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POSITIVE SOLUTIONS AND SPECTRAL PROPERTIES
OF SECOND ORDER ELLIPTIC OPERATORS

W. ALLEGRETTO

Let | denote a second order elliptic expression in diver-
gence form and with coefficients defined in an exterior
domain. In this paper it is shown that, under suitable
conditions, the equation lv=0 has an a.e. positive generalized
solution v defined in a neighborhood of infinity. This is done
under weaker conditions on the coefficients of ! than was
previously required. It is then shown that the existence of
such a v implies the finiteness of the negative spectrum of
operators naturally associated with [.

Let G denote an exterior domain (open, connected set) of Euclidean
n-space K™ with smooth finite boundary (if any). As customary, we
let ¢ = (,, ---, ®,) denote a point of E" and set D, = 9/dx, for ¢ =

1, ---,n. Let Il denote the formal symmetric elliptic expression de-
fined by:
(1) Iu = —_z”lmaﬁb,.u) +qu.

iy5=

The coefficients of | are assumed real, and defined in G.

Some time ago, [2], we showed that if the coefficients of | were
assumed sufficiently regular and if ! was nonoscillatory (at «) then
there was a positive function v of class C? such that [v = 0 near oo.
Recently, [7], Moss and Piepenbrink obtained, by different methods,
the existence of such a positive solution for a more general expres-
sion in nondivergence form, with the coefficients now assumed to be
only locally Holder continuous. The interest in showing the existence
of such a function stems from the connection between the existence of
a positive solution and the spectral properties of operators associated
with expression (1). We refer the reader to [8], [9] where this
connection is deseribed.

It is the purpose of this paper to extend the above results to
cover cases where the coefficients of | are less regular than was
previously assumed. Our assumptions will be more in keeping with
the requirements usually placed on the coefficients in spectral theory
problems, see for example, [10]. Our basic method will consist in
the extension and improvement of the ideas introduced in [2]. Con-
sequently, we make use of quadratic forms and Hilbert space theory,
as opposed to the Schauder estimate approach used in [7].

We remark that to simplify notation, different constants, whose
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precise value is irrelevant to the results, will be denoted by the
same symbol. The same procedure will be applied to subdomains
and subsequences. Further, we will not distinguish in notation
between functions and equivalence classes to which such functions
may belong. Finally we observe that an analogous presentation can
be made for the case of an arbitrary unbounded domain or the case
of a bounded domain with singularities on the boundary, (see, for
example, [3]). Consequently, we do not pursue this further here.

Let S denote a subdomain of G, SCG. We introduce the form
B(g, 4, S) defined by the expression:

(2) B, 4, 8) = | 3 auDgDw + av ,

on pairs of locally integrable functions (g, «), with locally integrable
generalized derivatives D,¢, D, and for which the expression in
(2) is finite. Here and in the sequel we shall always assume that:
a; = a;; a.e. G; the matrix (a,;) is a.e. uniformly positive definite in
any bounded subdomain of G; a,;, ¢ are of class L}..(G) for 7, j =
1, ---,n. We also make the basic assumption that the form B is
nonoscillatory. That is, there is neighborhood N of < such that for
any bounded subdomain P of N there exists a constant K = K(P) > 0
such that:

(3) B(g, ¢, P) = K(4, ¢)

for any ¢ ¢ Cy(P), where (,) denotes the L? inner product. This
definition is in direct analogy with the standard definition of the
nonoscillation of an operator or expression. A survey of results
connected with this terminology and subject may be found in the
books of Swanson [12], and Kreith [6].

We next let H,,(S), H,,(S) denote the standard Sobolev spaces
with associated norm:

[oll,,,(S) = I:SS?_‘. (Dw)* + vP]l/P .

In direct analogy, and following a well-known procedure, we then
define for Sc G the form:

(4) B'(’U9 vy S) = SSZ a.,; DDy + (@7 + Loy

where the domain of B’ is assumed to be E X E where E is the
subset of CYS) such that ve E iff B'(v, v, S) (as given by (4)) is
finite, and we denote by W(S) (respectively W(S)) the completion of
E (respectively Ci(S)) in the norm ||v|,(S) = (B'(v, v, S))"®. A fune-
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tion w € L}.(S) is then termed to be in Wy (S) iff it is in W(S’) for
any bounded subdomain S’ S’ < 8. If S is clear from the context,
we write W for W(S), B(u, v) for B(u, v, S), ete.

