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POSITIVE SOLUTIONS AND SPECTRAL PROPERTIES
OF SECOND ORDER ELLIPTIC OPERATORS

W. ALLEGRETTO

Let I denote a second order elliptic expression in diver-
gence form and with coefficients defined in an exterior
domain. In this paper it is shown that, under suitable
conditions, the equation lv—0 has an a.e. positive generalized
solution v defined in a neighborhood of infinity. This is done
under weaker conditions on the coefficients of I than was
previously required. It is then shown that the existence of
such a v implies the finiteness of the negative spectrum of
operators naturally associated with I.

Let G denote an exterior domain (open, connected set) of Euclidean
w-space En with smooth finite boundary (if any). As customary, we
let x = (xu , xn) denote a point of E* and set Z^ = d/dXi for i =
1, •••, n. Let I denote the formal symmetric elliptic expression de-
fined by:

( 1) lu = - Σ DlatiDjU) + qu .

The coefficients of I are assumed real, and defined in G.
Some time ago, [2], we showed that if the coefficients of I were

assumed sufficiently regular and if I was nonoscillatory (at <χ>) then
there was a positive function v of class C2 such that ϊv Ξ= 0 near °o.
Recently, [7], Moss and Piepenbrink obtained, by different methods,
the existence of such a positive solution for a more general expres-
sion in nondivergence form, with the coefficients now assumed to be
only locally Holder continuous. The interest in showing the existence
of such a function stems from the connection between the existence of
a positive solution and the spectral properties of operators associated
with expression (1). We refer the reader to [8], [9] where this
connection is described.

It is the purpose of this paper to extend the above results to
cover cases where the coefficients of I are less regular than was
previously assumed. Our assumptions will be more in keeping with
the requirements usually placed on the coefficients in spectral theory
problems, see for example, [10]. Our basic method will consist in
the extension and improvement of the ideas introduced in [2]. Con-
sequently, we make use of quadratic forms and Hubert space theory,
as opposed to the Schauder estimate approach used in [7].

We remark that to simplify notation, different constants, whose
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16 W. ALLEGRETTO

precise value is irrelevant to the results, will be denoted by the
same symbol. The same procedure will be applied to subdomains
and subsequences. Further, we will not distinguish in notation
between functions and equivalence classes to which such functions
may belong. Finally we observe that an analogous presentation can
be made for the case of an arbitrary unbounded domain or the case
of a bounded domain with singularities on the boundary, (see, for
example, [3]). Consequently, we do not pursue this further here.

Let S denote a subdomain of G, S Q G. We introduce the form
B{φ, ψ, S) defined by the expression:

( 2 ) B(φ, ψ, S) = \ Σ a^DiφDjψ + qφψ ,
J Si,j=l

on pairs of locally integrable functions (φ, ψ), with locally integrable
generalized derivatives D$, ZVf, and for which the expression in
(2) is finite. Here and in the sequel we shall always assume that:
atj — aάi a.e. G; the matrix (atJ) is a.e. uniformly positive definite in
any bounded subdomain of G; aijf q are of class Lioc(G) for i, j =
1, —-,n. We also make the basic assumption that the form B is
nonoscillatory. That is, there is neighborhood N of oo such that for
any bounded subdomain P of N there exists a constant K = K(P) > 0
such that:

(3) B(φ, φ, P) ^ K(φ, φ)

for any φ e C?(P), where ( , ) denotes the U inner product. This
definition is in direct analogy with the standard definition of the
nonoscillation of an operator or expression. A survey of results
connected with this terminology and subject may be found in the
books of Swanson [12], and Kreith [6].

