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THE FACTORIZATION OF H? ON THE SPACE OF
HOMOGENEOUS TYPE

Ax1HITO UCHIYAMA

Let K be a Calderon-Zygmund singular integral operator
with smooth kernel. That is, there is an Q(x) defined on
R™\{0} which satisfies

S Q=0, 0%0,
lzl=1

(*) Q@rx) = 2(x) when 7>0 and xecR"\{0},
12(x) — 2| < |x—y| when |[x|=]|y]=1,
and that
Kf(x)=P. V. S Qx—3)1x — yI"f(ydy -
R'IL

Let
K0 =P.V.| 202y~ x"/0)dy
R’IL
R. Coifman, R. Rochberg and G. Weiss showed the weak ver-

sion of the factorization theorem of H'(R”) and that was
refined by Uchiyama in the following form.

THEOREM A. If 1< q< o and 1/q + 1/r =1, then
CK,q”fHIIl(R”) < inf {g‘i Hgillallhillpr:

F =3 0Kg = g KR} = cieallf e -

In this note, we extend Theorem A to H?(X), where pe (1 — ¢, 1]
and X is a space of homogeneous type with certain assumptions.

1. Preliminaries. In the following, A>1 and v<1 are positive
constants depending only on the space X.

Let X be a topological space endowed with a Borel measure p
and a quasi-distance d such that

(1) d(x, y) = 0

(2) d,y) >0 iff z+y
(3) dx, y) = d(y, x)

(4) d(z, 2) = A(d(z, y) + d(y, 2))
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ld(x, 2) — d(x, v)|/d(z, y) = A(d(z, y)/d(x, y))
if d(z, y) < d(x, y)/(24)

(6) t/A = (B, b)) = ¢

(5)

for all z, 94,2z in X and all te(0, A(X)), where B(z,t) ={yecX:
d(x, y) < t}. We postulate that {B(x, t)},c, urx) form a basis of open
neighborhoods of the point z.

Let o(t) e C*(0, ) be a fixed nonnegative function such that
@) =0 on (0,1/2), p(t) =1 on (1, ) and |dp/dt| < 3.

Further, we assume that X is endowed with a function i(x, y)
defined on X X X such that

(7) \k(x, y)| = 1/d(x, y) for all x,yeX

sup{|k(x, y)|: y € X satisfying A% < d(z, y) < t} = 1/(4%)
(8) sup{|k(y, )|: y € X satisfying A~ < d(x, y) = t} = 1/(At)
for all xe X and all ¢ <€ (0, A(X))

ez, y) — Kz, 2)|, [k(y, ») — k(z, 2)| < (d(y, 2)/d(x, v))'/d(z, y)

(9) .
if d(y, z) < d(z, y)/(24)

and that for any f e LX)
K@) = lim, .., \k(e, 4, 07 @iz
K () = lim,. [k, 2, 07 @dety)

exist almost everywhere and

(10) HEflL, = 11 UK Fll. = (1l
where
k(z, y, t) = k(z, y)p(d(x, y)/t)
and ||g||, denotes (SXlg(y)l”d;z(y)>”p .
For x e X and te (0, Ax(X)), let
T(x, t) = {¥TeC(X):

(11) supp ¥ C B(z, t)
(12) Tyl =1/t
(13) ' (y) — ¥(z)| =< (d(y, 2)/t)"/t for any y,ze X}.

For feL/X) and p >1/1 + v), let

\r@w@dea]| 151 =171 -

f*(®)= sup  sup
te (0,420(X)) ¥eT(x,t)
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If p>1, then || f|lz»~|| f ||, by the Hardy-Littlewood maximal theorem
and we define H?(X) = L*(X). If 1/1 +v) < p =1, then we define
H?(X) to be the completion of {f € LYX): || f|lz» < o} by the metric

If — gllk».
A comment on notation: The letter C denotes a positive constant

depending only on A and v. The various uses of C do not all denote
the same constant. All the functions considered are real valued
functions.