We now formulate the following local assumptions concerning
the form B:

There exists a sequence of closed nested smooth surfaces {R}{,
such that for any = > 0 we have R, C{|x| > r} for | large; and such
that if we let U,, denote the domain bounded by R, and R, (k¢ > 1)
with, for convenience, R, = oG (if any) and U, = Ui U,,;, We
then have:

(a) for each I sufficiently large and k¥ > |, || ¢||,(U,,;) is equivalent
to [B(g, ¢, Ul on C(Uyy).

(b) for each & sufficiently large there exists a neighborhood N,
of R, in which a,;;, ¢ are of class L~ for 4, =1, ---, n (we observe
that, as a consequence, [[v|y(N,) is equivalent to ||v ||, (V).

(¢) if ue Wy.(U,.) for some [, is such that B(u, ¢) = 0 for all
6eCy(U,,,), then for each & > 1 there exists a neighborhood N, of
R, in which % is of class C'*2.

(d) for k, ! sufficiently large, we can express U,, in the form
U,.= G, UZ, where Z,, is a set of measure zero and G, is a
domain such that if 7' is any proper subdomain of G, (i.e., T C G,,)
and: w e W(T), w = 0, B(u, ¢, T) = 0 for all ¢ € C3(T), then u satisfies
a Harnack condition in the proper subdomains of T (i.e., €8S SUP,cr U <
Kessinf,.,,u for T'CT'cT) and, further, either =0 or
essinf(u) > 0 in T,

(e) if for any given constant ¢ we define the form B” by:

B"(, 4, U,) = SU . (X2 a;;Dw Divp + quyr)dx + SR,, cvyrds

on v, v of class C'(U,,); v, v = 0 near R, if R, # @, then we assume
that B”(v, », U,,) is nonnegative for any v in the orthogonal com-
plement of a finite dimensional subspace (depending on %k, ¢) of
L¥U,,), where if 0G = ® we denote by U,, the bounded domain
with boundary R,.

We next identify W(U,,) as a subspace of H,,U,,) and observe
that if ve W(U,,) then

196U = |, S auDoDw + @ + 10°

where D,v denotes the H,, derivative of v for ¢ =1, ---, n. The
same remark holds for the inner products (u, v),, B(u, v, U;,) with
u, ve W(U,,) (W(U,,) respectively).

For the reader’s convenience we state a set of explicit conditions
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on (a,;), ¢ which are sufficient for (a), (¢)-(e) to hold, and sketch a
brief proof.

LEMMA 0. For the above conditions to hold it is sufficient that
n =3 and:

(i) for each k sufficiently large there is a meighborhood N, of
R, such that a,; € C'(N.), q € L”(N,);

(ii) for each subdomain T CTc G, we have |a;;| < M, qe L™
wn T with M, r constants (depending on T) and r > n;

(iii) q- e L™¥(U,,) for each .

Proof. We recall that (a,;) is assumed to be locally uniformly
positive definite a.e. G. If ¢~ e L"*(U,,) then, as is well known, we
may assume that ¢ = ¢’ + ¢” with ¢’ bounded and with ¢” of small
L™ norm.

Consequently, for any ¢eCy(U,,) we have, by a standard esti-
mate, [5],

(5) S "¢ e S 2. a;D¢D;g

where ¢ is a small positive constant. From (3) and (5) it follows
that:
B(g, ¢, Uw) = (1 — ©)B'(9, ¢, Urp) — (sup |¢'| + 1)KB(9, ¢, U,e)

for some constant K and, therefore,

(1 - 8) ’
B(¢’ ¢: Ul,k) 2 1 + K(Sup lq,l + l)B (95’ ¢, Ul,k) .

It is obvious that B’(¢, ¢, U;,) exceeds B(¢, ¢, U,). Consequently,
condition (a) is satisfied. Next, by (i), it follows that B(u, ¢, Ni) = 0
implies that we H,, N H,, with » > n, in a neighborhood of R, (see
[1], [5]). By considering the equation satisfied by Du we see, [11],
that Du < C® in this neighborhood for ¢ =1, -- -, n, and condition (c)
follows. Again by [11] we see that (ii) implies that condition (d)
holds. Finally, to see that condition (e) is satisfied, observe that:

¢ SR,, vids = ¢ S S D,(v's)dx

Ug, ke ¢

where &, is a regular function which extends cos(n, 2;) into U,,.
Consequently, for any ¢ > 0 we have for some constants K, ¢,,

§ wzdsgclg W + 3 |v|| D do
Rk Uo,k i
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sof @+l + &5 Dol
0,k 4
= v |[f(Usw) + K| v|[;(Us)

where ||v]|,,,(S) denotes the L?(S) norm. It follows that, for some
positive constants C, C,, we have, by again estimating the ¢~ term
as in [5, p. 27],

(6) B"(v, v, Uy) 2 K{[[v[3:(Us0) — Cil| v |8(Us0} -

Condition (e) easily follows from (6) by the Sobolev compact imbed-
ding theorem of H,.,(U,,) into L*U,,).

