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HOMOTOPY DIMENSION OF SOME ORBIT SPACES

Vo THANH LIEM

The homotopy dimension of a compact absolute neigh-
borhood retract space X is defined to be the least dimension
among all the finite CW-complexes which have the same
homotopy type of X. We show that actions of finite groups
or actions of tori (with finite orbit types) on a finite-dimen-
sional compact absolute neighborhood retract X do not raise
homotopy dimension if the homotopy dimension of X is not
two.

l Introduction and preliminaries* Through this note, all ac-
tions are of finite types.

In [7], Oliver gave an affirmative answer to Conner's conjecture:
"The orbit space of an action of a compact Lie group on a finite-
dimensional AR is an AR". From West [10], it follows that every
compact absolute neighborhood retract X (CANR X) has the homotopy
type of a finite complex. So, we can define the homotopy dimension
(h.d.) of a CANR X by

h.d. (X) = min {dimUL|iΓ is a finite complex and K = X} .

On the other hand, Conner [5] has shown that the orbit space of
an action of a compact Lie group on a finite-dimensional CANR is a
CANR. It is natural to wonder whether the actions of a compact
Lie group on a CANR can raise the homotopy dimension. We will
show that the homotopy dimension does not increase when h.d. (X) Φ 2
and when the action comes from either a finite group or a toral
group.

Combining a well-known result of Wall (Thm. F, [8]) and the
result of West [10] (mentioned above), we can easily obtain the
following lemma that will be needed in the sequel.

LEMMA 0. A CANR has the homotopy type of a k-dimensional
finite complex if and only if Hq(X; Z) — 0 for all q > k and
Hk+1(X; β) = 0 for every coefficient bundle β of Zπ^Xymodules over
X if k Φ 2. Moreover, if Hq(X; Z) = 0 for q > 2 and H\X; β) = 0;
then h.d. (X) ^ 3.

2* Orbits of action of finite groups* Let G be a cyclic group
of order p with a genertor g. The notation in [1] will be used as
follows 1 — g and 1 + g + + gv~γ will be denoted respectively by
τ and σ. If one of these is denoted by p, the other will be denoted
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by p. If β is a sheaf of Z^-modules over X/G, let A denote the sheaf

over X/G ,

where π*β is the pull back of β associated with the orbit map
π: X—> X/G. If U is an open subset of X/G, let Aσ denote the sheaf

[U {H'fr-iy; π*β\π^y)\yeU}]ϋ [{0y \y e X/G}]

and let AF (F closed in X/G) denote A/A{X/G)_F (refer to page 41 of

[1]).
It will be convenient to establish the following preliminary lem-

mas before we begin the proof of the main result.

LEMMA 1. Let G = Zp, p prime, act on a CANR X with fixed
point set F. Assume that m = dim X < oo and that βp is a bundle
of coefficients of Z^π^X/G)- modules over X/G. If h.d. (X) ̂  k, then
H%X/G; βp) = 0 for all q^k + 1.

Proof. Think of p and p as endomorphisms of the sheaf A and
denote their images respectively by pA and pA. Since Zp is a field,
it follows that the following sequence of sheaves over X/G

0 > p A > A - ^ p A 0 AF > 0

is exact, where pA —> A is the inclusion and where η: A —> AF is the
quotient homomorphism (Lemma 4.1 of [1]). This sequence induces
an exact cohomology sequence

> Hn(X/G; pA) > Hn(X/G; A)

; pA) 0 H%X/G; AF)

Let H\p) denote Hn(X/G; pA). Observe H\X/G; AF) = H\F;
βp\F); then, from the above cohomology sequence and the fact that
Hn(X/G; A) ~ Hn(X; π*βp) (see page 35, [1]), there are the following
exact sequences:

H%X; π*βp) > H«{σ) 0 H'(F; βp \ F) > H<+1(τ) ,

; π*βp) > H'+1(τ) 0 H«+1(F; βp\F) > H^\σ) ,

Hm(X;π*βp) >Hm{p)

Since h.d. (X) £ k, it follows from Lemma 0 that Hn(X, π*βp) = 0,
for all n^q^k + 1. On the other hand, Hm+\ρ) = 0 since

X = m < °°. Thus, we can show inductively that
( 1 ) HKX/G, F; βp) - H<(σ) - 0, and
( 2 ) H«(F;
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Hence, from the exact sequence of the pair (X/G, F)f

-* H'(X/G, F; βP) > H*(X/G; βp) > Hq(F; βp \ F) —* • • ,

it follows that Hq(X/G; βp) = 0; and the proof of lemma is complete.

LEMMA 2. Let G — Zp, p prime, act on a CANR X with fixed
point set F Φ 0 . Assume that dim X = m < °° and that β is a
bundle of coefficients of Zπ^modules over X/G. Then Hg(X/G; β) — 0
for all q ̂  k + 1, if h.d. (X) ̂  k.