2. The results. Our results are the following.

THEOREM 1. If l/p=1/g+1/r<1+7,0<1/g<l +7,0<1/r<
1+v,9geH'NL and he H" N L?, then
[|hKg — gK'h|m» < 0,0 |19 ||aall B llgr
where ¢,, 158 a positive constant depending on q, r and X.
REMARK 1. As a consequence of this theorem, for any g H*®
and any he€ H™ we can define hKg — gK'h as the limit of {r,Kg; —

9;K'h;}7., in H®, where {g;}7, C H N L* converges to ¢ in H? and
{h;}7.,c H" N L* converges to h in H".

THEOREM 2. Ifpu(X) =00, 1=1/p=1/g+1/r<1+7,0Z1/g<
147, 0=21r <1+~ and feH? then there exist {g;}3, C H* and
{h;}¥;o. < H™ such that

f= ;31 (h;Kg; — 9;K'h;) ,
N gillaall s llar)?)? = g0l f v -

As a result of these theorems, we get

COROLLARY 1. If p#(X)=o0,1=Z1/p=1/g+1/r <1+ 0<
1/ <1+7,0<1/r <1+ 7 and fcH? then

o1 lr = 02 (0104 L )

f = 5 0sKg; = KR = 0irl| Fllas

ExAMPLE1l. Let X =R", d(z, y)=|2—y|"®, =(7-A2;— y;))""*@,,
be the Lebesgue measure and let k(x, y) = 2(x — y)|x — y|~", where
, is the volume of the unit ball of R" and © satisfies (*). Then,
by taking v = 1/n and by taking A sufficiently large depending on
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2, the conditions (1) ~ (10) can be satisfied. In this case, the above
definition of H' coincides with the definition of H'(R") given by
Fefferman-Stein [5]. Thus, Corollary 1 is an extension of Theorem A.

ExampPLE 2. Let A, =t(0 <t < =) be a group of linear trans-
formation on R™ with infinitesimal generator P satisfying (Px, z) =
(x, ), where (,) is the usual inner product in R*. For each x ¢ R"
let o(x) denote the unique ¢ such that [A;'z| =1. Let Q2(x) be such
that

S] _Q@)(Pr, ) =0, %0,

Q(Ax) = 2(x) when t > 0 and x € R"\{0}
Q@) — 2(y)| = |z —y| when [x|=]|y|=1.

Let X = R d(x, y) = p( — y)®,, ¢t be the Lebesgue measure and
let i(x, ) = 2« — y)/d(x, y), where v = tr P. Then, by taking v =
1/v and by taking A sufficiently large depending on P and 2, the
conditions (1) ~ (10) can be satisfied. [See Riviere [12].]

If we remove the condition y¢(X) = <o, we can show the following
a little weaker result.

THEOREM 2'. If m(X) < oo, X is conmnected, 1 < 1/p = 1/q + 1/r <
1+v1<q1<7r feH? and Sfd;z =0, then there exist {g;}7., C L*
and {h;}7-, C L" such that

f =3 (hKa; — 9,K'hy)
S Ugsllo TR 1" = ol f llan -
COROLLARY 1", If u(X) < oo, X is connected, 1 <1/p=1/qg+1/r <

L47,1<q< e, l1<r< oo, feH and Sfd/z:(), then

el £l < it {(5] gl 1hs117)
f= 5 0Kg; — ,KR)} = ¢l f o
REMARK 2. When p#(X) < oo, for fe L' (X) we can easily show
o] ot

Thus, for any f e H” we can define Sfd;c by lim and/x, where {f,} C
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L'N H? and lim f, = f in H?. And it follows easily that

[rar| = elif il

3. The basic lemmas.

DeFINITION 1. If 1/1 + 7v) < » <1, we say that a function a(y)
is a p-atom if there exists a ball B(x, t) such that

20) supp a < B(x, ¥), ||l < t-7, S adp =0 .
i

We can show easily that ||a]||z» = ¢,

DEeFINITION 2. For feL'+ L’ ¢ >0 and a >0, let
wfw) = s ({,,, ) o)
K*f(@) = sup |\ (a, 9, 01 @) ()|
K" f(@) = sup| |k(y, 2, 7 ) dr)|

Fr@) = sup sup | [rwan)
~ t>0 TeT,(x,t)
where

1) Tz, t) ={¥ eC(X): |¥(2)| = t'(t + d(x, 2))77
[P(z) — U(y)| < dlz, y)yd(z, )77 if dz, y) < ad(z, 2)} -
LEmMMA 1. If p > q, then
WM fll, = ool Flls -

This is an immediate consequence of the Hardy-Littlewood maximal
theorem. We omit the proof.