We observe that the above conditions allow the coefficients to
have L' singularities at points of Z,,. However the nature of Z,,
is restricted, so that we do not allow, for example, L' singularities
along a ray or along a sequence of closed surfaces tending to oo.

It is convenient to obtain a variety of properties for funections
belonging to the W-spaces. We thus state:

LEMMA 1. (1) W(U.u) N H (U = W(ULW.

(2) If ue W(U‘,,‘) (resp. W(U,,.)) then so do u*, u=, and |u|.

(3) If w, u,€ W(U.), Bluy, ¢) = Bu, ¢) for all ¢ € Cy(Uy,) and
(u, — w)* € W(U.) then B((uy — up)*, (u, — u,)*) = 0.

(4) If ve Wio(Uiw), v = 0 a.e. U, then ¢(v + ) W(U,..) for
any € >0 and ¢ € Cy(Uy,).

Proof of Lemma 1. (1) Clearly W(U,) € WU N Hyo(Upy).
Conversely, let ue W(U,.) N H,(U,,), and let e Ce(U,,), 0= g =<1,
¢ =1 except sufficiently near R, R,. Next, let u,eCY(T,,) be a
sequence such that u, —u in || ||;(U,.). It follows that:

(7) lou, [15(Us,p) = Ll ) % a;;Dy(¢u,) Dipu,) + (q+ + 1)g*u

(8) = S (S auDgDss )i + S 2, 0 Ddg"w.) Dy,
Utk \id Uk &9
+ (¢+ + Dg'us,
=L+1I.

Steps (7) and (8) are really a first order form of an identity due to
Picone (see [4], [12], [6]) which is very useful for our purposes.
Next, we observe that

L={ o{SesD@D) + @ +u]+| 235 0;DeDu,
Utk 5 Utk
/2

< lualy + K(§, w2 SasDsDg) (| ¢ euDaDa)”
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Since on supp (grad ¢) we have a,;; € L*, we conclude:
L = Kl u. [l} -

A similar estimate is valid for I, and, consequently,

(9) | gua [ (Usp) < K ||, [[5(Us,i) -

Since ¢u, € C5(U,,) by substituting u, — u, for w, in (9) it follows
that gu € W( U..). Finally (1 — ¢)u has support near R, and R, where
Il . is equivalent to | |ly. Consequently, (1 — ¢)ueH,(U,.)N
WU, N W(U.,,), and w = (1 — ¢)u + gue W(U,,).

(2) LetgeCo(U,,) then ¢+ e H,,(U,,) (see, for example, [11]). Let
4, be a sequence of mollifiers, +, — ¢+ in H,,(U,;,). Then |Dyqp,| <
sup | D;¢| and |+, | < sup|g|. It follows that:

Il = {{ (5 1aul)isup DgIF + | (v + 1 supg)

Lk

=K.

Without loss of generality, we conclude that {+,} is weakly conver-
gent. By the theorem of Banach-Saks, we may assume that
{(1/n) v, 4} is strongly convergent in W (to ¢*). Consequently,

=1

¢+ e W(U,,), and,

I+ = | S aaDg Digt + (@ + D@y
= (¢ 15Uy -
Finally, if ¢, — u in W(U,,) then
@)™ 15 (Use) = |l alli(Une) = K .

Repeating the above procedure, we find that u*e W(UI,,,), and by
the same proof, the same is true of w~, |u| = u* + w~. The same
argument shows the result for we W(U,,) once we observe that if
¢€C U, then ¢ can be considered to be the restriction of a
CiU,_,,4+,) function . We conclude that ¢*e W(U,,), and con-
sequently that ||¢*|lw = ||¢]lw, and the result follows.

(8) Let w, u,c W(U,,) and set w = u, — u,. It follows that
B(u, ¢) = 0 for all ¢eCy(U,,). Since by assumption we have u*e

W'( U, we conclude that
B(u, w*) =0, i.e., that B(u* —u~, ") = B(u*, ") — Bu~, u*) =0 .