Proof. Consider the following diagram

> Hq(X/G; β) Ά HKX/G; β) > H'(X/G; βP) > -

Hq(X; π*β) = 0

where μ* is the transfer map [1] and where the horizontal exact
sequence is from the exact sequence of bundles of coefficients over
X/G:

0 > β - ^ > β • βp > 0 .

So, it follows easily that Hq(X/G; β),= 0 if q ̂  k + 1, since Hq(X;
7Γ*/3) = 0 by Lemma 0 and Hg(X/G; βp) = 0 by Lemma 1. The proof
is now complete.

LEMMA 3. Let a finite group G act on X with fixed point set
F Φ 0 . If X has the homotopy type of a simplicial complex Kk,
then Hq(X/G; Z) = 0 for all q > k.

Proof. Let π*(X/G) be the pullback of the universal covering

space p: X/G —> X/G associated with the orbit map π: X —> X/G. Then,

the induced map P: π*(X/G) - ^ 1 is a covering map and the lifting

map 7Γ* of π is the orbit map of the induced action of G on π*(X/G).

Now, since X = K\ it follows that Hq(π*(X/G), Z) = 0 for q ^ k + 1.
Then, the Smith theorem in the integral homology theory shows that

Hq(x]G, Z) = 0 for q ̂  k + 1. (Similar to the proof of Lemma 2
above by use of the transfer map μ* on page 119 of [3].) Hence,
the proof is complete.

THEOREM 1. Suppose that a finite group G acts on a finite
dimensional CANR X. If h.d. (X) ̂  k and k Φ 2, then h.d. (X/G) ^ k.
Ifk = 2, h.d. (X/G ^ 3).
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Proof. Step 1. G — Zp, p prime.
Case 1. F= 0. See Lemma 2 of [6].
Case 2. F Φ 0 . It follows from Lemma 2 and Lemma 3 above

that
( 1 ) Hq(X/G; β) = 0, q^k + 1 and for any bundle coefficient β

over X/G,
( 2 ) Hq(X/G;Z) = 0, q^k + 1.
So, it follows from Lemma 0 that h.d. (X) <; k.

Step 2. G is cyclic of order pn, p prime. We prove inductively
on | G | , the order of G. Let H be a subgroup of G of order pn~γ

then, h.d. (X/H) ^ fc by induction hypothesis and the proof is com-
plete by Step 1.

Step 3. G is a finite p-group. First, by an inductive proof as
in Step 2 we may assume that G is abelian, since G is solvable.
Therefore, we can write G = Z%1 φ φ Z%k. Then, again an induc-
tive proof as above will complete the proof for this case.

Step 4. General case. The proof will be similar to that of
Theorem III. 5.2 in [1].

Suppose that |G | = plv pn

s

s and that Kό is a p rSylow subgroups
of G, and denote π2yj the canonical map X/K3 —> X/G for j = 1, 2, , s
as in [1]. Define π': H*(X/G; β) -> Σj=i H*(X/Kd; πίdβ) by

π' = π2*! + + τr2*s .

Observe that Hq(X/Kj; π*β) = 0 for <? ̂  & + 1 and j = 1, 2, , s
by Step 3 above. Hence, if we can show that πr is injective, then
Hg(X/G; β) = 0 for g ^ A: + 1. Therefore, the theorem will follow
by Lemma 0 and Lemma 3 above.

Now, let μ'ά\ H*{XIKά\πZiiβ) -> H*(KIG) β) be the tranfer map
[1] such that /*}TΓ2?J is the multiplication by \G\l\Kά\. If r e K e r π ' ,
then we have \G\j\K5\)-r = μ'sπi5{τ) = 0 for each i = 1, 2, ••-,«,
since TΓ^ = 0. Therefore, for each j = 1,2, - , s

Since the family p±l p ^ 1 PJJ+1 pj , j = 1, 2, , s, is relatively
prime, it follows that r = 0, and the proof is now complete.

3* Orbits of actions of total groups*

LEMMA 4. Suppose that the circle group S1 acts on a finite-
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dimensional CANR X. If h.d. (X) ̂  k, then H^X/S1; β) = 0 for all
q ^ k + 1 cmd /or αίi bundles of coefficients β over X/S1.

Proof. Assume that Hly , Hs are finite isotropy subgroups of
the action. Let G be a finite cyclic subgroup of S1 such that
Hlf - - , Hs are subgroups of G. Then h.d. (X/G) S- ft by the theorem
above. So, we may assume that the action is semi-free, i.e., it has
only two orbit types {e} and S1. Let β be a bundle of coefficients
of Zπrmoά\Λes over X/S\ where πx = π^X/S1). From Lemma 0, it
follows that iϊg(X; ττ*/3) = 0 for all q ^ k + 1, where TΓ: X->XjSι is
the orbit map.

Case 1. F= 0. Since the action is free, {H\π-1y;π*β):ye
X/S1} = /3 and {H\π-ιy\ π*β): y e X/S1} = ̂ . An observations on Leray
spectral sequence (as in Case 2) proves the lemma for this case.

