HOMOTOPY DIMENSION OF SOME ORBIT SPACES

VO THANH LIEM

The homotopy dimension of a compact absolute neighborhood retract space X is defined to be the least dimension among all the finite CW-complexes which have the same homotopy type of X. We show that actions of finite groups or actions of tori (with finite orbit types) on a finite-dimensional compact absolute neighborhood retract X do not raise homotopy dimension if the homotopy dimension of X is not two.

1. Introduction and preliminaries. Through this note, all actions are of finite types.

In [7], Oliver gave an affirmative answer to Conner's conjecture: "The orbit space of an action of a compact Lie group on a finitedimensional AR is an AR". From West [10], it follows that every compact absolute neighborhood retract X (CANR X) has the homotopy type of a finite complex. So, we can define the homotopy dimension (h.d.) of a CANR X by

h.d. $(X) = \min \{ \dim K | K \text{ is a finite complex and } K \cong X \}$.

On the other hand, Conner [5] has shown that the orbit space of an action of a compact Lie group on a finite-dimensional CANR is a CANR. It is natural to wonder whether the actions of a compact Lie group on a CANR can raise the homotopy dimension. We will show that the homotopy dimension does not increase when h.d. $(X) \neq 2$ and when the action comes from either a finite group or a toral group.

Combining a well-known result of Wall (Thm. F, [8]) and the result of West [10] (mentioned above), we can easily obtain the following lemma that will be needed in the sequel.

LEMMA 0. A CANR has the homotopy type of a k-dimensional finite complex if and only if $H_q(\tilde{X}; Z) = 0$ for all q > k and $H^{k+1}(X; \beta) = 0$ for every coefficient bundle β of $Z\pi_1(X)$ -modules over X if $k \neq 2$. Moreover, if $H_q(\tilde{X}; Z) = 0$ for q > 2 and $H^s(X; \beta) = 0$; then h.d. $(X) \leq 3$.

2. Orbits of action of finite groups. Let G be a cyclic group of order p with a generator g. The notation in [1] will be used as follows 1 - g and $1 + g + \cdots + g^{p-1}$ will be denoted respectively by τ and σ . If one of these is denoted by ρ , the other will be denoted

VO THANH LIEM

by $\bar{\rho}$. If β is a sheaf of Z_p -modules over X/G, let <u>A</u> denote the sheaf

$$\{ H^{_0}(\pi^{_-1}y;\,\pi^*eta\,|\,\pi^{_-1}y)\,|\,y\in X\!/\!G \}$$
 over $X\!/\!G$,

where $\pi^*\beta$ is the pull back of β associated with the orbit map $\pi: X \to X/G$. If U is an open subset of X/G, let \underline{A}_{U} denote the sheaf

$$[\cup \{ H^{_0}(\pi^{_-1}y; \pi^*eta \,|\, \pi^{_-1}y) \,|\, y \in U \}] \cup [\{ 0_y \,|\, y \in X/G \}]$$

and let \underline{A}_F (F closed in X/G) denote $\underline{A}/\underline{A}_{(X/G)-F}$ (refer to page 41 of [1]).

It will be convenient to establish the following preliminary lemmas before we begin the proof of the main result.

LEMMA 1. Let $G = Z_p$, p prime, act on a CANR X with fixed point set F. Assume that $m = \dim X < \infty$ and that β_p is a bundle of coefficients of $Z_p \pi_1(X/G)$ -modules over X/G. If h.d. $(X) \leq k$, then $H^q(X/G; \beta_p) = 0$ for all $q \geq k + 1$.

Proof. Think of ρ and $\overline{\rho}$ as endomorphisms of the sheaf <u>A</u> and denote their images respectively by $\rho \underline{A}$ and $\overline{\rho}\underline{A}$. Since Z_p is a field, it follows that the following sequence of sheaves over X/G

 $0 \longrightarrow \bar{\rho}\underline{A} \longrightarrow \underline{A} \xrightarrow{\rho \oplus \eta} \rho \underline{A} \oplus \underline{A}_{F} \longrightarrow 0$

is exact, where $\overline{\rho}\underline{A} \to \underline{A}$ is the inclusion and where $\eta: \underline{A} \to \underline{A}_F$ is the quotient homomorphism (Lemma 4.1 of [1]). This sequence induces an exact cohomology sequence