But B(u~, u*) = 0 as a direct consequence of the fact that products
of type uw*u~, Du*D;u~ vanish almost everywhere by the very
definition of w*, w~. It follows that B(u*, ut) = 0.
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(4) Since v = v* = 0, by the mollifier procedure of (2), we con-
struct a sequence {+,} of nonnegative C'(supp ¢) functions such that
PYnp—v in W(supp¢). Set B, = ¢y, + €. A direct calculation
shows that:

| B |liv(supp ¢) =< K(||¥m + €lliv(supp ¢) + || ]})
< K(||v + ¢|lix(supp ¢) + [I8]/5) -

Again by the Banach-Saks theorem we conclude that &(v + &) e
W(U,.).

COROLLARY 1. (1) Let we W(U,,) be such that B(u, ¢, Uy,) =
(f, @) for all $eC5(U,,) with f=0. Then u=0 in Uy,.

(2) Let u;e W(U,,ki) ‘be such that B(u,, ¢, U, = (f, ¢) for all
$€Cy (U, for i =1,2 and some f=0. If k, =k, then u, = u, in
Ui,

Proof. (1) Note that, as is well known, 4 may be characterized
as the minimizing function of:

I(w) = B(w, u, U,,) — 2(u, f) .

Since I(|%|) < I(w), by Lemma 1 (2), we see that u = |u| = 0.

(2) Observe that (u, — u,)* € W(Uy,,) anl,2(U,,,,l). Consequently,
by Lemma 1, (u, —u)*e W(U,.) and B((w — u)*, (uy — u)*) = 0.
From our basic assumption it follows that (u, — u,)* = 0, i.e., U, = u,.

LEMMA 2. Let k, be chosen sufficiently large. Then there exists
r form B with coefficients @,;, § such that: a; = ay, §=q for |x|
sufficiently large; @,;, §<C> in a meighborhood N, of R,; assump-
tions (a) to (d) hold for B on Ui—rv | > k.

Proof. Let:

where:

M = ess. sup. of the largest eigenvalue of (a;;) in N, ,
N = ess. sup. of |g| in N, ,
6 is a C7(N,,) function with # =1 near R,, 060 =1.

Now conditions (b), (c) are obvious. Condition (a) follows from
the inequalities:
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e - M
|, @-0%eDgDy<smu| S| SaDeDy
Utk Uk ¢ N U
é %B,(ﬁby ¢’ U!,k) é %CB(?S, ¢7 Ul,k)
é %CE(@ ¢7 Ul,k) ’
s < XB, 5, U

é §(¢’ ¢7 Ul,lc) ’

and:

|, rra-ogs| os<BEs U
é CB(¢9 ¢y Ul,k) _-S_ CE(¢! ¢) Ut,k) ’

for some constants A, C. Finally, condition (d) follows from the
observation that if we set k¥ = dist (supp ¢, 0N, ), then for any sphere
S with radius p < k/2 we note that either S lies in N, in which
case property (d) follows from the regularity of the coefficients, or
else SZN,. In the latter case Sc{x|f(x) =0} and property (d)
follows from the original assumptions since in S the coefficients were
not changed.

Note that if we can find a function v such that B(v, ¢, U;..) = 0
for all ¢eC(U, ) then B, ¢, Ui1,0) = 0 for all 9 € Co(Uyyy,). It
follows that we may assume, without loss of generality, that a,; and
q are of class C* near any specific R,.

We next recall the following lemma which was established in

[2]:

LEmMA 8. Let a,;€C=(N,), qe€C=(N,) for some neighborhood
N,, of R, and asswme that x,€ N,,. Then for all 3> 0,0 <e <1/2,
[ = 2 there is a function - of class Ci{x||x — x,| < B} such that:

Ly@) =0 for eB <|x —ml,
Ly(x) >0 for eg<|x—a| <A —¢)RB,

where L’l,h‘ = “‘Zi,j Di(a’iij"lr) + qy.

THEOREM 1. Let k, be chosen sufficiently large so that the basic
assumption holds for U, ... Then there exists a function we
Wiee(Usytr,=) such that: B(u, ¢, suppg) = 0 for any ¢ € Ce(Upii,);
u >0 a.e. mear oo; for each k sufficiently large there exists a neigh-
borhood N, of R, such that u e C*+*(N,).
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Proof. Without loss of generality, we may assume a,; € C*(N,),
g € C*(N,,) in some neighborhood N, of R,. Let 4 be constructed
by the procedure of Lemma 3 so that Ly =0 (#0) in U, . and
supp 4 C N, .