We next let HltP(S), HltP(S) denote the standard Sobolev spaces
with associated norm:

\\v\US) =

In direct analogy, and following a well-known procedure, we then
define for SaG the form:

(4 ) B\v, ψ, S) = \ Σ OujDiVDjψ + (q+ + l)vψ
JS

where the domain of B' is assumed to be E x E where E is the
subset of C\S) such that v e E iff B'(v, v, S) (as given by (4)) is
finite, and we denote by W(S) (respectively W(S)) the completion of
E (respectively C0°°(S)) in the norm \\v\\w(S) = (B'{v, v, S))1/2. A func-
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tion u 6 L?oc(S) is then termed^ to be in Wιoc(S) iff it is in W(S') for
any bounded subdomain S ' c S ' c S . If S is clear from the context,
we write W for W(S), B(u, v) for B(u, v, S), etc.

We now formulate the following local assumptions concerning
the form B:

There exists a sequence of closed nested smooth surfaces {Rt}T=i
such that for any r > 0 we have Rxa{\x\ > r) for I large; and such
that if we let Uuk denote the domain bounded by Rt and Rk (k > I)
with, for convenience, Ro = dG (if any) and Uί>oo = (J?=t+i UUSt we
then have:

(a) for each I sufficiently large and k > I, ||0||τr(l7IιJb) is equivalent
to [B(φ,φ, Ut,h)]1'* on C?(Ut,h).

(b) for each k sufficiently large there exists a neighborhood Nk

of Rk in which aiά, q are of class L°° for i, j = 1, , n (we observe
that, as a consequence, \\v\\w(Nk) is equivalent to \\v\\lt2(Nk)).

(c) if ueWl0C(UUoo) for some I, is such that B(u, φ) = 0 for all
φeC™(Uίt0O), then for each & > I there exists a neighborhood iV̂  of
Rk in which w is of class C1+α.

(d) for k, I sufficiently large, we can express UkΛ in the form
UkΛ = Gfctl U ZkΛ where ZkΛ is a set of measure zero and GkΛ is a
domain such that if T is any proper subdomain of Gktl (i.e., f c G w )
and: % 6 T7(Γ), w ^ 0, B(w, φ, T) = 0 for all ^ e CS°(Γ), then w satisfies
a Harnack condition in the proper subdomains of T (i.e., ess sup^^ u <̂
Kessmίx%TrU for T'QT'aT) and, further, either w = 0 or
ess in£(u) > 0 in Γ'.

(e) if for any given constant c we define the form J3" by:

B'\v, ψ, U0,k) = \ (Σ cί^DiVDjψ + qvf)dx

on v, ^ of class C\U0)k)\ v, ψ = 0 near i?0 if Λo ^ Φ, then we assume
that B"(v, v, U0)k) is nonnegative for any v in the orthogonal com-
plement of a finite dimensional subspace (depending on k, c) of
L2(UOyk), where if dG — Φ we denote by U0}k the bounded domain
with boundary Rk.

We next identify W(Uuk) as a subspace of H1>2(Uί)k) and observe
that if ve W(Uuk) then

II v \UUuk) - ί Σ a^D.vDjV + (<?+ + 1>2

where D ^ denotes the H1>2 der ivat ive of v for i = 1, •••, %. The

same remark holds for t h e inner products (^, v)W9 B(u, v, Uίίk) w i t h

u,ve W(Uhk) (W(Uhk) respectively).
For the reader's convenience we state a set of explicit conditions
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on (αo ), q which are sufficient for (a), (c)-(e) to hold, and sketch a
brief proof.

LEMMA 0. For the above conditions to hold it is sufficient that
n^Z and:

( i ) for each k sufficiently large there is a neighborhood Nk of
Rk such that ai5eC\Nk), qeL°°(Nk);

(ii) for each subdomain T<zTczGkil we have \aiS\ < M, qeLr/2

in T with M, r constants {depending on T) and r > n;
(iii) q~eLn/\U0Λ) for each I.

Proof. We recall that (ati) is assumed to be locally uniformly
positive definite a.e. G. If q~eLn/\UQtk) then, as is well known, we
may assume that q~ = q' + q" with q' bounded and with q" of small
Ln/2 norm.

