*} is isometric to $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$. Since A^{*} is isometric to $C_{\sigma}^{*} / A^{\perp}$, it will suffice to construct an isometry of $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$ onto $C_{\sigma}^{*} / A^{\perp}=$ $C_{\sigma}^{*} /\left(D^{\perp}+V^{\perp}\right)\left(\right.$ Lemma 4.4(2)). Let $\theta: C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\} \rightarrow C_{\sigma}^{*} / A^{\perp}$ be defined by $\theta(\mu)=\mu+A^{\perp}$ for each $\mu \in C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$. Clearly θ is linear, and we claim that θ is a bijection. For, suppose $\theta(\mu)=0$. Then

$$
\mu \in\left(D^{\perp}+V^{\perp}\right) \cap C_{*}^{\sigma}\{Z ;(Z \sim E) \cup Y\}
$$

By Lemmas 4.4(1) and 3.2, there is $\mu_{1} \in D^{\perp}$ such that $\mu(f)=\mu_{1}(f)+$ $\int_{Z \sim E}\left(f-f_{\pi}\right) d \mu$ for all $f \in C_{\sigma}$. But $|\mu|(Z \sim E)=0$, hence $\mu=\mu_{1}$. Then by Lemma $4.3(2), \mu=\lambda-2 \lambda(Y) \pi_{q}$, where λ is an odd measure on $Y \cup-Y$. Then $\mu(Y)=\alpha \lambda(Y)$. Hence $\lambda(Y)=0$ since $\mu(Y)=0$. Therefore $\mu=\lambda$. But $|\mu|(Y \cup-Y)=0$, hence $\lambda=0$, and so $\mu=0$. Hence θ is one-to-one. To show that θ is onto, let $\nu \in C_{\sigma}^{*}$ and let $\nu_{\pi} \in C_{\sigma}^{*}$ be defined by $\nu_{\pi}(f)=\int_{z \sim E} f_{\pi} d \nu$ for all $f \in C_{\sigma} \quad$ Define a measure
λ_{ν} on $Y \cup-Y$ by

$$
\lambda_{\nu}(\{q\})=\lambda_{\nu}(\{-q\})=0, \quad \text { and } \quad \lambda_{\nu}(B)=\nu_{\pi}(B)+\nu(B)+2 \pi_{q}(B) \lambda_{\nu}(Y)
$$

for each Borel subset B of $(Y \cup-Y) \sim\{q,-q\}$, where $\lambda_{\nu}(Y)=$ $\lambda_{\nu}(Y \sim\{q\})$ is found by consistency. Let $\omega_{\nu} \in C_{\sigma}^{*}$ be defined by

$$
\omega_{\nu}(f)=\int_{Z \sim E}\left(f-f_{\pi}\right) d \nu+\int_{Y \cup-Y} f d \lambda_{\nu}-2 \pi_{q}(f) \lambda_{\nu}(Y)
$$

for each $f \in C_{\sigma}$. Then $\omega_{\nu} \in V^{\perp}+D^{\perp}$ by Lemmas 3.1(5) and 4.3. Thus $\nu-\omega_{\nu} \in \nu+A^{\perp}$. To show $\nu-\omega_{\nu} \in C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$, let B be any Borel subset of $(Z \sim E) \cup Y$ and let $B_{1}=B \cap(Y \sim\{q\})$. Then $\omega_{\nu}(B)=$ $\omega_{\nu}(B \cap(Z \sim E))+\omega_{\nu}\left(B_{1}\right)=\nu(B \cap(Z \sim E))+\omega_{\nu}\left(B_{1}\right)$ by Lemmas 3.3 and 3.4. And $\omega_{\nu}\left(B_{1}\right)=-\nu_{\pi}\left(B_{1}\right)+\lambda_{\nu}\left(B_{1}\right)-2 \pi_{q}\left(B_{1}\right) \lambda_{\nu}(Y)=\nu\left(B_{1}\right)$ by Lemma 3.3 and the definition of λ_{ν}. Hence $\omega_{\nu}(B)=\nu(B \cap(Z \sim E))+$ $\nu\left(B_{1}\right)=\nu(B)$. Thus $\nu-\omega_{\nu} \in C_{o}^{*}\{Z ;(Z \sim E) \cup Y\}$. Since $\theta\left(\nu-\omega_{\nu}\right)=$ $\nu+A^{\perp}$, we have that θ is onto.