Let $H^{n}(\rho)$ denote $H^{n}(X/G; \rho\underline{A})$. Observe $H^{n}(X/G; \underline{A}_{F}) = H^{n}(F; \beta_{p}|F)$; then, from the above cohomology sequence and the fact that $H^{n}(X/G; \underline{A}) \cong H^{n}(X; \pi^{*}\beta_{p})$ (see page 35, [1]), there are the following exact sequences:

$$\begin{array}{cccc} H^{q}(X;\pi^{*}\beta_{p}) & \longrightarrow & H^{q}(\sigma) & \bigoplus H^{q}(F;\beta_{p} \,|\, F) & \longrightarrow & H^{q+1}(\tau) , \\ H^{q+1}(X;\pi^{*}\beta_{p}) & \longrightarrow & H^{q+1}(\tau) \oplus H^{q+1}(F;\beta_{p} \,|\, F) & \longrightarrow & H^{q+2}(\sigma) , \\ & \vdots & & \vdots & & \vdots & & \vdots \\ H^{m}(X;\pi^{*}\beta_{p}) & \longrightarrow & H^{m}(\rho) & \oplus & H^{m}(F;\beta_{p} \,|\, F) & \longrightarrow & H^{m+1}(\bar{\rho}) . \end{array}$$

Since h.d. $(X) \leq k$, it follows from Lemma 0 that $H^n(X, \pi^*\beta_p) = 0$, for all $n \geq q \geq k + 1$. On the other hand, $H^{m+1}(\bar{\rho}) = 0$ since dim $X = m < \infty$. Thus, we can show inductively that

(1) $H^{q}(X/G, F; \beta_{p}) = H^{q}(\sigma) = 0$, and (2) $H^{q}(F; \beta_{p}|F) = 0$. Hence, from the exact sequence of the pair (X/G, F),

$$\cdots \longrightarrow H^{q}(X/G, F; \beta_{p}) \longrightarrow H^{q}(X/G; \beta_{p}) \longrightarrow H^{q}(F; \beta_{p}|F) \longrightarrow \cdots,$$

it follows that $H^{q}(X/G; \beta_{p}) = 0$; and the proof of lemma is complete.

LEMMA 2. Let $G = Z_p$, p prime, act on a CANR X with fixed point set $F \neq \emptyset$. Assume that dim $X = m < \infty$ and that β is a bundle of coefficients of $Z\pi_1$ -modules over X/G. Then $H^q(X/G; \beta) = 0$ for all $q \ge k + 1$, if h.d. $(X) \le k$.

Proof. Consider the following diagram

where μ^* is the transfer map [1] and where the horizontal exact sequence is from the exact sequence of bundles of coefficients over X/G:

$$0 \longrightarrow \beta \xrightarrow{\times p} \beta \longrightarrow \beta_p \longrightarrow 0 .$$

So, it follows easily that $H^{q}(X/G; \beta) = 0$ if $q \ge k + 1$, since $H^{q}(X; \pi^{*}\beta) = 0$ by Lemma 0 and $H^{q}(X/G; \beta_{p}) = 0$ by Lemma 1. The proof is now complete.

LEMMA 3. Let a finite group G act on X with fixed point set $F \neq \emptyset$. If X has the homotopy type of a simplicial complex K^k , then $H_q(\widetilde{X/G}; Z) = 0$ for all q > k.

Proof. Let $\pi^*(\widetilde{X/G})$ be the pullback of the universal covering space $p\colon \widetilde{X/G} \to X/G$ associated with the orbit map $\pi\colon X \to X/G$. Then, the induced map $\overline{P}\colon \pi^*(\widetilde{X/G}) \to X$ is a covering map and the lifting map π^* of π is the orbit map of the induced action of G on $\pi^*(\widetilde{X/G})$. Now, since $X \cong K^k$, it follows that $H_q(\pi^*(\widetilde{X/G}), Z) = 0$ for $q \ge k + 1$. Then, the Smith theorem in the integral homology theory shows that $H_q(\widetilde{X/G}, Z) = 0$ for $q \ge k + 1$. (Similar to the proof of Lemma 2 above by use of the transfer map μ_* on page 119 of [3].) Hence, the proof is complete.