Consequently, for any φeC~(Uίtk) we have, by a standard esti-
mate, [5],

(5)

where e is a small positive constant. From (3) and (5) it follows
that:

B(φ, φ, Uίtk) ^ (1 - 6)B'(φ, φ, Uuk) - (sup |9 ' | + ΐ)KB(φ, φ, Uΐtk)

for some constant K and, therefore,

It is obvious that B\φ9 φ, Uίtk) exceeds B(φ, Φ, Ulth). Consequently,
condition (a) is satisfied. Next, by (i), it follows that B(u, φ, Nk) = 0
implies that u e HliP Π H2)i with p > n, in a neighborhood of Rk (see
[1]> [5]). By considering the equation satisfied by Dtu we see, [11],
that DiU 6 Ca in this neighborhood for i = 1, , n, and condition (c)
follows. Again by [11] we see that (ii) implies that condition (d)
holds. Finally, to see that condition (e) is satisfied, observe that:

\ v2ds = c\ Σ A

where £< is a regular function which extends cos (n, x<) into UQ)k.
Consequently, for any ε > 0 we have for some constants Kef cu

\

iRk

cv2ds ̂ cλ {v2 + Σ \v11Dtv\}dx
U i
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{v2 + ε-2\ v |2 + ε2 Σ I Dtv \2}dx
VOfk *

= ?\\v\\UU0.ύ + Kβ\\v\\UUo.ύ

where ||v||0,i»(S) denotes the LP(S) norm. It follows that, for some
positive constants C, C19 we have, by again estimating the q~ term
as in [5, p. 27],

(6) ff\v9 v, U»,k) ^ C{\\v\\UUM) - Cx\\v\\UUM)} .

Condition (e) easily follows from (6) by the Sobolev compact imbed-
ding theorem of HU2(U0tk) into L\UOfk).

We observe that the above conditions allow the coefficients to
have L1 singularities at points of Zkfί. However the nature of ZkΛ

is restricted, so that we do not allow, for example, L1 singularities
along a ray or along a sequence of closed surfaces tending to oo.

It is convenient to obtain a variety of properties for functions
belonging to the T7-spaces. We thus state:

LEMMA 1. ( 1 ) W(Uι$h) n HίΛ(Ulth) = W(JJιΛ).
(2) If ue W(Uuk) (resp. W(Uuk)) then so do u+, u~, and \u\.
(3) If ul9 u2 e W(Ulth), B(uu φ) = B(u2, φ) for all φ e C~(Uί>k) and

(u, - u2)+ 6 W(Ultk) then J B ( ( ^ - u2)
+, (u, - u2)

+) = 0.
( 4 ) Ifve WUUt,J), v^O a.e. UUoo then φ(v + ε)"1 e W{UUtΛ) for

any ε > 0 and φeC™(Uuk).

Proof of Lemma 1. ( 1 ) Clearly W(Uίfk) c W(Uhk) n HUUlth).
Conversely, let ue W(Uίik) Π H1)2(Uίik), and let φeCΐ(Uuk), 0_^_φ ̂  1,
Φ = l except sufficiently near Rlf, Rk. Next, let uneC\Uuk) be a
sequence such that un->u in || \\w(Uί)k). It follows that:

( 7 ) \\φun ||V(Utίh) = \ Σ aMφuJDtφuJ + (q+ + l)φ2u
jUuk i,3

( 8) = ( ( Σ ciijDiφDjφjul + \ Σ a^D^
JUXtk \i,j / JUί>k i,j

+ (q+ + ΐ)φ2ul

= ii + J, .

Steps (7) and (8) are really a first order form of an identity due to
Picone (see [4], [12], [6]) which is very useful for our purposes.
Next, we observe that

Li*= _
)ultk • Lί.i

G \l/2/f __ \l/2

ulΣaaDiφDiφ) \ <
ul,k ' \JUχ,k
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Since on supp (grad φ) we have aίό e L°°, we conclude:

I2^K\\unψw .

A similar estimate is valid for I± and, consequently,

( 9 ) \\φun\UUuk) ^ K\\un\UUx,k) .