LemMA 2. If d(y, 2) = d(z, y)/(24), then
d(z, ¥)/(24) < d(z, 2) < 2Ad(x, ¥) .

This follows easily from (4). We omit the proof.

LeMMA 8. If ¢t >0 and if d(y, 2) = d(z, ¥)/(2A), then

lp(d(x, Y)ft) — p(d(=, 2)[t)| = 0 if d(x, y) € (¢/(44), 2A1) ,
= Cd(y, 2)/d(x, v))
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otherwaise.

Proof. Set w = @(d(x, y)/t) — p(d(x, 2)/t). If d(w, y) = t/(44),
then, by Lemma 2, d(x, z) < ¢/2. Thus, w=0—0=0. Ifd(x, v)=
2At, then, by Lemma 2, d(x, 2) = ¢t. Thus, w =1—1=0. If t/44)<
d(z, y) < 2At, then, by (5),

lw| = Cld(z, y) — d(2, 2)|/t = Cld(y, 2)/d(, ¥)) .

LEMMA 4. If t >0 and if dy, z) < d(x, ¥)/(24), then
k@, y, 1) — k(x, 2, 0] = Cd(y, 2)'d(x, y)~ 7
k(y, x, t) — k(z, z, 1) = Cd(y, z)'d(x, y)~ 7.

Proof. We show only the first inequality. Note that
k(x, y, t) — k=, 2, t)| = |k(x, ) — k(z, 2)|P(d(2, ¥)/T)
+ k(x, 2)| |p(d(z, y)/t) — p(d(z, 2)[t)] .

By (9), the first term of (22) is dominated by d(y, 2)7d(x, y)~*"". By
Lemma 2, Lemma 3 and (7), the second term of (22) is also dominated
by Cd(y, z)d(x, y)~'".

(22)

LemmA 5. Let 1/l + 7)< p =1 and uec H?. Then, there exist
a sequence of real mumbers {\;}7., and a sequence of p-atoms {a;};-,
such that

(23) w(x) = ixjaj(x) wm H? when pHX) = oo,
i=1
@) = 3 ) + Sud;t//é(X) in H? when (X)) < - |

(3 )™ = el

j=1

This is the atomic decomposition of H?(X) which was shown by
Macias-Segovia [10].

LEMMA 6. Let 1/1 +v) < p =<1, ue L', suppu C Bz, t) and t €
0, A(X)). Then, there exists a sequence of real numbers {\;}5-, and
a sequence of p-atoms {a;}5-,; such that

(@) = 3 0a @) + a)

A

where
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No = Sudmvz’m(B(xo, 1), @@ = t"ney (@)

and X, denotes the characteristic function of a measurable set K.

Note that ‘Kudﬂ l Jt £ Cinf, 54 040u*(@). Then, applying Lemma
5 to u — \a, wWe get Lemma 6.

LEMMA 7. Let 1/(1 + 7)< p = . Then,
(25) ”f*[a]!lp é cp,a“f”H" .

Proof. 1t can be shown easily that
FH®) < e M. f(x) .
Thus, if » > 1, (25) follows from the Hardy-Littlewood maximal

theorem.

Let 1/(1 4+ v) < p £ 1. Note that if #(X) < <o, then it is trivial
that ||[X¥]], < ¢, || X39]|, < ¢,.. Thus, by Lemma 5, it suffices to

show (25) for a p-atom a(y) satisfying (20). If ye B(x, t/a)’,s >0
and ¥ e T, (y, s),

ar@ans)|

e @ - v

ll

< S 7z, yd(w, )" dge by (21)

< e, y) T

Thus,

(26) a*(y) < ¢rrd(x, y) 7T
If y € B(x, t/a), then

(27) a*(y) < et

Hence, by (26) and (27),

la* [} = epa -

LemMMA 8. Let 1/ + 7)< p< . Then,
(28) ”K*f”p é cp“f”fﬂ’
(29) ”K,*f”p é cp”f”H” .
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Proof. If p > 1, then these follow from the well known argument
about the maximal singular integral.

