THE FACTORIZATION OF H^{\flat} ON THE SPACE OF HOMOGENEOUS TYPE

Акініто Иснічама

Let K be a Calderon-Zygmund singular integral operator with smooth kernel. That is, there is an $\Omega(x)$ defined on $\mathbb{R}^n\setminus\{0\}$ which satisfies

$$\int_{|x|=1} \Omega = 0 , \quad \Omega \not\equiv 0 ,$$

$$(*) \qquad \qquad \Omega(rx) = \Omega(x) \quad \text{when} \quad r > 0 \quad \text{and} \quad x \in R^n \setminus \{0\} ,$$

$$|\Omega(x) - \Omega(y)| \le |x - y| \quad \text{when} \quad |x| = |y| = 1 ,$$

and that

$$Kf(x) = P. \ V. \int_{\mathbb{R}^n} \Omega(x-y) |x-y|^{-n} f(y) dy$$
.

Let

$$K'f(x) = P. \ V. \int_{\mathbb{R}^n} \Omega(y-x) |y-x|^{-n} f(y) dy$$
.

R. Coifman, R. Rochberg and G. Weiss showed the weak version of the factorization theorem of $H^1(\mathbb{R}^n)$ and that was refined by Uchiyama in the following form.

THEOREM A. If $1 < q < \infty$ and 1/q + 1/r = 1, then

$$egin{aligned} c_{K,q} ||f||_{H^1(R^n)} & \leq \inf \left\{ \sum_{i=1}^\infty ||g_i||_{L^q} ||h_i||_{L^r} \colon
ight. \ f & = \sum_{i=1}^\infty \left(h_i K g_i \, - \, g_i K' h_i
ight)
ight\} \, \leq \, c'_{K,q} ||f||_{H^1(R^n)} \; . \end{aligned}$$

In this note, we extend Theorem A to $H^p(X)$, where $p \in (1 - \varepsilon_X, 1]$ and X is a space of homogeneous type with certain assumptions.

1. Preliminaries. In the following, A>1 and $\gamma \leq 1$ are positive constants depending only on the space X.

Let X be a topological space endowed with a Borel measure μ and a quasi-distance d such that

$$(1) d(x, y) \ge 0$$

$$(2) d(x, y) > 0 iff x \neq y$$

$$d(x, y) = d(y, x)$$

$$d(x, z) \leq A(d(x, y) + d(y, z))$$

$$|d(x, z) - d(x, y)|/d(x, y) \le A(d(z, y)/d(x, y))^{\gamma}$$
 if $d(z, y) < d(x, y)/(2A)$

$$(6) t/A \leq \mu(B(x, t)) \leq t$$

for all x, y, z in X and all $t \in (0, A\mu(X))$, where $B(x, t) = \{y \in X: d(x, y) < t\}$. We postulate that $\{B(x, t)\}_{t \in (0, A^{\mu(X)})}$ form a basis of open neighborhoods of the point x.

Let $\varphi(t) \in C^{\infty}(0, \infty)$ be a fixed nonnegative function such that $\varphi(t) = 0$ on (0, 1/2), $\varphi(t) = 1$ on $(1, \infty)$ and $|d\varphi/dt| < 3$.

Further, we assume that X is endowed with a function k(x, y) defined on $X \times X$ such that

$$|k(x, y)| \le 1/d(x, y) \quad \text{for all} \quad x, y \in X$$

$$\sup\{|k(x, y)|: y \in X \text{ satisfying } A^{-2}t \leq d(x, y) \leq t\} \geq 1/(At)$$

(8)
$$\sup\{|k(y, x)|: y \in X \text{ satisfying } A^{-2}t \leq d(x, y) \leq t\} \geq 1/(At)$$
 for all $x \in X$ and all $t \in (0, A\mu(X))$

$$(9) \quad |k(x, y) - k(x, z)|, |k(y, x) - k(z, x)| \leq (d(y, z)/d(x, y))^{\gamma}/d(x, y)$$
 if $d(y, z) < d(x, y)/(2A)$

and that for any $f \in L^2(X)$

$$egin{align} Kf(x)&=\lim_{t
ightarrow+0}\int\!\!k(x,\,y,\,t)f(y)d\mu(y), \ K'f(x)&=\lim_{t
ightarrow+0}\int\!\!k(y,\,x,\,t)f(y)d\mu(y). \end{align}$$

exist almost everywhere and

$$||Kf||_2 \leq ||f||_2, ||K'f||_2 \leq ||f||_2,$$

where

$$k(x, y, t) = k(x, y)\varphi(d(x, y)/t)$$

and $||g||_p$ denotes $\left(\int_X |g(y)|^p d\mu(y)\right)^{1/p}$. For $x \in X$ and $t \in (0, A\mu(X))$, let

$$T(x, t) = \{ \Psi \in C(X) :$$

(11)
$$\operatorname{supp} \Psi \subset B(x, t)$$

$$(12) |\Psi(y)| \le 1/t$$

$$|\Psi(y) - \Psi(z)| \leq (d(y, z)/t)^{\gamma}/t \quad \text{for any} \quad y, z \in X\}.$$

For $f \in L^1(X)$ and $p > 1/(1 + \gamma)$, let

$$f^*(x) = \sup_{\scriptscriptstyle t \, \in \, (0,A^{p}(X))} \, \sup_{\scriptscriptstyle \Psi \, \in \, T(x,t)} \, \left| \int \! f(y) \varPsi(y) d\mu(y) \right| \quad ||\, f \, ||_{H^p} = ||\, f^* \, ||_p \, \, .$$

If p>1, then $||f||_{H^p}\approx ||f||_p$ by the Hardy-Littlewood maximal theorem and we define $H^p(X)=L^p(X)$. If $1/(1+\gamma)< p\leq 1$, then we define $H^p(X)$ to be the completion of $\{f\in L^1(X)\colon ||f||_{H^p}<\infty\}$ by the metric $||f-g||_{H^p}^p$.