Since φuneCl(Uί)k) by substituting un — um for un in (9) it follows

that φu 6 W(Uί)k). Finally (1 — φ)u has support near Rx and Rk where

|| ||1)2 is equivalent to || | |^. Consequently, (1 — φ)ueHU2{Uuk) Π

W(Uuk) Π W(Uί)k), and u = (1 - φ)u + φueW(Uί>k).

( 2 ) Let φ e C^(Uίik) then φ+ e HU2(Uuk) (see, for example, [11]). Let
ψn be a sequence of mollifiers, ψn->φ+ in H1)2(Uhk). Then | Z J

and | ψ j ^ s u p | ^ | . It follows that:

lth) £ \\ Σ,\ij\)[V\jφ\γ \

Without loss of generality, we conclude that {ψ-J is weakly conver-

gent. By the theorem of Banach-Saks, we may assume that

{(1/n) Σ*=i ^ J is strongly convergent in W (to φ+). Consequently,

Φ+eW(Uχ,k), and,

IIΦ+ \UUuk) =

Finally, if φn-*u in W{UιΛ) then

Repeating the above procedure, we find that u+ e W(Uίtk), and by
the same proof, the same is true of vrf \u\ = u+ + u~. The same
argument shows the result for ue W(Ul)k) once we observe that if
φGC\Uuk) then φ can be considered to be the restriction of a
Co(E7i-i,fc+i) function ψ. We conclude that φ+ e W(Uuk), and con-
sequently that | | ^ + | | w ^ ||^||τr> and the result follows.

( 3 ) Let ul9 u2e W(Uί>k) and set u = uλ — u2. It follows that
B(n, φ) = 0 for all φeC™(Uί)k). Since by assumption we have u+ e
W(Uίtk) we conclude that

B(u, u+) = 0 , i.e., that B(u+ - u~, u+) = J5(u+, u+) - B(%-, w+) = 0 .

But B(vr, u+) = 0 as a direct consequence of the fact that products
of type u+u~, Ό^Ώβr vanish almost everywhere by the very
definition of u+, u~. It follows that B(u+, u+) = 0.
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(4) Since v = v+ ^ 0, by the mollifier procedure of (2), we con-
struct a sequence {ψm} of nonnegative C^supp^) functions such that
ψm~^v in TF(supp^). Set βn = φ(ψm + e)~x. A direct calculation
shows that:

*w) .

Again by t h e Banach-Saks theorem we conclude t h a t φ(v + ε)" 1 e

COROLLARY 1. ( 1 ) Let ue W(Uuk) be such that B(u, Φ, Ulfk) =
(/, Φ) for all φeC~(Uuk) with / ^ 0. Then u ^ 0 in Ultk.

( 2 ) Let UiG W(Uuk.) be such that B(uif φ, Uuk.) = (/, φ) for all
φ e C0

oo(i7ί fe.) for i = 1, 2 α^d some / ^ 0. If k2^ k± then u2 ^ ^ m

Proof. (1) Note that, as is well known, u may be characterized
as the minimizing function of:

I{u) = B{u, u, Uuk) - 2(u, f) .

Since I(\u\) <; I(u), by Lemma 1 (2), we see that u = \u\ ^ 0.

( 2 ) Observe that (ux — u2)
+ e W(Uuh)ΠHlf2(Uί)kl). Consequently,

by Lemma 1, (uλ — u2)
+ e TΓίtTi,^) and B^ — u2)

+, {ux — u2)
+) = 0.

From our basic assumption it follows that (uΣ — u2)
+ Ξ 0, i.e., u2 ^ ux.

LEMMA 2. Lei &0 δe chosen sufficiently large. Then there exists
r form B with coefficients aij9 q such that: aiά = aii9 q = q for \x\
sufficiently large; aiif qeC°° in a neighborhood Nko of RkQ; assump-
tions (a) to (d) hold for B on UkQ_1>u I > k0.

