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ON THE SIGN OF GREEN'S FUNCTIONS FOR
MULTIPOINT BOUNDARY VALUE

PROBLEMS

JERRY RIDENHOUR

If an nth order linear ordinary differential equation Ly — 0
is disconjugate, then the sign of the Green's functions is well
known. In this work, it is only supposed that Ly = 0 is
(ί"i> •••> ifc)-disconjugate for certain values of ilf •••,4, and the
sign of the Green's functions for certain multipoint problems
is shown to be the same as when Ly = 0 is disconjugate. The
results extend earlier ones on two-point problems due to Peter-
son. The proofs simplify Peterson's arguments in a way such
that the analysis of two-point problems is not only easier but
carriers over to multipoint problems.

1* Introduct ion and preliminaries* We concern ourselves

with a fixed compact interval [a, b] and real-valued solutions of the
nth. order linear differential equation Ly = 0 where

Ly == yw + Vn-i(Wn-ι) + . . . + vlt)y

and Pi e C[a, 6], i = 0, . . . , n — 1.
For the basic facts about disconjugacy and Green's functions,

the reader is referred to Chapter 3 of CoppeΓs monograph [3]. As
usual, Ly = 0 is said to be conjugate on an interval /provided there
exists a nontrivial solution of Ly = 0 with at least n zeros counting
multiplicities on /; in the contrary case, Ly = 0 is said to be dis-
conjugate on /. If Ly = 0 is conjugate on the interval [a, β], then
the first conjugate point of a, denoted by η^a), is the infimum of
the numbers t e (α, β] such that Ly = 0 is conjugate on [a, t]. If
al9 , ak are distinct points in [α, 6] and iu , ik are nonnegative
integers, then a function / defined on [a, b] is said to have (ilf . -., ik)-
zeros at (alf . , ak) if / has i3- derivatives at aά and fa\aό) = 0 for
1 ^ i ^ &, 0 ^ i ^ is — 1. If ij. + + ik ^ w, then Ly = 0 is said
to be (ίi, . , ίk)-disconjugate on an interval / provided that no
nontrivial solution of Ly = 0 has (ίx, ., ίfc)-zeros at (alf , αfc) for
any choice of au , αfc in I with αx < < αfc.

Consider the boundary-value problem (BVP for short)

V) f1'^ = ^ y h a s ^ ' " *' ^ ) - z e r o s a t (αi» •> ak) >

1 ix + + ik = w, α = αx < .. < ak = & ,

and the polynomial
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P(ί) = (t - αj ' 1 .-•(«- α4)** .

We will refer to (1.1) as the BVP assigning (iu , ik)-zeros at
(flu ' * •> αfc) If no nontrivial solution of Ẑ / = 0 has (ix, , ifc)-zeros
at (αlf ••-, αfc), then (1.1) is uniquely solvable for all feC[a, b] and
the solution is given by

t e [α, b]

where G(t, s) is the Green's function. G(t, s) e C([α, 6] x [α, 6]) is
uniquely determined by the requirement that, for each fixed s e (α, 6),
g(t) = G(t, s) must satisfy the three conditions: (i) Lg = 0 on a ^
£ < s and s < ί ^ 6, (ii) # has (iίf . , i^-zeros at (αlf , αfc), and
(iii) #(ί)(s + 0) — g{i)(s — 0) = 0 or 1 according as 0 ̂  i ^n — 2 or
i = n — 1. For convenience, we make the following

DEFINITION. The polynomial P{t) is said to determine the sign
of G(t, s) if P(t)G(tf s)^0 for all (ί, s) 6 [α, 6] x (α, 6) with equality
only when t e {alf , α j .

In a very important result, Levin (see the reference on p. 46
of [7] to Levin's 1961 doctoral dissertation) and Cickin [2] showed
independently that P(ί) determines the sign of G(t, s) when Ly = 0
is disconjugate.