A comment on notation: The letter C denotes a positive constant depending only on A and γ . The various uses of C do not all denote the same constant. All the functions considered are real valued functions.

2. The results. Our results are the following.

THEOREM 1. If $1/p=1/q+1/r<1+\gamma$, $0<1/q<1+\gamma$, $0<1/r<1+\gamma$, $g\in H^q\cap L^2$ and $h\in H^r\cap L^2$, then

$$||hKg - gK'h||_{H^p} \leq c_{q,r}||g||_{H^q}||h||_{H^r}$$

where $c_{q,r}$ is a positive constant depending on q, r and X.

REMARK 1. As a consequence of this theorem, for any $g \in H^q$ and any $h \in H^r$ we can define hKg - gK'h as the limit of $\{h_iKg_j - g_jK'h_j\}_{j=1}^{\infty}$ in H^p , where $\{g_j\}_{j=1}^{\infty} \subset H^q \cap L^2$ converges to g in H^q and $\{h_j\}_{j=1}^{\infty} \subset H^r \cap L^2$ converges to h in H^r .

THEOREM 2. If $\mu(X)=\infty$, $1\leq 1/p=1/q+1/r<1+\gamma$, $0\leq 1/q<1+\gamma$, $0\leq 1/r<1+\gamma$ and $f\in H^p$, then there exist $\{g_j\}_{j=1}^\infty\subset H^q$ and $\{h_j\}_{j=1}^\infty\subset H^r$ such that

$$f = \sum\limits_{j=1}^{\infty} \left(h_j K g_j - g_j K' h_j
ight)$$
 ,
$$(\sum \left(||g_j||_{H^q} ||h_j||_{H^r}
ight)^p)^{1/p} \leqq c_{q,r} ||f||_{H^p} \; .$$

As a result of these theorems, we get

COROLLARY 1. If $\mu(X)=\infty$, $1\leq 1/p=1/q+1/r<1+\gamma$, $0<1/q<1+\gamma$, $0<1/r<1+\gamma$ and $f\in H^p$, then

$$\begin{split} c_{q,r}||f||_{H^p} & \leq \inf \left\{ \left(\sum_{j=1}^{\infty} (||g_j||_{H^q}||h_j||_{H^p})^p \right)^{1/p} \colon \right. \\ & f = \sum_{i=1}^{\infty} \left(h_j K g_j \, - \, g_j K' h_j \right) \right\} \, \leq c'_{q,r}||f||_{H^p} \; . \end{split}$$

EXAMPLE 1. Let $X = R^n$, $d(x, y) = |x - y|^n \omega_n = (\sum_{j=1}^n (x_j - y_j)^2)^{n/2} \omega_n$, μ be the Lebesgue measure and let $k(x, y) = \Omega(x - y)|x - y|^{-n}$, where ω_n is the volume of the unit ball of R^n and Ω satisfies (*). Then, by taking $\gamma = 1/n$ and by taking A sufficiently large depending on

 Ω , the conditions $(1) \sim (10)$ can be satisfied. In this case, the above definition of H^1 coincides with the definition of $H^1(R^n)$ given by Fefferman-Stein [5]. Thus, Corollary 1 is an extension of Theorem A.

EXAMPLE 2. Let $A_t = t^P(0 < t < \infty)$ be a group of linear transformation on R^n with infinitesimal generator P satisfying $(Px, x) \ge (x, x)$, where (,) is the usual inner product in R^n . For each $x \in R^n$ let $\rho(x)$ denote the unique t such that $|A_t^{-1}x| = 1$. Let $\Omega(x)$ be such that

$$egin{aligned} &\int_{|x|=1} & \varOmega(x)(Px,\,x) = 0 \;, \quad \varOmega \not\equiv 0 \;, \ & \varOmega(A_tx) = & \varOmega(x) \;\; ext{when} \;\; t>0 \;\; ext{and} \;\; x \in R^n ackslash \{0\} \ & |\varOmega(x) - \varOmega(y)| \leq |x-y| \;\;\; ext{when} \;\;\; |x| = |y| = 1 \;. \end{aligned}$$

Let $X = R^n$, $d(x, y) = \rho(x - y)^{\nu}\omega_n$, μ be the Lebesgue measure and let $k(x, y) = \Omega(x - y)/d(x, y)$, where $\nu = \text{tr } P$. Then, by taking $\gamma = 1/\nu$ and by taking A sufficiently large depending on P and Ω , the conditions $(1) \sim (10)$ can be satisfied. [See Riviere [12].]

If we remove the condition $\mu(X)=\infty$, we can show the following a little weaker result.