Let 1/ +v) < p=1. We show only (28). Note that if /(X)) <
oo, then it follows easily that
HE Xill, S e[| K Xx | S el Xxll: € -

Thus, by Lemma 5, it suffices to show (28) for a p-atom a(y) satisfying
(20). If d(=, y) > 2At and s > 0, then

[k, 2 0@z
= ||tkw, 2, 9) — htw, v, e
=C S d(z, 2)d(z, y)~"t""*dg¢ by Lemma 4
Blz,t)
< Cp-vorrd(, y) T
Thus,

(30) K*a@/) é Ctl—l/p+rd<x’ y)—1~7 .

On the other hand, since (28) has been known for p = 2, we get

(81) IKMW#é@”%ﬂme@méC#WMM§c.
)

SB(x,ZAt

Thus, by (80) and (31), we get

(32) ' SIK""a[”d# <e,.

LemMA 9. Let {(x, y) be a function defined on X X X such that

K, )| = d(x, )

if d(y, 2) < d(x, ¥)/(24). Let u e L?, supp u C B(x,, t), t € (0, A X))

(33)

(34) mnga%ymwmmw
and 1 + v >1/s, > . Then,

1/s9 ys) /sy
(35) (SB(:co,t)[vlszd#> g csl(SB(xQﬂAt)(u‘) dﬂ)

where 1/s, = 1/s, — 7.

Proof. If s, > 1, this can be shown in the same way as [13]
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we get {\;}7, and {a;(x)};, such that (24). For j=1,28.--, let

120. Let 1/A + 7)< s, £1. Applying Lemma 6 to u(x) and p = s,,

(36) B(;, t;) D supp a;, 67 = || 0]l
For 7=0,1,2, -.. let
37) v(@) = @, vawidnw) .

Then,

[vo(@)| = Gt/
|v,(x)] < Cmin(g5 Yo, ti 71 /d(x, x;)) for j=1.

(38)

Thus, by (24) and s, 1 < s,,

1/sy © Lsg
<SB(ﬂco»ﬂlvl dﬂ) = %Ikﬁl <§B(x0,z)|vjl 2d#>
®9) < 00 3 I S 0 (S gy

1/8y
= csl(s (u*)”‘dﬂ> .
Bl(xg,241)

4. Proof of Theorem 1. We may assume ¢ < ». Then » > 1.
Let xe X be fixed. Let te(0, A(X)) and ¥ € T(x, t). Then

[F@) @ Kew) — 9 K hw)dsw)

(40)

= (TwEow) — KT @I@Mw) .
Set

(Y, 2) = Ky, )T (y) — ¥(@)g(z) .
Note that

W)Ko(w) - KOW) = |1, Ddptz) .
Let

(a) a(z, y) > 164' .

Then ¥(y) = 0. Set

[0, 2dn@ = —kw, » [F@oEdE)
(42

+ S(k(y, x) — k(y, 2))¥(2)g(2)d4(2)
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= 1) + |8, D@ = 7.0) + 7.W)

If zesupp ¥, then, by (41),
d(z, z) < d(y, x)/(24) .
Hence, by (9) and (12),
(43) &y, 2)| = d(w, )~ 778 .
If z, 2, € B(x, 24t), then, by (41) and Lemma 2,
d(z, z,) < d(y, ®)/(24) and d(z, z,) < d(y, 2,)/(2A) .
Hence, by (9), (12) and (13),

Gy, 20) — Gy, 2)]
(44) = k(y, ®) — k(y, 2)| 1¥(z) — C(=o)| + |k(y, z) — k(y, 2.) | | ¥(2,)]
= Cd(z,, z)/t)td(w, )7 .

Thus, by (43), (44) and supp &,(y, -) C Bz, t),
Ctd(z, y)' ¢y, ) e T(w, t) .