The disconjugacy of Ly — 0 obviously implies (ilf , ΐfc)-discon-
jugacy whenever ix H V ik^n\ however, it is possible for Ly = 0
to be (il9 , ifc)-disconjugate for certain values of iίf , ifc without
being disconjugate. Our results will provide new information only
when our assumptions are weaker than the assumption that Ly = 0
is disconjugate, and the reader is referred to the remarks at the
bottom of p. 177 of [9] pointing out some instances when this is
not the case. Numerous articles (cf. [10], [11], and [12] and the
references therein) have been written establishing relations between
different kinds of disconjugacy assumptions.

Sections 2 and 3 deal with two-point and multipoint problems,
respectively. In §4, an example is given which shows how completely
the sign of G(t, s) can fail to be determined by P(t) in the absence
of any kind of disconjugacy assumption.

We now dispense with some preliminaries. We define the adjoint
operator L* in the same way as Hinton [6] and Peterson [9]. That is,
define the quasi-derivatives D* and the function classes Aif i — 0, , n
recursively by (i) Ao = C[a, b] and Doz = z for all z e AQ, and (ii) for
1 ^ k ^ n, Ak = {zeAjc^: D^zeC^a, &]} and Dkz = (D^fi)' +
(—l)kpn-k(t)z for all zeAk. Then L* is defined by L*z = Dnz.
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Throughout the paper, we let uk(t, s), 0 ^ k ^ n — 1, denote
the principal solutions of Ly = 0 at s; that is, wfc(ί) = uk(t, s) is the
solution of Ly = 0 satisfying at s the initial conditions uk

l)(s) = δki

(Kronecker's delta), 0 <L I ^ n — 1. Also, let zk(t, s), 0 ^ & 5̂  w — 1,
denote the principal solutions of L*z — 0 at s. An important rela-
tionship between the principal solutions of Ly = 0 and L*2 = 0 is
(see p. 168 of [9])

(1.2) <>(*, t) = (-l)*+ffIU-A.-p-i(*, s) ,

pf q = 0, . , n — 1 and s, te [a, 6], In (1.2) as elsewhere in the paper,
for a function of two variables, say f(t9 x), we denote the ith partial
with respect to the first variable by f{i)(t, x) with a similar inter-
pretation for quasi-derivatives.

Let Wmt), , /*(*)] ^ det(/y

(<-1}(ί)), i, i = 1, . , fc denote the
"Wronskian" determinant of sufficiently smooth functions flf •••,/*.
By Cramer's rule, there is a nontrivial solution of Ly = 0 having
(p, n — p)-zeros at {a, β) if and only if

(1-3) W[up(β, a), . . . , ^ ^ ( A α)] = 0

wher we intrepret notations such as the left-hand side of (1.3) to
be the Wronskian of up(t) = up(t, a), - - , wΛ_x(ί) == un_λ{ty a) evaluated
at t = /3.

When discussing zeros and disconjugacy relative to the adjoint
equation L*z = 0, quasi-derivatives play the same role as ordinary
derivatives do for Ly = 0. We will use the fact that Ly = 0 is
(w — p, ί>)-disconjugate if and only if L*# = 0 is (p, ^-p)-disconjugate
(see [6] or [9] for a proof).

2* Two-point problems* The theorem to follow involves the
hypotheses:

(H) Ly = 0 is (p, q)-disconjugate on [a, b] and p + q = n.
(Hi) Ly = 0 is (j>, 1, ff — l)-disconjugate and L*z = 0 is (q, 1,

j9 — ϊ)-disconjugate on [α, δ],
(H2) Ly = 0 is (p — 1, 1, q)-dίsconjugate and L*z = 0 is (g — 1,

1, p)-disconjugate on [a, δ].

THEOREM 2.1. / /

( i ) (H), (HJ
or

(ii) (H), (H2)
holds and G(t, s) is the Green's function for the BVP assigning (p-q)-
zeros at (α, δ), then P(t) determines the sign of G(t, s).
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Proof. Suppose (i) holds. It follows from (H) that

(2.1) W [ u p ( t , a ) , . ., u ^ i f i , a ) ] Φ 0 , a < t ^ b .