To prove that θ is an isometry, let $\mu \in C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$. Then $\|\theta(\mu)\|=\left\|\mu+A^{\perp}\right\|=\inf \left\{\|\nu\|: \nu \in \mu+A^{\perp}\right\}$. Thus $\|\theta(\mu)\| \leqq\|\mu\|$. For the reverse inequality, we show $\|\nu\| \geqq\|\mu\|$ for all $\nu \in \mu+A^{\perp}$. Let $\nu \in \mu+A^{\perp}$. Then $\theta\left(\nu-\omega_{\nu}\right)=\nu+A^{\perp}=\mu+A^{\perp}$, hence $\nu-\omega_{\nu}=\mu$. Let $X=Y \cup-Y$. Then $\|\mu\|=\left\|\nu-\omega_{\nu}\right\|=\left|\nu-\omega_{\nu}\right|(E \sim X) \leqq|\nu|(E \sim X)+$ $\left|\omega_{\nu}\right|(E \sim X)$. If B is any Borel subset of $E \sim X$, then by Lemma 3.3, $\omega_{\nu}(B)=\nu(B \cap(Z \sim E))-\nu_{\pi}(B)+\lambda_{\nu}(B \cap X)-2 \pi_{q}(B) \lambda_{\nu}(Y)=$ $-\nu_{\pi}(B)-2 \pi_{q}(B) \lambda_{\nu}(Y)$. Hence $\omega_{\nu}=-\nu_{\pi}-2 \lambda_{\nu}(Y) \pi_{q}$ on $E \sim X$, consequently, $\left|\omega_{\nu}\right|=\left|\nu_{\pi}+2 \lambda_{\nu}(Y) \pi_{q}\right|$ on $E \sim X$. From the definition of λ_{ν} we have

$$
\lambda_{\nu}(Y)=\lambda_{\nu}(Y \sim\{q\})=\left(\nu_{\pi}(Y \sim\{q\})+\nu(Y \sim\{q\})\right) / \alpha
$$

Thus

$$
\begin{aligned}
\left|\omega_{\nu}\right|(E \sim X) \leqq & \left|\nu_{\pi}\right|(E \sim X)+2 \mid \nu_{\pi}(Y \sim\{q\}) \\
& +\nu(Y \sim\{q\})| | \pi_{q} \mid(E \sim X) / \alpha
\end{aligned}
$$

And $\left|\pi_{q}\right|(E \sim X) \leqq \alpha$ because

$$
\begin{aligned}
& \left|\pi_{q}\right|(E \sim X)+2 \pi_{q}(Y) \leqq\left|\pi_{q}\right|(E \sim X)+2\left|\pi_{q}\right|(Y) \\
& \quad=\left|\pi_{q}\right|(E \sim X)+\left|\pi_{q}\right|(X)=\left|\pi_{q}\right|(E)=\| \pi_{q}| | \leqq 1
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left|\omega_{\nu}\right|(E \sim X) & \leqq\left|\nu_{\pi}\right|(E \sim X)+2\left|\nu_{\pi}\right|(Y \sim\{q\})+2|\nu|(Y \sim\{q\}) \\
& =\left|\nu_{\pi}\right|(E \sim X)+\left|\nu_{\pi}\right|(X \sim\{q,-q\})+|\nu|(X \sim\{q,-q\}) \\
& =\left|\nu_{\pi}\right|(E)+|\nu|(X \sim\{q,-q\}) \leqq\left|\left|\nu_{\pi}\right|\right|+|\nu|(X \sim\{q,-q\}) .
\end{aligned}
$$

Also $\left|\left|\nu_{\pi} \| \leqq|\nu|(Z \sim E)\right.\right.$ because for $\left.\|f\| \leqq 1,\left|\nu_{\pi}(f)\right|=\int_{Z \sim E} f_{\pi} d \nu\right| \leqq$ $|\nu|(Z \sim E)$. Therefore $\left|\omega_{\nu}\right|(E \sim X) \leqq|\nu|(Z \sim E)+|\nu|(X \sim\{q,-q\})$, and so $\|\mu\| \leqq|\nu|(E \sim X)+|\nu|(Z \sim E)+|\nu|(X \sim\{q,-q\})=|\nu|(Z)=$ $\|\nu\|$, thus completing the proof that θ is an isometry.