THEOREM 2'. If $\mu(X)<\infty$, X is connected, $1\leq 1/p=1/q+1/r<1+\gamma$, 1< q, 1< r, $f\in H^p$ and $\int \!\! f d\mu=0$, then there exist $\{g_j\}_{j=1}^\infty \subset L^q$ and $\{h_j\}_{j=1}^\infty \subset L^r$ such that

$$\begin{split} f &= \sum_{j=1}^{\infty} \left(h_j K g_j \, - \, g_j K' h_j \right) \\ &\quad \left(\sum \left(||\, g_j\,||_q \, ||\, h_j\,||_r \right)^p \right)^{1/p} \leqq c_{q,\,r} ||\, f\,||_{H^p} \; . \end{split}$$

Corollary 1'. If $\mu(X) < \infty$, X is connected, $1 \le 1/p = 1/q + 1/r < 1 + \gamma$, $1 < q < \infty$, $1 < r < \infty$, $f \in H^p$ and $\int \!\! f d\mu = 0$, then

$$\begin{split} c_{q,r} ||f||_{H^p} & \leq \inf \left\{ \left(\sum_{j=1}^{\infty} \left(||g_j||_q ||h_j||_r \right)^p \right)^{1/p} \colon \right. \\ & \left. f = \sum_{j=1}^{\infty} \left(h_j K g_j - g_j K' h_j \right) \right\} \leq c'_{q,r} ||f||_{H^p} \; . \end{split}$$

Remark 2. When $\mu(X) < \infty$, for $f \in L^{\scriptscriptstyle 1}(X)$ we can easily show

$$\left| \int f d\mu \right| \leq C \inf_{x \in X} f^*(x) .$$

Thus, for any $f\in H^p$ we can define $\int\!\!f d\mu$ by $\lim_{n\to\infty}\int\!\!f_n d\mu$, where $\{f_n\}\subset$

 $L^1 \cap H^p$ and $\lim f_n = f$ in H^p . And it follows easily that

$$\left| \int \!\! f d\mu \, \right| \leq c_{\scriptscriptstyle p} ||f||_{H^p} \; .$$

3. The basic lemmas.

DEFINITION 1. If $1/(1+\gamma) , we say that a function <math>a(y)$ is a p-atom if there exists a ball B(x,t) such that

(20)
$$\sup a \subset B(x, t), ||a||_{\infty} \leq t^{-1/p}, \int_{X} a d\mu = 0.$$

We can show easily that $||a||_{H^p} \leq c_p$.

DEFINITION 2. For $f \in L^1 + L^2$, q > 0 and $\alpha > 0$, let

$$egin{aligned} M_q f(x) &= \sup_{t>0} \left(\int_{B(x,t)} |f|^q d\mu / t
ight)^{1/q} \ K^* f(x) &= \sup_{t>0} \left| \int_{B(x,t)} |f|^q d\mu / t
ight)^{1/q} \ K'^* f(x) &= \sup_{t>0} \left| \int_{B(x,t)} |f|^q d\mu / t
ight)^{1/q} \ f^{*[lpha]}(x) &= \sup_{t>0} \sup_{y \in T_{lpha}(x,t)} \left| \int_{A} f \Psi d\mu
ight| \end{aligned}$$

where

(21)
$$T_{\alpha}(x, t) = \{ \Psi \in C(X) : |\Psi(z)| \leq t^{\gamma} (t + d(x, z))^{-1-\gamma} \\ |\Psi(z) - \Psi(y)| \leq d(z, y)^{\gamma} d(x, z)^{-1-\gamma} \quad \text{if} \quad d(z, y) < \alpha d(x, z) \}.$$

LEMMA 1. If p > q, then

$$||M_q f||_p \leq c_{p,q} ||f||_p$$
.

This is an immediate consequence of the Hardy-Littlewood maximal theorem. We omit the proof.

Lemma 2. If
$$d(y,z) \leq d(x,y)/(2A)$$
, then
$$d(x,y)/(2A) \leq d(x,z) \leq 2Ad(x,y) \; .$$

This follows easily from (4). We omit the proof.

LEMMA 3. If
$$t>0$$
 and if $d(y,z) \leq d(x,y)/(2A)$, then
$$|\varphi(d(x,y)/t) - \varphi(d(x,z)/t)| = 0 \quad \text{if} \quad d(x,y) \notin (t/(4A),2At) \text{ ,}$$

$$\leq C(d(y,z)/d(x,y))^{\gamma}$$

otherwise.

Proof. Set $w = \varphi(d(x,y)/t) - \varphi(d(x,z)/t)$. If $d(x,y) \le t/(4A)$, then, by Lemma 2, $d(x,z) \le t/2$. Thus, w = 0 - 0 = 0. If $d(x,y) \ge 2At$, then, by Lemma 2, $d(x,z) \ge t$. Thus, w = 1 - 1 = 0. If t/(4A) < d(x,y) < 2At, then, by (5),

$$|w| \le C |d(x, y) - d(x, z)|/t \le C(d(y, z)/d(x, y))^{\gamma}$$
.

Lemma 4. If
$$t>0$$
 and if $d(y,z) \leq d(x,y)/(2A)$, then
$$|k(x,y,t)-k(x,z,t)| \leq Cd(y,z)^{\gamma}d(x,y)^{-1-\gamma}$$
$$|k(y,x,t)-k(z,x,t)| \leq Cd(y,z)^{\gamma}d(x,y)^{-1-\gamma}.$$

Proof. We show only the first inequality. Note that

(22)
$$|k(x, y, t) - k(x, z, t)| \leq |k(x, y) - k(x, z)| \varphi(d(x, y)/t) + |k(x, z)| |\varphi(d(x, y)/t) - \varphi(d(x, z)/t)|.$$

By (9), the first term of (22) is dominated by $d(y, z)^{\gamma} d(x, y)^{-1-\gamma}$. By Lemma 2, Lemma 3 and (7), the second term of (22) is also dominated by $Cd(y, z)^{\gamma} d(x, y)^{-1-\gamma}$.