We consider the function g(t, s) given by

(2.2) g(t, s) = ap(s)up(t, a) + . . . + α ^ ^ v ^ , a) > α g £, s ^ 6 ,

where ccp(s), , α w_i(s) are chosen so that

gw{b, s) + uSUφ, *) = 0 (O^ί^q-1)

holds. Such a choice is possible since (2.1) is valid. Then G(t, s) is
given by

(2.3) CKt, s) s ί ' ( ί ' S) ' α = * < * = &

W ( « , β ) + w — i ( ί , β ) , a ^ s ^ t ^ b

since G(ί, s) defined by (2.3) has the properties required of the Green's
function.

Now consider the gth order differential operator M defined for
y{t) e Cq(a, b] by

(2.4) My = W[up(t, α), . . . , un^{t, α), y]/W[up(t, α), . . . , ̂ _ x(ί, α)] .

The equation Λίi/ = 0 is normal (i.e., has continuous coefficients with

the coefficient of the gth order term nonvanishing) on the interval

(α, b].
Fix a point (ί0, β0) e (α, 6) x (α, 6). Now g < n — 1 since (i) holds

so G(t, s0) as a function of ί is in Cg(a, b] and

° » α < ί < s0U
Since G(t, s0) e C*(σ, δ) has a gth order zero at t = 6, then

ί, So) = (*£•(«, τ)M[G(τ, so)]dτ , a < t ^ b ,
J b

where K(t, τ) is the Cauchy function for the equation My = /.
Considering separately the cases a < t < s0 and s0 ^ * ̂  δ and using
the above expression for M[G(t, s0)], one obtains the representation

ί rb

- I Kit, τ)M[un^{τ9 so)]dτ , a < t < s0 ,

\ n_lτ, sQ)]dτ , s0 ^ ί ^ 6 .

For fixed τ, ίΓ(ί, τ) as a function of t is a solution of My = 0 with
g — 1 zeros at ί = τ. Since up(t, a), , u%_2(ί, α) form a solution basis
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for My = 0, K(t, τ) may be extended continuously to t = a and has
p zeros at t = α. Hence, by the (p, 1, g — l)-disconjugacy of Ly = 0,

(2.6) K(t, τ)Φθ , a <t <τ <^b .

We now proceed to show that

(2.7) ΛΓ[w-i(r, s)]Φ0 , a<s<τ^b .

Let

Z(s, τ) = Λf[wB_1(r, s)]ΐF|>p(τ, α), , wΛ_i(r, α)] , a < s < τ ^ δ .

By (1.2), ϋΓ(s, τ) equals the determinant

( - l)*+Φ._1__psΛ_2(α, T) ( - l)X_2(α, r) ( - l)X_2(s, τ)

Note that Z(s, τ) is a nontrivial linear combination of z^s, τ), ,
s»_i(8, τ) since the (g, p)-disconjugacy of L*2 = 0 implies that the
coefficient of zp^(s9 τ) is nonzero. Fix τ e (α, δ) and let z(s) = Z(s, τ),
a < s < τ. Then 2(s), extended continuously to the interval [α, τ], is
a nontrivial solution of L*z = 0 with q zeros at s = a and p — 1
zeros at s = τ. Hence, by the (#, 1, p — l)-disconjugacy of L*^ = 0,
it follows that (2.7) is valid.

We see from (2.5), (2.6), and (2.7) that G(ί, s) Φ 0 for (ί, β) e
(α, δ) x (α, δ). To determine the sign of G(t, s), we note that, for
δx with α < δx ^ δ, the Green's function for the BVP assigning (p, q)-
zeros at (α, δx) exists, call it G(t, s, δx). If (t, s) e (α, δx) x (α, δx), then
(2.5) implies that dG{t, s, b^jdbx is nonzero and has the same sign as
G(fif s, δx); hence, \G(t, s, bλ)\ increases as bλ increases. Now pick
points δ0 and t0 such that a < t0 < δ0 < δ and Ly = 0 is disconjugate
on [α, δ0]. Then P(to)G(to, t0, δ0) > 0 since Ly = 0 is disconjugate on
[α, δ0]; moreover, |G(ί0, ΐ0, δx)| increases as δx increases from δ0 to δ
so P(tQ)G(t09 ί0, δ) > 0. Therefore, P(t)G(t, s, δ) > 0 for all (ί, s) e
(α, δ) x (α, δ) as desired.