Continuing to denote $Y \cup-Y$ by X, let $C^{*}\{Z ;(Z \sim E) \cup X\}$ be the space of all measures whose total variation on $(Z \sim E) \cup X$ is zero. Gleit has shown that this is an L-space [6, Proposition 1.1]. The space $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$ is the range of the contractive projection P on $C^{*}\{Z ;(Z \sim E) \cup X\}$ defined by $P(\mu)=$ odd μ. Thus $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$ is isometric to an L_{1}-space [7, §17], hence A is a Lindenstrauss space.

For each $p \in Z \sim\{0\}$, the evaluation functional (measure) γ_{p} is an extreme point of the unit ball in $C_{\sigma}^{*}[7, \S 10$, Lemma 3]. Let $p \in E \sim X$. Then $\gamma_{p} \in C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$, hence γ_{p} is an extreme point of the unit ball in $C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\}$. Further, γ_{p} is mapped onto $\gamma_{p}|A=p| A$ by the composition of isometries

$$
\theta: C_{\sigma}^{*}\{Z ;(Z \sim E) \cup Y\} \longrightarrow C_{\sigma}^{*} / A^{\perp} \quad \text { and } \quad C_{\sigma}^{*} / A^{\perp} \longrightarrow A^{*}
$$

Thus $p \in E_{A}$. Hence $E_{A} \supseteq E \sim X$.
Finally, A is nontrivial because $E \sim X \neq \varnothing$; and this concludes the proof of Theorem 4.1.
5. The characterization. In this section, ω_{z} denotes the measure defined by $\omega_{z}=2 \pi_{z}^{+}$for each $z \in Z$. Properties of ω_{z} were studied and used effectively in [4]. In the proof of Lemma 5.1 below, I_{β}^{0} and I^{0} denote the annihilators of I_{β} and I, respectively, in V^{*}. This lemma is the analog for Lindenstrauss spaces of [5, Lemma 2.2].

Lemma 5.1. Let V be a Lindenstrauss space. Let $q \in Z \sim E$, $q \neq 0$. Suppose there exist $p \in \operatorname{supp} \omega_{q} \cap E$ and a net $\left\{q_{\beta}\right\} \subseteq E \sim$ $\{p,-p\}$ which converges weak* to q. Suppose, further, there is an element $f \in V$ such that $p(f) \neq 0$ and $q_{\beta}(f)=0$ for all β. Then there exists a family of M-ideals I_{β} such that $\cap I_{\beta}$ is not an M-ideal. If the net is a sequence, then the family of M-ideals is countable.

Proof. Let $I_{\beta}=\left\{g \in V: q_{\beta}(g)=0\right\}$. Then $I_{\beta}^{0}=\operatorname{span}\left(q_{\beta}\right)$, hence I_{β} is an M-ideal [9, Theorem 5.8]. Let $I=\cap I_{\beta}$, and suppose I were an M-ideal. Then I^{0} would be a weak* closed L-summand in V^{*} containing q. Let L_{q} be the intersection of all weak* closed L summands containing q, and let $H_{q}=L_{q} \cap K$. Then L_{q} is a weak* closed L-summand [1, Proposition 1.13] and H_{q} is the smallest weak* closed biface containing q [1, pp. 168, 169]. We have supp $\omega_{q} \subseteq H_{q}$ [4, Lemma 5.6], hence $p \in L_{q}$. Then, since $L_{q} \cong I^{0}$ and $f \in I$, it follows
that $p(f)=0$. But this contradicts the hypothesis $p(f) \neq 0$, so we conclude that I is not an M-ideal.