THEOREM 1. Suppose that a finite group G acts on a finite dimensional CANR X. If h.d. $(X) \leq k$ and $k \neq 2$, then h.d. $(X/G) \leq k$. If k = 2, h.d. $(X/G \leq 3)$.

Proof. Step 1. $G = Z_p$, p prime.

Case 1. $F = \emptyset$. See Lemma 2 of [6].

Case 2. $F \neq \emptyset$. It follows from Lemma 2 and Lemma 3 above that

(1) $H^q(X/G;\beta) = 0, q \ge k+1$ and for any bundle coefficient β over X/G,

(2) $H_q(X/G; Z) = 0, q \ge k + 1.$

So, it follows from Lemma 0 that h.d. $(X) \leq k$.

Step 2. G is cyclic of order p^{*} , p prime. We prove inductively on |G|, the order of G. Let H be a subgroup of G of order p^{n-1} then, h.d. $(X/H) \leq k$ by induction hypothesis and the proof is complete by Step 1.

Step 3. G is a finite p-group. First, by an inductive proof as in Step 2 we may assume that G is abelian, since G is solvable. Therefore, we can write $G = Z_{p}^{n_1} \bigoplus \cdots \bigoplus Z_{p}^{n_k}$. Then, again an inductive proof as above will complete the proof for this case.

Step 4. General case. The proof will be similar to that of Theorem III. 5.2 in [1].

Suppose that $|G| = p_1^{n_1} \cdots p_s^{n_s}$ and that K_j is a p_j -Sylow subgroups of G, and denote $\pi_{2,j}$ the canonical map $X/K_j \to X/G$ for $j = 1, 2, \dots, s$ as in [1]. Define $\pi': H^*(X/G; \beta) \to \sum_{j=1}^s H^*(X/K_j; \pi_{2,j}^*\beta)$ by

$$\pi' = \pi_{2,1}^* + \cdots + \pi_{2,s}^*$$
.

Observe that $H^q(X/K_j; \pi^*\beta) = 0$ for $q \ge k + 1$ and $j = 1, 2, \dots, s$ by Step 3 above. Hence, if we can show that π' is injective, then $H^q(X/G; \beta) = 0$ for $q \ge k + 1$. Therefore, the theorem will follow by Lemma 0 and Lemma 3 above.

Now, let μ'_{j} : $H^{*}(X/K_{j}; \pi^{*}_{2,j}\beta) \to H^{*}(K/G; \beta)$ be the tranfer map [1] such that $\mu'_{j}\pi^{*}_{2,j}$ is the multiplication by $|G|/|K_{j}|$. If $r \in \operatorname{Ker} \pi'$, then we have $|G|/|K_{j}|) \cdot r = \mu'_{j}\pi^{*}_{2,j}(r) = 0$ for each $j = 1, 2, \dots, s$, since $\pi^{*}_{2,j} = 0$. Therefore, for each $j = 1, 2, \dots, s$

$$(p_{{}^{n_1}}^{n_1}\cdots p_{{}^{j-1}_{j-1}}^{n_{j-1}}p_{{}^{j+1}_{j+1}}^{n_{j+1}}\cdots p_{{}^{n_s}}^{n_s})\!\cdot\!r=0$$
 .

Since the family $p_1^{n_1} \cdots p_{j+1}^{n_{j-1}} p_{j+1}^{n_{j+1}} \cdots p_s^{n_s}$, $j = 1, 2, \dots, s$, is relatively prime, it follows that r = 0, and the proof is now complete.

3. Orbits of actions of total groups.

LEMMA 4. Suppose that the circle group S^1 acts on a finite-

dimensional CANR X. If h.d. $(X) \leq k$, then $H^q(X/S^1; \beta) = 0$ for all $q \geq k + 1$ and for all bundles of coefficients β over X/S^1 .

Proof. Assume that H_1, \dots, H_s are finite isotropy subgroups of the action. Let G be a finite cyclic subgroup of S^1 such that H_1, \dots, H_s are subgroups of G. Then h.d. $(X/G) \leq k$ by the theorem above. So, we may assume that the action is semi-free, i.e., it has only two orbit types $\{e\}$ and S^1 . Let β be a bundle of coefficients of $Z\pi_1$ -modules over X/S^1 , where $\pi_1 = \pi_1(X/S^1)$. From Lemma 0, it follows that $H^q(X; \pi^*\beta) = 0$ for all $q \geq k + 1$, where $\pi: X \to X/S^1$ is the orbit map.