Lemma 5. Let $1/(1+\gamma) and <math>u \in H^p$. Then, there exist a sequence of real numbers $\{\lambda_j\}_{j=1}^{\infty}$ and a sequence of p-atoms $\{a_j\}_{j=1}$ such that

$$(23) \qquad u(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x) \quad in \quad H^p \quad when \quad \mu(X) = \infty ,$$

$$u(x) = \sum_{j=1}^{\infty} \lambda_j a_j(x) + \int u d\mu/\mu(X) \quad in \quad H^p \quad when \quad \mu(X) < \infty ,$$

$$\left(\sum_{j=1}^{\infty} |\lambda_j|^p\right)^{1/p} \leq c_p ||u||_{H^p} .$$

This is the atomic decomposition of $H^p(X)$ which was shown by Macias-Segovia [10].

LEMMA 6. Let $1/(1+\gamma) , <math>u \in L^1$, supp $u \subset B(x_0, t)$ and $t \in (0, A\mu(X))$. Then, there exists a sequence of real numbers $\{\lambda_j\}_{j=1}^{\infty}$ and a sequence of p-atoms $\{a_j\}_{j=1}^{\infty}$ such that

$$\begin{array}{l} u(x)=\sum\limits_{j=1}^{\infty}\lambda_{j}a_{j}(x)+\lambda_{0}a_{0}(x)\\ \\ \left(\sum\limits_{j=0}^{\infty}\left|\lambda_{j}\right|^{p}\right)^{\!1/p} \leqq c_{p}\!\!\left(\int_{B\left(x_{0},2At\right)}\!\!u^{*p}d\mu\right)^{\!1/p}\text{,} \end{array}$$

where

$$\lambda_{\scriptscriptstyle 0} = \int \!\! u d\mu t^{\scriptscriptstyle 1/p} \! / \mu(B(x_{\scriptscriptstyle 0},\,t))$$
 , $a_{\scriptscriptstyle 0}(x) = t^{\scriptscriptstyle -1/p} \! \chi_{_{B(x_{\scriptscriptstyle 0},\,t)}}\!(x)$

and χ_E denotes the characteristic function of a measurable set E.

Note that $\left|\int u d\mu\right|/t \le C \inf_{x \in B(x_0, 2At)} u^*(x)$. Then, applying Lemma 5 to $u - \lambda_0 a_0$, we get Lemma 6.

LEMMA 7. Let $1/(1+\gamma) . Then,$

$$||f^{*[\alpha]}||_{p} \leq c_{p,\alpha}||f||_{H^{p}}.$$

Proof. It can be shown easily that

$$f^{*[\alpha]}(x) \leq c_{\alpha} M_1 f(x)$$
.

Thus, if p > 1, (25) follows from the Hardy-Littlewood maximal theorem.

Let $1/(1+\gamma) . Note that if <math>\mu(X) < \infty$, then it is trivial that $||\mathcal{X}_{x}^{*[\alpha]}||_{p} \le c_{p} ||\mathcal{X}_{x}^{*[\alpha]}||_{\infty} \le c_{p,\alpha}$. Thus, by Lemma 5, it suffices to show (25) for a p-atom a(y) satisfying (20). If $y \in B(x, t/\alpha)^{c}$, s > 0 and $\Psi \in T_{\alpha}(y, s)$,

$$\begin{split} \left| \int & a(z) \Psi(z) d\mu(z) \right| \\ &= \left| \int & a(z) (\Psi(z) - \Psi(x)) d\mu(z) \right| \\ &\leq \int_{B(x,t)} & t^{-1/p} d(z,x)^{\gamma} d(x,y)^{-1-\gamma} d\mu \text{ by (21)} \\ &\leq t^{1-1p+\gamma} d(x,y)^{-1-\gamma} . \end{split}$$

Thus,

(26)
$$a^{*[\alpha]}(y) \leq t^{1-1/p+\gamma} d(x, y)^{-1-\gamma}.$$

If $y \in B(x, t/\alpha)$, then

$$a^{*[\alpha]}(y) \leq c_{\alpha} t^{-1/p} .$$

Hence, by (26) and (27),

$$||a^{*[\alpha]}||_p^p \leq c_{p,\alpha}$$
.

LEMMA 8. Let $1/(1+\gamma) . Then,$

(29)
$$||K'^*f||_p \leq c_p ||f||_{H^p}.$$

Proof. If p > 1, then these follow from the well known argument about the maximal singular integral.

Let $1/(1+\gamma) . We show only (28). Note that if <math>\mu(X) < \infty$, then it follows easily that

$$||K^*\chi_X||_p \leq c_p ||K^*\chi_X||_2 \leq c_p ||\chi_X||_2 \leq c_p$$
.