The proof is very similar if (ii) holds. In this case, one lets

g(t, s) = βq(s)uq(t, &) + - . - + iS—i(«)w»_i(ί, δ) and

\g(t, s) , α ^ s ^ ί ^ δ ,

and solves for βq(s), , ^ - i ^ ) . We leave the details to the reader.

REMARK. The proof of Theorem 2.1 actually yields that |G(ί, s)\
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increases as the right endpoint increases when (i) holds; that is, if
(i) holds and a < bx < 62 ^ b and (t, s) e (α, 6J x (a, δx), then | G(t, s, bλ) | <
\G(t, s, b2)\. Similarly, \G(t, s)\ can be seen to decrease as the left
endpoint increases when (ii) holds. Such monotonicity has been
studied by Bates and Gustafson [1] when Ly = 0 is disconjugate.

Theorem 2.1 is essentially Theorem 6 of Peterson [9]. Both
draw the same conclusion, but Theorem 2.1 has fewer hypotheses
since Peterson assumes (H), (Hx) and (H2) all hold. The key ideas of
considering the Cauchy function for the operator M defined by (2.4)
and utilizing (1.2) in the proof are due to Peterson; however, Peterson's
proof is considerably more complicated and depends more heavily on
the adjoint equation. The greater simplicity is achieved because
(2.5) is a simplification of the representation which Peterson obtains;
furthermore, it is just this simplification which makes it possible to
extend the results to multipoint problems as in the next section.

3* Multipoint problems* As well as (H), we will be interested
in the following hypotheses:

(H3) Ly = 0 is (p, 1, •••, 1)-discon jugate or [a, b] (meaning
(P, 3 if , jn-p)-discon jugate where j\= ... = j n _ p = 1).

(H4) Ly = 0 is (1, , 1, q)-disconjugate on [α, b] (that is, (ju - ,
jn-q, q)-disconjugate where j \ = . . . = j n _ q = 1).

We now state a result due to Peterson [11] which will be instru-
mental.

LEMMA 3.1. Ly = 0 is (ίlf .., ik)-disconjugate on [a, b] provided
that iλ + + ik ^ n and either

( i ) (H), (H8) and i, ^ p,
or

(ii) (H), (H4) and ik^q,
holds.

Under the hypotheses of Lemma 3.1, Green's functions for
numerous multipoint problems exist, and we determine the sign in
what follows. Lemma 3.2 below is also due to Peterson. For the
proof, see Theorem 1 of [11] and Remarks 8, 9, and 10 of [9].

LEMMA 3.2. Ly = 0 is (iu , ik)-disconjugate on [a, b] if iγ +
. . . + ik ^ n and either

( i ) ix ^ p and Ly = 0 is (i, n — i)-disconjugate on [α, 6], i =
P, ••-, n- 1,
or

(ii) ik^q and Ly = 0 is (n — i, i)-disconjugate on [a, 6], i =
q, •••, n- 1,
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holds. The same statement is true for the adjoint equation L*z = 0.

We now prove a lemma which supplements the sign information
contained in the Levin-Cickin theorem.