Case 1. $F = \emptyset$. Since the action is free, $\{H^{\circ}(\pi^{-1}y; \pi^*\beta): y \in X/S^{1}\} = \beta$ and $\{H^{1}(\pi^{-1}y; \pi^*\beta): y \in X/S^{1}\} = \beta$. An observations on Leray spectral sequence (as in Case 2) proves the lemma for this case.

Case 2. $F \neq \emptyset$. Since $\pi^{-1}(y) = \{e\}$ or S^1 , we have (1) $E_2^{q,0} = H^q(X/S^1; H^0(\pi^{-1}y; \pi^*\beta | \pi^{-1}y)) = H^q(X/S^1; \beta),$ (2) $E_2^{q,1} = H^q(X/S^1; H^1(\pi^{-1}y; \pi^*\beta | \pi^{-1}y)) = H^q(X/S^1, F; \beta),$ and (3) $E_2^{q,s} = 0$ if $s \ge 2$. We now proceed by induction on q. Since dim $X < \infty$, we may as-

sume that $H^q(X/S^1; \beta) = 0$ for $q \ge k + 2$, then we will show that $H^{k+1}(X/S^1; \beta) = 0$.

Step 1. To show that $H^q(X/S^1, F; \beta) = 0$ for $q \ge k + 1$. By the induction hypothesis, we observe that for each $q \ge k + 2$, the E_2 -term, $E_2^{q,0}$, of the Leray spectral sequence for the map π (page 140, [2]) is trivial, since $E_2^{q,0} = H^q(X/S^1; \beta)$ by (1). Observing the Leray spectral sequence $\{E_2^{q,s}\}$ of π , we can show that for all $r \ge 2$ (a) $E_r^{k+1,1} = E_2^{k+1,1}$,

and

(b) $E_r^{k+2,0} = 0;$

therefore,

(a) $E_{\infty}^{k+1,1} = H^{k+1}(X/S^1, F; \beta)$ by (2), and

(b) $E_{\infty}^{k+2,0} = 0.$

Now, from the convergence of $\{E_2^{q,s}\}$ to $H^*(X; \pi^*\beta)$ and from the fact that $H^{k+2}(X; \pi^*\beta) = 0$ by Lemma 0, we can show that $H^{k+1}(X/S^1, F; \beta) = 0$.

Step 2. To show that $H^q(X, F; \pi^*\beta) = 0$ for $q \ge k+2$. Consider the Leray spectral sequence (page 140, [2]) of the map of pairs $\pi: (X, F) \to (X/S^1, F)$. First we observe that the sheaf $\xi = \{H^0(\pi^{-1}y, \pi^{-1}(y \cap F); \pi^*\beta | \pi^{-1}y) | y \in X/S^1\}$ and the sheaf $\eta = \{H^1(\pi^{-1}y, \pi^{-1}(y \cap F); \pi^*\beta | \pi^{-1}y) | y \in X/S^1\}$

VO THANH LIEM

 $\pi^{-1}(y \cap F)$; $\pi^*\beta |\pi^{-1}y|| y \in X/S^1$ } are the same over X/S^1 , since $\pi^{-1}(y) = \{e\}$ or S^1 . Moreover, from the definition of the relative cohomology (Prop. II. 12.2, [2]), it follows that $H^*(X/S^1, F; \beta) = H^*(X/S^1; \xi)$. Then, from Step 1 it follows that

$$E_2^{q,s} = egin{cases} H^q(X\!/\!S^1\!,\,F;\,eta) = 0 & ext{if} \quad q \geqq k+1 \ 0 & ext{if} \quad s \ge 2 \;. \end{cases}$$

Therefore, $E_{\infty}^{q \ s} = 0$ when $q + s \ge k + 2$. Consequently, for $q \ge k + 2$ $H^{q}(X, F; \beta) = 0$, since $\{E_{2}^{q,s}\}$ converges to $H^{*}(X, F; \beta)$.