Thus, by Lemma 5, it suffices to show (28) for a p-atom a(y) satisfying (20). If d(x, y) > 2At and s > 0, then

$$egin{aligned} \left| \int & k(y,\,z,\,s) a(z) d\mu(z)
ight| \ &= \left| \int & \left(k(y,\,z,\,s) - k(y,\,x,\,s)
ight) a(z) d\mu(z)
ight| \ &\leq C \int_{B(x,t)} & d(x,\,z)^{\gamma} d(x,\,y)^{-1-\gamma} t^{-1/p} d\mu \ \ ext{by Lemma 4} \ &\leq C t^{1-1/p+\gamma} d(x,\,y)^{-1-\gamma} \ . \end{aligned}$$

Thus,

(30)
$$K^*a(y) \le Ct^{1-1/p+\gamma}d(x, y)^{-1-\gamma}.$$

On the other hand, since (28) has been known for p = 2, we get

$$(31) \qquad \int_{{}^{B(x,2At)}} |K^*a|^p d\mu \leqq C t^{1-p/2} \Bigl(\int |K^*a|^2 d\mu \Bigr)^{p/2} \leqq C t^{1-p/2} ||a||_2^p \leqq C \; .$$

Thus, by (30) and (31), we get

$$\int |K^*a|^p d\mu \le c_p \ .$$

Lemma 9. Let $\zeta(x, y)$ be a function defined on $X \times X$ such that

(33)
$$|\zeta(x, y)| \leq d(x, y)^{\gamma - 1}$$

$$|\zeta(x, y) - \zeta(x, z)| \leq d(y, z)^{\gamma} / d(x, y)$$

if d(y, z) < d(x, y)/(2A). Let $u \in L^2$, supp $u \subset B(x_0, t)$, $t \in (0, A\mu(X))$

(34)
$$v(x) = \int \zeta(x, y) u(y) d\mu(y)$$

and $1 + \gamma > 1/s_1 > \gamma$. Then,

$$\left(\int_{B(x_0,t)} |v|^{s_2} d\mu\right)^{1/s_2} \le c_{s_1} \left(\int_{B(x_0,2At)} (u^*)^{s_1} d\mu\right)^{1/s_1}$$

where $1/s_2 = 1/s_1 - \gamma$.

Proof. If $s_1 > 1$, this can be shown in the same way as [13]

120. Let $1/(1+\gamma) < s_1 \le 1$. Applying Lemma 6 to u(x) and $p = s_1$, we get $\{\lambda_j\}_{j=0}^{\infty}$ and $\{\alpha_j(x)\}_{j=0}^{\infty}$ such that (24). For $j = 1, 2, 3 \cdots$, let

(36)
$$B(x_i, t_i) \supset \text{supp } a_i, t_i^{-1/s_1} \ge ||a_i||_{\infty}.$$

For $j = 0, 1, 2, \dots$, let

(37)
$$v_j(x) = \int \zeta(x, y) a_j(y) d\mu(y) .$$

Then,

$$|v_0(x)| \leq C t^{\gamma - 1/s_1} \\ |v_j(x)| \leq C \min(t_i^{\gamma - 1/s_1}, t_i^{1+\gamma - 1/s_1}/d(x, x_j)) \quad \text{for} \quad j \geq 1 \ .$$

Thus, by (24) and $s_1 \leq 1 < s_2$,

$$(39) \qquad \begin{aligned} \left(\int_{B(x_0,t)} |v|^{s_2} d\mu \right)^{1/s_2} & \leq \sum_{j=0}^{\infty} |\lambda_j| \left(\int_{B(x_0,t)} |v_j|^{s_2} d\mu \right)^{1/s_2} \\ & \leq c_{s_1} \sum |\lambda_j| \leq c_{s_1} (\sum |\lambda_j|^{s_1})^{1/s_1} \\ & \leq c_{s_1} \left(\int_{B(x_0,2At)} (u^*)^{s_1} d\mu \right)^{1/s_1}. \end{aligned}$$

4. Proof of Theorem 1. We may assume $q \le r$. Then r > 1. Let $x \in X$ be fixed. Let $t \in (0, A\mu(X))$ and $\Psi \in T(x, t)$. Then

$$\begin{array}{c} \int \!\! \varPsi(y)(h(y)Kg(y)-g(y)K'h(y))d\mu(y)\\ \\ =\int \!\! (\varPsi(y)Kg(y)-K(\varPsi g)(y))h(y)d\mu(y) \;. \end{array}$$

Set

$$\eta(y, z) = k(y, z)(\Psi(y) - \Psi(z))g(z)$$
.

Note that

$$\Psi(y)Kg(y) - K(\Psi g)(y) = \int \eta(y,z)d\mu(z)$$
.

Let

(41)
$$d(x, y) > 16A^4t$$
.

Then $\Psi(y) = 0$. Set

$$\begin{array}{l} \int \!\! \eta(y,\,z) d\mu(z) = \, -k(y,\,x) \int \!\! \varPsi(z) g(z) d\mu(z) \\ \\ + \int \!\! (k(y,\,x) \,-\,k(y,\,z)) \varPsi(z) g(z) d\mu(z) \end{array}$$

$$=\eta_{1}(y)+\int\!\zeta_{2}(y,z)g(z)d\mu(z)=\eta_{1}(y)+\eta_{2}(y)$$
 .

If $z \in \text{supp } \Psi$, then, by (41),

$$d(x, z) < d(y, x)/(2A)$$
.

Hence, by (9) and (12),

$$|\zeta_2(y,z)| \le d(x,y)^{-1-r}t^{r-1}.$$

If z_1 , $z_2 \in B(x, 2At)$, then, by (41) and Lemma 2,

$$d(x, z_1) < d(y, x)/(2A)$$
 and $d(z_1, z_2) < d(y, z_1)/(2A)$.