Case 2. F Φ 0 . Since π"1^) = {e} or S\ we have
(1) Eϊ-° - H^X/S1; H\π-ιy; π*β \ π^y)) = H^X/S1; β),
( 2 ) S/'1 - H^X/S1; H\π~ιy\ π*/31 π~ιy)) = H«(X/S\ F; β), and
( 3 ) S?'s = 0 if 8 ̂  2.

We now proceed by induction on q. Since d imX< oo, we may as-
sume that H^X/S1; β) = 0 for q ^ ft + 2, then we will show that

1; β) - 0.

1. Γo sfeίnί; ίfeαί Hq(X/S\ F; β) = 0 /or g ^ ft + 1. By the
induction hypothesis, we observe that for each q ^ k + 2, the J??2-

term, i£?'0, of the Leray spectral sequence for the map π (page 140,
[2]) is trivial, since E2

q>° = H^X/S1; β) by (1). Observing the Leray
spectral sequence {E%'s} of TΓ, we can show that for all r ^ 2

(a) JSF+1*1 = E2

k+1'\
and

(b) ^+2'° = 0;
therefore,

(a1) E^1'1 = Hk+\X/S\ F; β) by (2),
and

(b1) EZ+2>° = 0.
Now, from the convergence of {E^s} to H*(X; π*β) and from the
fact that Hk+2(X; π*β) = 0 by Lemma 0, we can show that
Hk+\X/S\ F; β) - 0.

Step 2. To show that Hq(X, F; π*β) = 0 for q ^ k + 2. Consider
the Leray spectral sequence (page 140, [2]) of the map of pairs
TΓ: (X, F) -> (X/S1, F). First we observe that the sheaf ξ =
{H°(π-% π-^yΠF^π^βlπ-^lyeX/S1} and the sheaf y = {H\π-γyf
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π~\y Π F); π^βlπ'^ly eX/S1} are the same over X/S1, since π-\y) =
{e} or S1. Moreover, from the definition of the relative cohomology
(Prop. II. 12.2, [2]), it follows that H*(X/S\ F; β) - H^X/S1; ξ).
Then, from Step 1 it follows that

s (mX/S\ F;β) = 0 if q ^ k + 1

^ " ( 0 if 8 ^ 2 .

Therefore, Els = 0 when g + s ^ & + 2. Consequently, for g ^ A; + 2
ίP(X, F; /3) = 0, since {#«••} converges to iϊ*(X, F; /3).

3. To show that H^X/S1; β) = 0 for q ^ k + 1. First, from
the exact cohomology sequence of the pair (X, F) and from the fact
of H'(X, F; π*β) = 0 for q ^ /b + 2, it follows that ίf*CF; ττ*^|F) - 0
for q ^ k + 1. Then, we observe that iϊ*CF; π*β\F) = H*(F; β\F),
since F is the fixed point set. So, H%F; β\F) = 0 for q ^ & + 1.
Therefore, the exactness of the cohomology sequence of the pair
(X/S1, F) shows that H^X/S1; β) = 0 for g ^ Jfc + 1, since Hq(X/S\
F\ β) = 0 by Step 1, and the proof of lemma is now complete.

THEOREM 2. Suppose that Tm acts on a finite-dimensional
CANR X. Then

(1) h.d. (X/77™) ^ h.d. (X) if h.d. (X) Φ 2,

(2) h.d. (X/r») ^ 3 if h.d. (X) = 2.

Proof. By induction m, without loss of generality we only con-

sider the actions of Sι. By Lemmas 0 and 4, we only have to show

that HgiX/S1; Z) = 0 for all q ^ k + 1. Again, by Lemma 4 above,

H^xfίS1; Z) = 0 for all q ^ & + 1; therefore Ext {Hq_x{xfsι)\ Z) = 0

and Horn (H^JQS1; Z); Z) = 0 for all g ^ & + 1 by the universal-
coefficient theorem (Thm. 5.5.3 in [8]). Hence, for each g ;> & + 1

Ext (H^X/S1; Z); Z) = 0 and Horn (H^X/S1; Z); Z) = 0; and it follows

from Theorem V. 13.7 in [2] that Hg(X/Su, Z) = 0. The proof is now
complete.

COROLLARY. Let G be a compact Lie group such that \G/GQ\ is
finite, where Go is the torus identity component of G. Let G act on
a finite-dimensional CANR X. Then,

(1) if h.d. (X) Φ 2, then h.d. (X/G) ^ h.d. (X),
(2) if h.d. (X) = 2, then h.d. (X/G) ^ 3.

We conclude this paper by some remarks.
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REMARKS. (1) It is a well-known problem in infinite-dimensional
topology to determine whether the orbit space of an action of com-
pact Lie group on the Hubert cube ΠΓ [0, 1] is a CAR. This explains
(maybe) the condition dim X < °o in the above statements.

(2) The limitation, when h.d. (X) = 2, is from an unsettled
problem.

(3) The author does not see how to extend these results for
the case of actions of compact Lie groups on a CANR.
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