Step 3. To show that $H^q(X/S^1; \beta) = 0$ for $q \ge k + 1$. First, from the exact cohomology sequence of the pair (X, F) and from the fact of $H^q(X, F; \pi^*\beta) = 0$ for $q \ge k + 2$, it follows that $H^q(F; \pi^*\beta|F) = 0$ for $q \ge k + 1$. Then, we observe that $H^*(F; \pi^*\beta|F) = H^*(F; \beta|F)$, since F is the fixed point set. So, $H^q(F; \beta|F) = 0$ for $q \ge k + 1$. Therefore, the exactness of the cohomology sequence of the pair $(X/S^1, F)$ shows that $H^q(X/S^1; \beta) = 0$ for $q \ge k + 1$, since $H^q(X/S^1, F) = 0$ by Step 1, and the proof of lemma is now complete.

THEOREM 2. Suppose that T^m acts on a finite-dimensional CANR X. Then

 $(1) \quad \text{h.d.} (X/T^m) \leq \text{h.d.} (X) \text{ if h.d.} (X) \neq 2,$ and

(2) h.d. $(X/T^m) \leq 3$ if h.d. (X) = 2.

Proof. By induction *m*, without loss of generality we only consider the actions of S^1 . By Lemmas 0 and 4, we only have to show that $H_q(\widetilde{X/S^1}; Z) = 0$ for all $q \ge k + 1$. Again, by Lemma 4 above, $H^q(\widetilde{X/S^1}; Z) = 0$ for all $q \ge k + 1$; therefore $\text{Ext}(H_{q-1}(\widetilde{X/S^1}; Z) = 0$ and Hom $(H_q(\widetilde{X/S^1}; Z); Z) = 0$ for all $q \ge k + 1$ by the universal-coefficient theorem (Thm. 5.5.3 in [8]). Hence, for each $q \ge k + 1$ Ext $(H_q(\widetilde{X/S^1}; Z); Z) = 0$ and Hom $(H_q(\widetilde{X/S^1}; Z); Z) = 0$ and Hom $(H_q(\widetilde{X/S^1}; Z); Z) = 0$ and Hom $(H_q(\widetilde{X/S^1}; Z); Z) = 0$; and it follows from Theorem V. 13.7 in [2] that $H_q(\widetilde{X/S^1}; Z) = 0$. The proof is now complete.

COROLLARY. Let G be a compact Lie group such that $|G/G_0|$ is finite, where G_0 is the torus identity component of G. Let G act on a finite-dimensional CANR X. Then,

(1) if h.d. $(X) \neq 2$, then h.d. $(X/G) \leq$ h.d. (X),

(2) if h.d. (X) = 2, then h.d. $(X/G) \leq 3$.

We conclude this paper by some remarks.

REMARKS. (1) It is a well-known problem in infinite-dimensional topology to determine whether the orbit space of an action of compact Lie group on the Hilbert cube $\prod_{1}^{\infty} [0, 1]$ is a CAR. This explains (maybe) the condition dim $X < \infty$ in the above statements.

(2) The limitation, when h.d. (X) = 2, is from an unsettled problem.

(3) The author does not see how to extend these results for the case of actions of compact Lie groups on a CANR.

References

1. A. Borel, Seminar on Transformation groups, Princeton University Press, #46, 1960.

2. G. E. Bredon, Sheaf Theory, McGraw-Hill, 1967.

- 3. ____, Introduction to Compact Transformation Groups, Academic Press, 1972.
- 4. T. A. Chapman, Lecture on Hilbert cube manifolds, CBMS Regional conference series in Math., #28, AMS, 1975.

5. P. E. Conner, Retraction properties of the orbit spaces of a compact topological transformation group, Duke Math. J., **27** (1960), 341-357.

6. V. T. Liem, Factorization of free actions of finite groups on compact Q-manifolds, Proc. of Amer. Math. Soc., 75 (1979), 334-338.

7. R. Oliver, A proof of the Conner conjecture, Ann. of Math., 103 (1976), 637-644.

8. E. H. Spanier, Algebraic Topology, McGraw Hill 1966.

9. C. T. C. Wall, Finiteness conditions for CW-complexes, Ann. of Math., (2) 81 (1965), 55-69.

10. J. E. West, *Mapping Hilbert cube manifolds to* ANR's: A solution of a conjecture of Borsuk, Ann. of Math., **106** (1977), 1-18.

Received November 30, 1979.

UNIVERSITY OF ALABAMA UNIVERSITY, AL 35486