So,

(45) [7:(y)| = Cd(x, )~ "t7g*(2) .
Let

(46) d(z, y) < 16A4% .

Set

[1v, 212 = v @) {ie, 2)pta, 21(at0@anE)
£ 7w [y, 2) — ke, DGz, 2)/(ED)9@dxE)

+ Sk(y, 2)¥(y) — V()P (d(x, 2)/(8)9(2)A U)X s, 15480 (Y)
47
= U (y) Sk(w, 2, Bt)g(z)d () + ¥ (y) SQ(y, 2)g(2)d ()
+ e, D@, 2/E0n@dnELw)
= %(y) + 7]4(2/) + 775(?/) ’

where 8 = 1284° and ¢’ =1 — o.
Since g is sufficiently large, if o(d(z, 2)/(5t)) # 0, then

d(x, y) < d(z, 2)/(24) .
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Hence, by (9),

(48) tc‘*(y’ Z)[ = Ctr(t + d(m, 2)T .
Let

(49) d(z,, 2.) < d(z, 2,)/(2A)* .
Set

1€y, 2) — Ly, )| = |K(z, 2,) — Kz, 2,) | p(d(x, 2,)/(51))
+ |k(y, ) — k(y, 2.) | p(d(z, 2,)/(5L))
+ (1k(y, 22)| + |K(x, 2,)]) | 2(d(, 2)/(8t) — P(d(=, 2.)/(5E))]
= Cu + C42 + C43 .
By (49) and (9),

(81) Cu = Cd(z,, 2.)d(w, 2,)7' 7 .

(50)

Since g is sufficiently large, if o(d(z, 2,)/(8t)) = 0, then, by (46) and
Lemma 2,

d(, 2)/(24) = d(y, 2,) .
Hence, by (49) and (9),

Co = d(2y, 2,)d(y, 2)7 "P(d(x, 2,)/(8E))

(52) < Cd(z,, 2.)d(, 2)"" .
By Lemma 2,
(53) d(x, z,) = d(z, 2,)/(24) .

If {; >0, then, by Lemma 3,
d(z, z,) > Bt/(44) .
So
d(z, y) < 16 4% < 644°%(x, 2,)/8 = d(x, 2,)/(24) .
Thus, by Lemma 2 and (53),
(54) Ay, 2,) = d(z, 2,)/(24) = d(2, 2))/(24)" .
Hence, by (7), Lemma 3, (63) and (54),

€ = (d(y, 27" + d(, 2,))C(d(2,, 2,)/d(, 2,))
é Cd(zly z2)rd(w, zl)_l_r .

So, by (48), (51), (52) and (55),

(55)
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CC4(?/, ) € T(zA)’2(x9 t) .

Thus,

(56) )| = Cl¥ () |g* " ()
By (7) and (13),

(57) 1y, )| = t777d(y, 2) .

If d(z, 2.) < d(y, 2,)/(24), then by (7), (9) and (13),

IC5(?/, zl) - Cs(y, zz)l
= k(y, 2)T(z) — ()| + Ky, 2,) — k(y, 2,)| |¥(2) — T(v)]
< d(y, 2)7TA(2y 2.)7 + Ay, 2)7 (R, 2,) T TA(R,, )T
< Cd(y, )7 't777d(2,, 2,)7 .

(58)

So, by (57) and (58), Ct'*'{ (y, z) satisfies the hypothesis of Lemma
9. Note that if z € B(x, 2453¢),

(@'(d(z, )/(BE)9(-))*(2) = Cg*(z) .
Thus, by Lemma 9, we get

<§ B(a:,lGA‘t)l 775 ]szd#)l/sz

o = chlt“l—'”(S

(g ydp),

B(z,248t)

where v < 1/s, <1+ v and 1/s, = 1/s, — 7.
By (42), (45), (47) and (56),

[, e = ¥z, e, 10 + 7.0) + 240) + 70)

where
17sy)| < Cg*™ @)t (t + d(x, 1))~ .
Thus,
[40)] = “77(% 2)dp(2)h(y)dy)
(60)

< c{g*(x)K'*h(@ + 1*(@)K*g()
* S%(y)h(y)d#w) + g*“?‘“"zl(leh(x)} .