LEMMA 3.3. Suppose Ly = 0 is disconjugate on [a, b\, a < a —
aλ < < ak = β < δ, and G(t, s) is the Green's function defined on
the square [a, δ] x [a, b] for the BVP assigning (ilf , ik)-zeros at
(<hf ' "> ak)- Then P{t)Git, s) ̂  0 on the rectangle {(t, s): a ^t <^b,
oί < s < β} with equality only when t e {au , ak), P(t)G(t, s) > 0 on
each of the triangles {(t, s): a ^ t < s <Ξ a} and {(t, s): β ^ s < t ^b},
and Git, s) = 0 on each of the quadrilaterals {(t, s): a ^ t ^ 6, a ^ s ^
a, s ^ t) and {(ί, s): a ^ t ^ 6, β ^ s ^ b, t ^ s}.

Proof. The argument on pp. 107-108 of [3] given for the square
[α, /5] x (α, /5) can be seen to be valid for (t, s) in the rectangle
[α, 6] x (α, /3) so the rectangle conclusion follows. Suppose s is fixed
with a <; s 5j α. As a function of £, G(ί, s) satisfies Ly = 0 and has
% zeros on [s, δ] from which it follows that G{t, s) = 0 for £ 6 [s, δ]
and G(t, s) = -u^t, s) for £ e [α, s]. Similarly, for ̂  ^ s ̂  δ, G(ί, s) =
0 for ίe[α, s] and G(ί, β) = un_λ(t, s) for ί e[s, δ]. The rest of the
conclusions now follow completing the proof.

We now give the main theorem.

THEOREM 3.1. Suppose iλ + + ik — n, k ^ 3, and either
( i ) (H), (H3), ίίέZp and L*z = 0 is (q, 1, p — l)-disconjugate on

[a, δ],

or

( i i ) (H), (H4), i k ^ q and L*z = 0 is (q — 1, 1, p)-discon jugate on

[α, δ],
holds. If G{t, s) is the Green's function for the BVP assigning

at (alf •••,«*), then P(t) determines the sign ofG(t9 s).

Proof. The proof is much like that of Theorem 2.1 with a
Green's function for the operator M now playing the role played by
the Cauchy function in the proof of Theorem 2.1. Suppose (i) holds.
By Lemmas 3.2 and 3.3, it suffices to prove the result when it = p.

Let g(t, 8) again be the form (2.2) where ap(έ)f •••,a»_1(s) are
now chosen so that

g{l)(aif s) + uSLi(ajf s) - 0 (2 ^ j ^ fc, 0 ^ I ^ is - 1)

holds. Git, s) is again given by (2.3) and M is again defined by (2.4).
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This time we pick a point (ί0> s0) in (α, 6) x (α, 6) and then choose
a point a with a < a < min{α2, ί0, s0}. The equation ikfz/ = 0 is a
normal, #th order, disconjugate equation on the interval [a, &]. Let
GM(t, s) be the Green's function for the problem

My = f, y has (ΐ2, , ΐfc)-zeros at (α2, , ak)

on the interval [a, b], G(t, s0) as a function of ί is in Cg[a, b] and
has (i2, •••, ifc)-zeros at (α2, •••, αfc); hence, we arrive at

(3.1) G(ί, So) = Γ(?^(ί, : ) % _ , ( : , so)]dτ , α ^ t ^ 6 ,

in place of (2.5). The same argument as in Theorem 2.1 shows that
(2.7) again holds. It now follows from (3.1), Lemma 3.3, and (2.7)
that G(tOf s0) =£ 0 unless ί0 6 {α2, , ak}.

It remains to be shown that P(t) and G(t0, s0) are of the same
sign when both are nonzero. This will follow from Lemma 3.3 if
we can establish that

(3.2) Mlu^iτ, s0] > 0 , a < s0 < τ < b .

Consider sQ fixed and let w(τ) be defined by

w(τ) = W[up(τ, a), , un^(τf α), ̂ ^ ( r , s0)] , s0 ^ τ < b .

The first nonvanishing derivative of w(τ) at τ = s0 is

(3.3) ^-"(so) = TΓK(s0, α), . ., ^^(βo, α)] .

Hence, (3.2) follows from (2.4), (2.7), and (3.3) completing the proof
when (i) holds. A similar argument suffices when (ii) holds.

The next theorem follows at once from Theorems 2.1 and 3.1 and
Lemma 3.2.