Hence, by (9), (12) and (13),

$$egin{array}{ll} |\zeta_{2}(y,\,oldsymbol{z}_{1}) &- \zeta_{2}(y,\,oldsymbol{z}_{2})| \ &\leq |k(y,\,oldsymbol{x}) - k(y,\,oldsymbol{z}_{1})| \ |\Psi(oldsymbol{z}_{1}) - \Psi(oldsymbol{z}_{2})| + |k(y,\,oldsymbol{z}_{1}) - k(y,\,oldsymbol{z}_{2})| \ |\Psi(oldsymbol{z}_{2})| \ &\leq C(d(oldsymbol{z}_{1},\,oldsymbol{z}_{2})/t)^{\gamma}t^{\gamma-1}d(x,\,y)^{-1-\gamma} \ . \end{array}$$

Thus, by (43), (44) and supp $\zeta_2(y, \cdot) \subset B(x, t)$,

$$Ct^{-\gamma}d(x, y)^{1+\gamma}\zeta_2(y, \cdot) \in T(x, t)$$
.

So,

(45)
$$|\eta_{2}(y)| \leq Cd(x, y)^{-1-\gamma}t^{\gamma}g^{*}(x) .$$

Let

$$d(x, y) \le 16A^4t.$$

Set

$$\int \eta(y,z)d\mu(z) = \Psi(y)\int k(x,z)\varphi(d(x,z)/(\beta t))g(z)d\mu(z)
+ \Psi(y)\int (k(y,z) - k(x,z))\varphi(d(x,z)/(\beta t))g(z)d\mu(z)
+ \int k(y,z)(\Psi(y) - \Psi(z))\varphi'(d(x,z)/(\beta t))g(z)d\mu(z)\chi_{B(x,16A^4t)}(y)
= \Psi(y)\int k(x,z,\beta t)g(z)d\mu(z) + \Psi(y)\int \zeta_4(y,z)g(z)d\mu(z)
+ \int \zeta_5(y,z)\varphi'(d(x,z)/(\beta t))g(z)d\mu(z)\chi(y)
= \eta_3(y) + \eta_4(y) + \eta_5(y),$$

where $\beta = 128A^6$ and $\varphi' = 1 - \varphi$.

Since β is sufficiently large, if $\varphi(d(x,z)/(\beta t)) \neq 0$, then

$$d(x, y) < d(x, z)/(2A)$$
.

Hence, by (9),

$$|\zeta_4(y,z)| \leq Ct^{\gamma}(t+d(x,z))^{-1-\gamma}.$$

Let

$$(49) d(z_1, z_2) < d(x, z_1)/(2A)^2.$$

Set

(50)
$$\begin{aligned} |\zeta_{4}(y, z_{1}) - \zeta_{4}(y, z_{2})| &\leq |k(x, z_{1}) - k(x, z_{2})| \varphi(d(x, z_{1})/(\beta t)) \\ &+ |k(y, z_{1}) - k(y, z_{2})| \varphi(d(x, z_{1})/(\beta t)) \\ &+ (|k(y, z_{2})| + |k(x, z_{2})|) |\varphi(d(x, z_{1})/(\beta t)) - \varphi(d(x, z_{2})/(\beta t))| \\ &= \zeta_{41} + \zeta_{42} + \zeta_{43} \ . \end{aligned}$$

By (49) and (9),

(51)
$$\zeta_{41} \leq Cd(z_1, z_2)^{\gamma} d(x, z_1)^{-1-\gamma}.$$

Since β is sufficiently large, if $\varphi(d(x, z_1)/(\beta t)) \neq 0$, then, by (46) and Lemma 2,

$$d(x, z_1)/(2A) \leq d(y, z_1)$$
.

Hence, by (49) and (9),

(52)
$$\zeta_{42} \leq d(z_1, z_2)^{\gamma} d(y, z_1)^{-1-\gamma} \varphi(d(x, z_1)/(\beta t)) \\ \leq C d(z_1, z_2)^{\gamma} d(x, z_1)^{-1-\gamma}.$$

By Lemma 2,

(53)
$$d(x, z_2) \ge d(x, z_1)/(2A) .$$

If $\zeta_{43} > 0$, then, by Lemma 3,

$$d(x, z_2) > \beta t/(4A)$$
.

So

$$d(x, y) \leq 16A^4t \leq 64A^5d(x, z_2)/\beta = d(x, z_2)/(2A)$$
.

Thus, by Lemma 2 and (53),

(54)
$$d(y, z_2) \ge d(x, z_2)/(2A) \ge d(x, z_1)/(2A)^2.$$

Hence, by (7), Lemma 3, (53) and (54),

(55)
$$\zeta_{43} \leq (d(y, z_2)^{-1} + d(x, z_2)^{-1})C(d(z_1, z_2)/d(x, z_1))^{\gamma}$$

$$\leq Cd(z_1, z_2)^{\gamma}d(x, z_1)^{-1-\gamma} .$$

So, by (48), (51), (52) and (55),

$$C\zeta_4(y, \cdot) \in T_{(2A)^{-2}}(x, t)$$
.