Proof. Let:

ati = ati(l -θ) + Mδiάθ ,

q = 9(1 - θ) + Nθ ,

where:

M = ess. sup. of the largest eigenvalue of (ati) in ^ 0 ,
N = ess. sup. of \q\ in Nko ,
θ is a C^(Nko) function with 0 = 1 near i?fc, 0 ^ θ ^ 1 .

Now conditions (b), (c) are obvious. Condition (a) follows from
the inequalities:
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λ JVflk

S ^B'{φ, φ, Ut,k) <k ̂ CB(φ, φ, UtΛ)
λ Λ

^ ^Cβfa 0, Uuk) ,
A

φ>^ ^-B(φ, φ, Utlt)uίιk X

^ ^-B(φ, φ, Uuk)

and:

\ g +(l - θ)φ* ̂  \ qψ ^ B'(φ, φ, UUk)

^ CB(φ, φ, Uuk) ^ CB{φ, φ, Uuk) ,

for some constants λ, C. Finally, condition (d) follows from the
observation that if we set k = dist (supp θ, dNko), then for any sphere
S with radius p < k/2 we note that either S lies in Nko, in which
case property (d) follows from the regularity of the coefficients, or
else S(£NkQ. In the latter case Sa{x\θ(x) = 0} and property (d)
follows from the original assumptions since in S the coefficients were
not changed.

Note that if we can find a function v such that B(v, φ, Ui>Oo) = 0
for all φeCϊ(UUoo) then B(v, φ, Ui+ltOO) = 0 for all φeCΐ(Uί+1,oo). It
follows that we may assume, without loss of generality, that aiβ and
q are of class C°° near any specific Rk.

We next recall the following lemma which was established in
[2]:

LEMMA 3. Let aiάeC°°(Nk), qeC°°(Nko) for some neighborhood
Nko of Rko, and assume that x0 e Nko. Then for all β > 0, 0 < ε < 1/2,
1 ^ 2 there is a function ψ of class Cl{x\\x — xo\ < β} such that:

Lf(x) ^ 0 for εβ < \ x — x01 ,

Lf(x)>0 for eβ < \x - xo\ < (1 - e)β ,

where Lf = — Σjij D^a^ϋjf) + qψ.

THEOREM 1. Let kQ be chosen sufficiently large so that the basic
assumption holds for Uko_lfoo. Then there exists a function ue
Wioc(Uko+1,oo) such that: B(u, φ, suppφ) — 0 for any φeC~(UkQ+Uoo);
u > 0 a.e. near °o; for each k sufficiently large there exists a neigh-
borhood Nk of Rk such that u e C1+a(Nk).
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Proof. Without loss of generality, we may assume ai3 e C°°(NkQ),
qeC^iNkt) in some neighborhood Nko of Rko. Let ψ be constructed
by the procedure of Lemma 3 so that Lψ ̂  0 ( ^ 0) in UkQtO0 and

We construct, as in [2], a sequence of functions {u3'}f=k^+1 such
that UjeW(Ukotj) and B(uh φ) = (Lf, φ) for all φeC?(Ukθij). By
Corollary 1 we have: uj+1 ̂  u3- ̂  0 and we set u = sup, uβ. The same
procedure as in [2] shows that u e L\oc(Mko f] Uk(jt<X)) where MkQ = NkQ —
supp ψ. Consequently, again see [2], the regularity of the coefficients
in Nko implies that u e C\Mko Π UkQθo) and, therefore, that {%} is
bounded in any proper subdomain of Mko Π Uko,co. Since u3- satisfies
a Harnack inequality in the subdomains of GkQtk, by assumption (d),
we conclude that {%} is bounded near Rk for any k > k0 (with bound
dependent on k). Now let φ e C~(Uktt), 0 <; φ ̂  1, supp φ Π supp L'f = Φ,
supp (grad #) near Rk, Rt for some t, k, t>k> k0. Repeating the
procedure of (7), (8) we find:

(10) B(φ(um - un), φ(um - i θ ) = \ ( Σ *«DjDrf>)(um - uj-

+ B{um - un, φ\nm - uj)

= ί (ΣαϋWk-«.)!