Since 1/p = 1/¢ + 1/r and 1/p < 1 + v, we can take s, such that
(61) 1+v>1/s;, >max(l/q,v),1l/si=1—35s, > 1/r.
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Then, by (59),

[rwnwadew)

1/89 , i
(62) = <SB(<¢: 1644t) |7]5(y) Iszd#(y)) <SB(<¢ 1sA4z)lhl82d#>l/82
< 6, M. g*(@)M,;h(x) .
By (40), (60) and (62), we get

(hKg — gK'h)*(x) =< C{g*(®)K"*h(x) + h*(x)K *g(x)
+ M, g*(®)Mah(x) + g*l* 7 z) M h(z)} .

All the terms on the right hand side belong to L* by Lemma 1,
Lemma 7, Lemma 8 and (61).

5. Proof of Theorem 2. By Lemma 5, we may assume that
f is a p-atom such that

supp f  B(w, 0), [ £l < ¢ and {fdp=0.

Let ¢ = 7. Then »» > 1.
Let N be a large number depending only on X and p. Then,
by (8), there exists y, such that

ANE < d(@o, Yo) = NE, [k(Yo, )| > 1/(ANE) .

By (9),

inf{| k(y, ®)|: d(z, x,) < t, d(y, ¥,) < t} > 1/(2ANt) .
Let
(70) h(@) = Xy n(®)N .

Then, |K’h(x)| > C on B(x,, t). Let
9(x) = — f(@)/K'h(x,) .
Then, g€ H%, he H" and
19l B ||gr < CE~V*+V9 )Nt = CN .
Set
w(x) = f(x) — (b(x)Kg(®) — g(x)K'h())
= f@)(K'h(z,) — K'h(x))/K'h(z,) — h(z)Kg(x)
= w,(x) + wy(2) .

Since supp w, C B(x,, t) and ||w,||.. < t"V?N~7, we see that
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| wi*@)d ()
Blwg,442N¢)

<

S N1+ dla,, 2)/8)?d ()
Blzg,442Nt)
< ¢, N7 =?log N .

A similar estimate holds for w,. Thus,

w*(z)dp(x) < § Wi+ wivdp

SB(ZOAAZNt) B(zg,442N'8)
S e, N7 ?logN—>0 as N—> co .

Since supp w < B(x,, 2ANt) and Swd;z =0, by taking N sufficiently
large and applying Lemma 6 to w(x), we get

w@) = 3 nf@),
where {f;}7-; are p-atoms and
g P <12
Hence,
f = (hKg — gK'h) + jij,lxjf,. .

Applying the same argument to each f; and repeating this process,
we get the desired result.

6. Proof of Theorem 2’. Since #(X) < o and X is connected,
we can easily see that for any ¢ >0 and any p-atom a(x), there
exist {a;(®)};2; such that

a(w) = 3 aa)

and that each a; is a p-atom supported on the ball with radius <e.
Thus, for the proof of Theorem 2’, we may assume that f is a
p-atom such that the radius of its support is less than N—'p(X),
where N is a sufficiently large number, depending only on X and
p, to be determined later.
Following the proof of Theorem 2, we define h(x) by (70) and

g(x) by
9(@) = — f(®)/K'h(z) .
Then,
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w(®) = f(x) — (h(x)Kg(®) — g(x)K'h(x)) = —h(x)Kg(x) .
Note that if y € B(y,, t), then

1K) < |\, 27 @dp@I KR
+ | fow, @WK BE) — UK M)
= C (lkty, ») — k(w, )| 1 £(2) | dpe@)
|k, 2)| | f(2)| N"dpe(2)

+
<c S(Nt)'lN‘TIf(z)ld#(z) < CN--1t-vr |

Thus,
gl ltrll, = Cllfll IR, = Ct-V*+NE'" = CN ,

Swd,u =0,

supp w C B(¥,, t)
wll. = [|k]].SuD,cnun| Kg(y)| = NCN-1E77

If N is sufficiently large, then 2w is a p-atom and the radius of its
support is less than N-'x(X). Iterating this process, we get desired
result.
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