Thus,

(56)
$$|\eta_{4}(y)| \leq C |\Psi(y)| g^{*[(2.4)^{-2}]}(x) .$$

By (7) and (13),

$$|\zeta_{5}(y,z)| \leq t^{-1-\gamma}d(y,z)^{\gamma-1}.$$

If $d(z_1, z_2) < d(y, z_1)/(2A)$, then by (7), (9) and (13),

(58)
$$\begin{aligned} &|\zeta_{5}(y, z_{1}) - \zeta_{5}(y, z_{2})| \\ &\leq |k(y, z_{1})(\Psi(z_{1}) - \Psi(z_{2}))| + |k(y, z_{1}) - k(y, z_{2})| |\Psi(z_{2}) - \Psi(y)| \\ &\leq d(y, z_{1})^{-1}t^{-1-\gamma}d(z_{1}, z_{2})^{\gamma} + d(y, z_{1})^{-1-\gamma}d(z_{1}, z_{2})^{\gamma}t^{-1-\gamma}d(z_{2}, y)^{\gamma} \\ &\leq Cd(y, z_{1})^{-1}t^{-1-\gamma}d(z_{1}, z_{2})^{\gamma}. \end{aligned}$$

So, by (57) and (58), $Ct^{1+\tau}\zeta_{\mathfrak{s}}(y,z)$ satisfies the hypothesis of Lemma 9. Note that if $z \in B(x,2A\beta t)$,

$$(\varphi'(d(x,\,\cdot)/(\beta t))g(\,\cdot\,))^*(z) \le Cg^*(z) \ .$$

Thus, by Lemma 9, we get

where $\gamma < 1/s_1 < 1 + \gamma$ and $1/s_2 = 1/s_1 - \gamma$. By (42), (45), (47) and (56),

$$\int \!\! \gamma(y, z) d\mu(z) = - \int \!\! \Psi g d\mu k(y, x) arphi(d(y, x)/t) \, + \, \eta_{\scriptscriptstyle 5}(y) \, + \, \eta_{\scriptscriptstyle 6}(y) \, + \, \eta_{\scriptscriptstyle 6}(y)$$

where

$$|\gamma_{\mathrm{G}}(y)| \leq C g^{*[{}^{(2A)}^{-2}]}\!(x) t^{\mathrm{T}}\!(t+d(x,y))^{-1-\mathrm{T}}$$
 .

Thus.

(60)
$$|\langle 40 \rangle| \leq \left| \iint \eta(y, z) d\mu(z) h(y) d\mu(y) \right|$$

$$\leq C \left\{ g^*(x) K'^* h(x) + h^*(x) K^* g(x) + \int \eta_5(y) h(y) d\mu(y) + g^{*[(2.4)^{-2}]}(x) M_1 h(x) \right\} .$$

Since 1/p = 1/q + 1/r and $1/p < 1 + \gamma$, we can take s_1 such that $(61) \qquad 1 + \gamma > 1/s_1 > \max(1/q, \gamma), 1/s_2' = 1 - s_2 > 1/r.$

Then, by (59),

(62)
$$\int \eta_{5}(y)h(y)d\mu(y) \\ \leq \left(\int_{B(x,16A^{4}t)} |\eta_{5}(y)|^{s_{2}} d\mu(y) \right)^{1/s_{2}} \left(\int_{B(x,16A^{4}t)} |h|^{s_{2}'} d\mu \right)^{1/s_{2}'} \\ \leq c_{s} M_{s} g^{*}(x) M_{s} h(x) .$$

By (40), (60) and (62), we get

$$egin{align} (hKg-gK'h)^*(x) & \leq C \{g^*(x)K'^*h(x) + h^*(x)K^*g(x) \ & + M_{s,g}^*(x)M_{s2}h(x) + g^{*\lceil(2A)^{-2}
ceil}(x)M_1h(x)\} \;. \end{split}$$

All the terms on the right hand side belong to L^p by Lemma 1, Lemma 7, Lemma 8 and (61).

5. Proof of Theorem 2. By Lemma 5, we may assume that f is a p-atom such that

$$\mathrm{supp}\, f \subset B(x_{\scriptscriptstyle 0},\,t)$$
 , $||\,f\,||_{\scriptscriptstyle \infty} < t^{\scriptscriptstyle -1/p}$ and $\int \!\! f d\mu = 0$.

Let $q \leq r$. Then r > 1.

Let N be a large number depending only on X and p. Then, by (8), there exists y_0 such that

$$A^{-2}Nt \leq d(x_0, y_0) \leq Nt, |k(y_0, x_0)| > 1/(ANt)$$
 .

By (9),

$$\inf\{|k(y, x)|: d(x, x_0) < t, d(y, y_0) < t\} > 1/(2ANt)$$
.

Let

$$h(x) = \chi_{B(y_0,t)}(x)N.$$

Then, |K'h(x)| > C on $B(x_0, t)$. Let

$$g(x) = -f(x)/K'h(x_0).$$

Then, $g \in H^q$, $h \in H^r$ and

$$||g||_{H^q}||h||_{H^r} \le C(t^{-1/p+1/q})Nt^{1/r} = CN$$
.