We construct, as in [2], a sequence of functions {7+ such
that ;e W(U,,;) and B(u; ¢) = (Ly, ¢) for all $eCp(U, ;). By
Corollary 1 we have: u;;, = u; = 0 and we set v = sup; w;. The same
procedure as in [2] shows that € Li..(M,, N U,,~) where M, = N, —
supp 4. Consequently, again see [2], the regularity of the coefficients
in N, implies that e C*M, N U,w) and, therefore, that {u;} is
bounded in any proper subdomain of M, N U,,.. Since u; satisfies
a Harnack inequality in the subdomains of G, ., by assumption (d),
we conclude that {u;} is bounded near R, for any k > k, (with bound
dependent on k). Now let ¢ € C5°(U,,.), 0 < ¢ < 1, supp ¢ N supp Ly = @,
supp (grad ¢) near R,, R, for some ¢, k, t >k > k,. Repeating the
procedure of (7), (8) we find:

(10)  Bp(un — up), $ltn — ) = | (5 auDgD ) — )’
+ B(um = Un, ¢2(um - un))
= |, (SaDeDgw — .y

where we have used the fact that ¢*(u, — u,) € W as was shown in
the proof of Lemma 1(1). By the Lebesque convergence theorem
applied to the righthand side of (10) and the fact that {u;} is bounded
on supp (grad ¢), we conclude that {¢u,} is Cauchy in W(U,,). Con-
sequently, 4 € Wioo(U,,«) and B(u, ¢) = 0 for all ¢ € C3(U, ) as desired.
Sinece % = u, = 0 and u, # 0 then by assumption (d) it follows that
>0 a.e in U,w — Uit Zi,; for k sufficiently large. That is,
# >0 a.e. in a neighborhood of «. Finally, u<C**XN,) as a con-
sequence of assumption (c).

COROLLARY 2. Let ve W( Uiytr0) for some [ > kyyy, v = 0 outside
Uiyt1,00 then:
S S a;DuDw + quv =0 .
U, o0

Proof. Let ¢eCi(Uy,+) now be such that ¢ =1 in Uy, and
supp ¢ N supp Ly = @. Let v, € CP(U,yy,) tend to v in W. Then:

B(gu, v) = lim B(gu,, v,) =0,
but also:
B(gu, v) = S Sia ;DuDw + quv .

Ukgso0
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THEOREM 2. There is a finite dimensional subspace F C LX)
such that for all ¢ Cy(G) N F* we have B, $) = 0.

Proof. Let ¢ Cy(G) be given and choose k, sufficiently large,
€>0. Let N, be a neighborhood of R, and choose a C7 function
¥ such that 4+ =1 on U,,, v = 0 outside U,,, UN,. Let u be the
function constructed in Theorem 1. Since u is of class C'** near R,
we may suppose u to be extended as a nonnegative C*** function #
inside R, with # =0 outside of U,,.UN,,. It follows that #e
Wioe(U,,) and therefore, by Lemma 0, that ¢*(& + ¢)~' e W(U,.). We
again employ the procedure of inequalities (7) and (8) and a limit
argument to conclude:

a | SeDeDg+as 2| SauD(FE)Di@+ 9+ e

Ukooo

Setting ¢* = ¢*(1 — 4) + #°(y) on the right hand side of (11), observing
that ¢(1 — 4)/(& + &) € W(U,,.) and u = % in U,,. and employing
Corollary 2, reduces (11) to

2 | SeDeDg+arz|  SauD(LL)Du+ sy
+ S el — )
Uk,

u+ e

UkO

Now let 2 > 0 be given and choose «+ such that:

supp y C {odist (7, o) <B),  [gradp| < 5.
Note that the first integral is taken over a subset of U, N Ni,
where w € C'+%, and u > 0 on R,,. A simple limit argument as h — 0,
then shows that (12) becomes:

a® | SaDebg ez -mf gas-| g,

RBpq Ukgroo W + €

with M a constant independent of ¢, ¢. But (compare with [4]),
lqlg%/(u + €) — 0 a.e. in Uy and |q|g’e/(w + €) = |q|¢* € L(Uy,«). By
the Lebesque Convergence theorem we conclude that

lim | dld g
=0 JUpp00 U + &

Consequently, (13) becomes:

(1) SUk S a;DgDsg + 08" = —M | s .

0
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But, by assumption (e), we have:

(15) |, SesDeDg +agz M| g,

ko

for some finite dimensional subspace ¥ and ¢ € C2(G) N F*+. Our result
follows by combining (14) and (15).
As a final result we state:

COROLLARY 8. Let L denote a regularly accretive operator defined
Sfrom B on C3(G) (see [10]), and let S(L) denote the spectrum of L.
Then S(L) N (—c0, 0) is finite.
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