THEOREM 3.2. Suppose ix + + ik = n and either
( i ) ii^V and Ly = 0 is (ΐ, n — i)-disconjugate on [α, 6], i —

p- 1, •••, n- 1,
or

(ϋ) ik^ Q anά Ly = 0 is (n — i, i)-disconjugate on [α, 6], ΐ =
g - 1, •••, n - 1,
holds. Then P(t) determines the sign of G{t, s) where G(t, s) is the
Green's function for the BVP assigning (i19 , ik)-zeros at (alf , ak).

With exactly the same disconjugacy hypotheses as in Theorems
11 and 12 of [9], Theorem 3.2 shows that P(t) not only determines
the sign of two-point problems but determines the sign of multipoint
problems as well.
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4* An example* In Remark 7.3 of [4], Gustafson claims that,
if Ly = 0 is conjugate on [a, 6], then the inequality

(4.1) G ( ί , 8)1 P ( t ) > 0 , a < s < b , a ^ t ^ b ,

may fail at a finite number of points. This seems to indicate that
the set of points where (4.1) fails cannot be infinite; however, known
results (see Theorems 4 and 5 in [8] and the reference in [8] to
earlier Russian literature) show this to be false. It is still of interest
to question the location of the points (£, s) in the square [α, 6] x
[α, &] where P(t)G(t, s) < 0. For example, the proofs of Theorems
4 and 5 of [8] produce points close to the line t — b where P(t)G(t, s) <
0. It is reasonable to question whether all such points must lie
outside the square [a, η^a)] x [α, ^(α)]. Also, in the case of discon-
jugacy, the zeros of G(t, s) along the line s == s0 where a < s0 < b
are isolated (see Lemma 15, p. 107 of [3]). Perhaps this property
still holds even when Ly = 0 is conjugate on [α, &].

We present in this section a third order equation on the interval
[0, 4] where the Green's function for the BVP assigning (2, l)-zeros
at (0, 4) is zero at all points on the horizontal line segment {(£, s);
s = 1, 0 <L t 5̂  1} and changes sign on each vertical line crossing this
line segment at a point (t0, 1) with 0 < t0 < 1. This answers the
questions raised above in the negative.

Let u, v, w, W be defined by

u(t) = 1 - t , v(t) = t2, w(t) = (ί - 1)2(4 - t) ,

W(t) = 2f - 6ta + 10 .

Then W(t) is the Wronskian of u(t), v(t), w(t) and is nonzero on the
interval [0, 4]; hence, we find p, q, reC[0, 4], such that u, v, w form
a basis for solutions of

Ly = y"' + p{t)y" + q(t)y' + r(t)y = 0 , t e [0, 4] .

Any function having a double zero at t = 0 is a constant multiple
of v(t) and v(4) Φ 0; hence, the Green's function for the BVP assigning
(2, l)-zeros at (0, 4) exists, call at G{t, s).

We now calculate ^(0). Let z(t) = w(t) — 4%(ί). Then z(t) has
a simple zero at t — 0 and, since v(ί) Φ 0 for ί > 0, the results of

r Sherman [13] show that ^(0) is the first zero of W[v(t), z(t)] to the
right of ί = 0. A short calculation shows 3̂ (0) = l/"5"/2; hence,

> 1.
The Green's function may be written as

= ί(l/16)^2(4, s)f ,
{ ' S ) ((-1/16)^(4, 8)ίs + ^(ί, β)
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Let I denote the line segment I = {(£, s); 0 < t < 1, s = 1}. Then
G(£, s) = 0 for all (t, s) on I since w2(4,1) = 0. We now calculate
dG(t, $)/ds at points on i. By using either Peano's formulas (see p.
95 of [5]) or (1.2), one sees that

— I>n-i(ί, S)] = -Un_2(t, S) + W»_i(ί, 8)

Applying this, we see that

9G(t, s
3s 16 '

Therefore, G(t, s) changes sign on any vertical line passing through I.
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