where we have used the fact that ^2(t6m — un)eW as was shown in
the proof of Lemma 1(1). By the Lebesque convergence theorem
applied to the righthand side of (10) and the fact that {%} is bounded
on supp (grad φ), we conclude that {φu3) is Cauchy in W(Ukit). Con-
sequently, u e Wioc(Uk,co) and B(u, ψ) = 0 for all φ 6 C~(UktOO) as desired.
Since u ̂  un ̂  0 and un 3Ξ 0 then by assumption (d) it follows that
u > 0 a.e. in C7fc,co — U?=*+i ^*,i for k sufficiently large. That is,
u > 0 a.e. in a neighborhood of ©o. Finally, ueC1+a(Nk) as a con-
sequence of assumption (c).

COROLLARY 2. Let v e TΓ(ί7fco+1,t) /or some I > fco+i, v = 0 outside
Uko+lyU then:

S Σ ^ijDiUDjV + quv = 0 .

Proof. Let φeC?(UkQtί+1) now be such that φ = 1 in 17"̂ +!,, and

supp 0 Π supp Lψ = Φ. Let vneC~(Uko+1Λ) tend to v in W". Then:

B(φu, v) = lim £(M>, 0 = 0 ,

but also:

B(φu, v) = \ Σ dijDiUDjV + quv .
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THEOREM 2. There is a finite dimensional subspace FaL\G)
such that for all φeC~(G) Π FL we have B(φ, φ) ̂  0.

Proof. Let φeC™(G) be given and choose k0 sufficiently large,
ε > 0. Let Nko be a neighborhood of Rko and choose a C~ function
α/r such that ψ = 1 on i7o,fco, α̂  = 0 outside U0)kQ U iVfco. Let u be the
function constructed in Theorem 1. Since u is of class C1 + α near Rko

we may suppose w to be extended as a nonnegative C1+a function u
inside RkQ with u = 0 outside of UkQ)Oo U Nko. It follows that u e
TΓioc(?7o,co) and therefore, by Lemma 0, that φ\u + ε)-16 W(U0>OQ). We
again employ the procedure of inequalities (7) and (8) and a limit
argument to conclude:

(11) ( Σ atiDjDrf + qφ2 ^ \
Juko,oo J

Setting ^2 = ^2(1 — α/r) + ^2(^) on the right hand side of (11), observing
that 02(1 — ψ)/(u + ε) 6 W(Uk0>Oo) and u = 3 in !7fco,oo and employing
Corollary 2, reduces (11) to

(12) \ Σ α*i^D^ + # 2 ^ ( Σ α 4 i DI-^—)D ό u

f ε # 2 ( l - ^
+

Now let h > 0 be given and choose 'f such that:

supp ψcz{x\dist (a?, Uo,ko) < h) , |grad f | ^ ^ .

Note that the first integral is taken over a subset of Uko,oo Π Nko

where u e C1+a, and u > 0 on i2fco. A simple limit argument as h —> 0,
then shows that (12) becomes:

(13) ( Σ auDrfDrf + qφ2 ^ -M \ φ2ds - \
u

with ilf a constant independent of ε, φ. But (compare with [4]),
IQ\Φ2εKu + ε) -> 0 a.e. in E7*0,oo and |q\φ2ε/(u + ε) ^ |q\φ2 eL\UhiOO). By
the Lebesque Convergence theorem we conclude that

limί JML = O.
ε-o Jtf*o»°° u + ε

Consequently, (13) becomes:

(14) \ Σ a^ΌtφΏsφ + qφ2^ -M\ φ2ds .
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But, by assumption (e), we have:

(15) ( Σ anDiφDiΦ + Qφ2 ̂  M \ φ2ds ,

for some finite dimensional subspace F and φ e C?(G) Π F1. Our result
follows by combining (14) and (15).

As a final result we state:

COROLLARY 3. Let L denote a regularly accretive operator defined
from B on C~(G) (see [10]), and let S(L) denote the spectrum of L.
Then S(L) Π ( - °o, 0) is finite.
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