Theorem 5.2. Let V be a Lindenstrauss space, and consider. the statements:
(1) V is a G-space.
(2) The intersection of any family of M-ideals is an M-ideal.
(3) The intersection of any countable family of M-ideals is an M-ideal.
One has that $(1) \Rightarrow(2) \Rightarrow(3)$. If V is separable, then $(3) \Rightarrow(1)$.
Proof. (1) \Rightarrow (2) was proved by Uttersrud [12, Theorem 10]. $(2) \Rightarrow(3)$ is obvious.
Not (1) \Rightarrow not (3) (V separable). Suppose V is not a G-space. Then there exists $q \in Z \sim[0,1] E$ [4, Theorem 6.3]. Since $q \neq 0$, $\omega_{q} /\left\|\omega_{q}\right\|$ is a maximal probability measure [4, p. 444], hence is supported by E. Thus $\operatorname{supp} \omega_{q} \cap E \neq \varnothing$. Then since $q \notin[0,1] E$ and $\omega_{q}(f)=f(q)$ for all $f \in V$, there must be two linearly independent points, say p_{1} and p_{2}, in $\operatorname{supp} \omega_{q} \cap E$. Since $q \in Z \sim E$, there is a sequence $\left\{q_{n}\right\} \cong E \sim\left\{ \pm p_{1}, \pm p_{2}\right\}$ which converges weak* to q. Let $Y=\left[q_{n}: n=1,2, \cdots\right\} \cup\{q\}$. We may assume $Y \cap-Y=\varnothing$. We also have $\pi_{q}(Y)<1 / 2$. To see this, let μ be any maximal probability measure representing q. Then $\omega_{q} \leqq \mu$ [4, p. 443], hence supp $\omega_{q} \leqq$ supp μ. Since Y is closed and $p_{1}, p_{2} \notin Y$, it follows that $\mu(Y)<1$. Then, since $\pi_{q}=$ odd μ, we have $\pi_{q}(Y)<1 / 2$. Let $A=\{f \in V: f(y)=$ $\pi_{q}(f)$ for all $\left.y \in Y\right\}$. Then by Theorem 4.1, A is a nontrivial subspace of V and $p_{1}, p_{2} \in E_{A}$. We note that $p_{1}\left|A \neq \pm p_{2}\right| A$ because $\gamma_{p_{1}} \neq \pm \gamma_{p_{2}}$. (See the end of the proof of Theorem 4.1.) Hence there are $f_{1}, f_{2} \in A$ with $f_{1}\left(p_{1}\right)=1=f_{2}\left(p_{2}\right)$ and $f_{1}\left(p_{2}\right)=0=f_{2}\left(p_{1}\right)$. We consider the two cases $f_{2}(q)=0, f_{2}(q) \neq 0$. Suppose $f_{2}(q)=0$. Let $f=f_{2}$. Then $f \in V$ because $f \in A$, and $f\left(q_{n}\right)=0$ for all n because $f(q)=0$ and $f \in A$. Taking $p_{2}=p$ in Lemma 5.1, we see that Lemma 5.1 implies that (3) is not true. Now suppose $f_{2}(q) \neq 0$. Let $f=f_{1}-\left(f_{1}(q) / f_{2}(q)\right) f_{2}$. Then $f \in V$ and $f(q)=0$. Hence $f\left(q_{n}\right)=0$ for all n because $f \in A$. Also, $f\left(p_{1}\right)=f_{1}\left(p_{1}\right) \neq 0$. Thus with $p=p_{1}$, Lemma 5.1 implies that (3) is not true.

Remark. In [10, p. 78], there is an example of a Lindenstrauss space which is not a G-space and which illustrates well the above proof.

Corollary 5.3 [5, Theorem 2.3]. A separable simplex space is an M-space if and only if the intersection of any family of M ideals is an M-ideals.

Proof. This follows from Theorem 5.2 above and the diagram of classes of Lindenstrauss spaces in [8, p. 181].

Acknowledgment. The author wishes to thank the referee for his perceptive comments and helpful suggestions.

References

1. E. Alfsen and E. Effros, Structure in real Banach spaces, Part II, Ann. of Math., 96 (1972), 129-173.
2. N. Bourbaki, Livre VI: Intégration, Actualités Sci. Indust., No. 1175, Hermann, Paris, 1952.
3. N. Dunford and J. T. Schwartz, Linear Operators. I: General Theory, Pure and Appl. Math., Vol. 7, Interscience, New York, 1958.
4. E. Effros, On a class of real Banach spaces, Israel J. Math., 9 (1971), 430-458.
5. A. Gleit, A characterization of M-spaces in the class of separable simplex spaces, Trans. Amer. Math. Soc., 169 (1972), 25-33.
6. _, On the existence of simplex spaces, Israel J. Math., 9 (1971), 199-209.
7. H.E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer.Verlag, New York, 1974.
8. A. Lazar and J. Lindenstrauss, Banach spaces whose duals are L_{1} spaces and their representing matrices, Acta Math., 126 (1971), 165-193.
9. A. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc., 227 (1977), 1-62.
10. J. Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. No. 48, (1964).
11. R. Phelps, Lectures on Choquet's Theorem, Van Nostrand, Princeton, N. J. 1966.
12. U. Uttersrud, On M-ideals and the Alfsen-Effros structure topology, Math. Scand., 43 (1978), 369-381.

Received July 31, 1979.
Rosemont College
Rosemont, PA 19010