Set

$$egin{aligned} w(x) &= f(x) - (h(x)Kg(x) - g(x)K'h(x)) \ &= f(x)(K'h(x_0) - K'h(x))/K'h(x_0) - h(x)Kg(x) \ &= w_1(x) + w_2(x) \;. \end{aligned}$$

Since supp $w_1 \subset B(x_0, t)$ and $||w_1||_{\infty} \leq t^{-1/p} N^{-\gamma}$, we see that

$$\begin{split} \int_{B(x_0,4A^2Nt)} & w_1^{*\,p}(x) d\, \mu(x) \\ & \leqq \int_{B(x_0,4A^2Nt)} t^{-1} N^{-\gamma\,p} (1 \, + \, d(x_0,\,x)/t)^{-p} d\, \mu(x) \\ & \leqq c_p N^{-\gamma\,p+1-p} \log \, N \; . \end{split}$$

A similar estimate holds for w_2 . Thus,

$$egin{aligned} \int_{B(x_0,4A^2Nt)} & w^{*p}(x) d\mu(x) \leq \int_{B(x_0,4A^2Nt)} & w_1^{*p} + w_2^{*p} d\mu \ & \leq c_p N^{-\gamma p+1-p} \log N \longrightarrow 0 \quad ext{as} \quad N \longrightarrow \infty \end{aligned}$$

Since supp $w \subset B(x_0, 2ANt)$ and $\int w d\mu = 0$, by taking N sufficiently large and applying Lemma 6 to w(x), we get

$$w(x) = \sum_{j=1}^{\infty} \lambda_j f_j(x)$$
 ,

where $\{f_j\}_{j=1}^{\infty}$ are *p*-atoms and

$$\sum\limits_{j=1}^{\infty}|\lambda_j|^p<1/2$$
 .

Hence,

$$f = (hKg - gK'h) + \sum_{j=1}^{\infty} \lambda_j f_j$$
.

Applying the same argument to each f_j and repeating this process, we get the desired result.

6. Proof of Theorem 2'. Since $\mu(X) < \infty$ and X is connected, we can easily see that for any $\varepsilon > 0$ and any p-atom a(x), there exist $\{a_j(x)\}_{j=1}^{\varepsilon_p} \varepsilon$ such that

$$a(x) = \sum_{j=1}^{c_{p,\varepsilon}} a_j(x)$$

and that each a_j is a p-atom supported on the ball with radius $<\varepsilon$.

Thus, for the proof of Theorem 2', we may assume that f is a p-atom such that the radius of its support is less than $N^{-1}\mu(X)$, where N is a sufficiently large number, depending only on X and p, to be determined later.

Following the proof of Theorem 2, we define h(x) by (70) and g(x) by

$$g(x) = -f(x)/K'h(x) .$$

Then,

$$w(x) = f(x) - (h(x)Kg(x) - g(x)K'h(x)) = -h(x)Kg(x).$$

Note that if $y \in B(y_0, t)$, then

$$egin{aligned} |Kg(y)| & \leq \left| \int \!\! k(y,z) f(z) d\mu(z) / K' h(x_0)
ight| \ & + \left| \int \!\! k(y,z) f(z) (1/K' h(x_0) - 1/K' h(z)) d\mu(z)
ight| \ & \leq C \int \!\! |k(y,z) - k(y,x_0)| \, |f(z)| d\mu(z) \ & + \int \!\! |k(y,z)| \, |f(z)| N^{-\gamma} d\mu(z) \ & \leq C \int \!\! (Nt)^{-1} N^{-\gamma} |f(z)| d\mu(z) \leq C N^{-1-\gamma} t^{-1/p} \; . \end{aligned}$$

Thus.

$$egin{aligned} & ||g\,||_q ||h\,||_r \leqq C ||f\,||_q ||h\,||_r \leqq C t^{-1/p+1/q} N t^{1/r} = C N \;, \ & \int \!\! w d\mu = 0 \;, \ & \mathrm{supp} \; w \subset B(y_0,\,t) \ & ||w\,||_\infty \leqq ||h\,||_\infty \, \mathrm{sup}_{y \,\in\, B(y_0,\,t)} \, |K g(y)| \leqq N C N^{-1-\gamma} t^{-1/p} \;. \end{aligned}$$

If N is sufficiently large, then 2w is a p-atom and the radius of its support is less than $N^{-1}\mu(X)$. Iterating this process, we get desired result.

ACKNOWLEDGMENT. I thank Professor M. Kaneko for helpful conversation and valuable information.

REFERENCES

- 1. A. P. Calderon and A. Torchinsky, Parabolic maximal functions associated with a distribution, Advances in Math., 16 (1975), 1-64.
- 2. R. R. Coifman, A real variable characterization of H^p , Studia Math., **51** (1974), 269-274.
- 3. R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635.
- 4. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569-645.
- 5. C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math., **129** (1972), 137-193.
- 6. J. B. Garnett and R. H. Latter, The atomic decomposition for Hardy spaces in several complex variables, Duke Math., J., 45 (1978), 815-845.
- 7. S. Janson, Mean oscillation and commutator of singular integral operators, Uppsala University Department of Math. Report No. 1977: 5.
- 8. R. H. Latter, A characterization of $H^p(\mathbb{R}^n)$ in terms of atoms, Studia Math., **62** (1978), 93-101.
- 9. R. H. Latter and A. Uchiyama, The atomic decomposition for parabolic H^p spaces, to appear.

- 10. R. Macias and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, preprint.
- 11. _____, Lipschitz functions on spaces of homogeneous type, preprint.
- 12. N. M. Riviere, Singular integrals and multiplier operators, Arkiv Mat., 9 (1971), 243-278.
- 13. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, 1970.
- 14. A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J., **30** (1978), 163-171.

Received October 1, 1979.

Tôhoku University Kawauchi, Sendai, Japan