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MATRIX CORRESPONDENCES OF PLANE PARTITIONS

EMDEN R. GANSNER

Three correspondences between nonnegative integer ar-
rays and plane partitions, due to Burge, Knuth, and Hillman
and Grassl, are investigated. A variety of parallel and
complementary properties are derived for the first two. In
particular, the images of an array under the correspondences
are characterized in terms of certain sets of "paths" in the
arrays. The correspondences are also related to each other
through the action of the dihedral group on rectangular
arrays. Finally, the Hillman-Grassl correspondence is simi-
larly characterized in terms of sets of paths and is shown
to be an extension of Surge's correspondence.

One of the most elegant developments in the study of plane parti-
tions has been the invention of constructive correspondences between
nonnegative integer arrays and certain forms of plane partitions.
Besides providing potent tools for investigating these partitions,
they also serve to connect the theory of plane partitions with those
of symmetric functions and group representations (cf. [23]), among
others.

Here we limit our attention to three correspondences, four if
we include the correspondence of Schensted [20] between permuta-
tions and pairs of standard Young tableaux. This bijection was
extended by Knuth [15] to a correspondence K between matrices
and pairs of generalized Young tableaux or, as we shall call them,
column-strict plane partitions. In turn, Burge [4] defined a new
correspondence B based on a variation of the original construction
that was also investigated by Schensted and Knuth. The final cor-
respondence to be considered, due to Hillman and Grassl [13], is
entirely different in definition, yet, as will be shown, is very much
related to B and K.

Indeed, a presentation of these correspondences in a fairly unified
setting is the main purpose of this paper, in which their intercon-
nections and parallel developments are emphasized. The first three
sections are devoted to preliminaries and the definitions of B and K.
Schensted's correspondence is introduced in § 4 as a restriction of K.
However, it is also noted that both B and K factor naturally through
Schensted's map, implying that the properties of the latter corre-
spondence will occur in some form as properties of B and K. This
fact has been common knowledge for some time; here we present
an explicit factorization.

Greene [11] has given a means for determining the shape of the
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image Young tableaux in Schensted's correspondence. We extend
his results to B and K, and then use them to give a complete char-
acterization of the plane partitions B(M) and K(M) in terms of sets
of paths in the matrix M (Theorems 5.4 and 5.5). These results can
be quite useful in the enumeration of plane partitions [10] and make
obvious the symmetry and other properties of the correspondences.
For example, among several properties of B and K given in § 6, we
note that B> when restricted in a natural way to acting on a sequence
of integers, is equal to K acting on the sequence in the opposite
order. This well-known fact follows trivially from Theorem 5.4.

In §§ 7 and 8 we introduce two operations due to Schϋtzenberger
[21] which enable us to compute the effect under B and K of the
dihedral group, generated by rotations and transpositions, acting on
a matrix. The results obtained present another interlacing of the
correspondences.

The Hillman-Grassl correspondence between nonnegative integer
arrays and reverse plane partitions is considered in the final two
sections. We note that this correspondence can be characterized in
terms of certain sets of paths in integer arrays in the same manner
as B, thereby implying that this correspondence can be considered
an extension of the correspondence of Burge.

The author wishes to express his thanks to Richard P. Stanley,
whose information, suggestions and warm encouragement did so
much to make this paper possible.

1Φ Shapes and plane partitions* A shape λ is a finite nonin-
creasing sequence \ ^ λ2 ^ ^ λ, of positive integers. The λf are
called the parts of λ. We let p(X) = p, the number of parts in λ,
and we define the norm of X to be σ(X) — Xλ + + λp. The graph
Γ(X) of X is the set of all (i, j) with 1 £ i ^ p(X), 1 £ j <; λ,.

If λ is a shape, let Γr be the set of all (i, j) such that (j, i) is
in Γ(λ). If we let λ' be the unique shape such that Γ(X') = /"", we
call λ' the conjugate of λ. If X = λ', we say that X is symmetric.
If X is a constant sequence, \ = λ2 = = Xp = n, X is said to be
rectangular, and we can denote it by (n9), signifying p parts equal
to n.

Obviously, shapes are nothing more than partitions of integers,
which have their own extensive theory (cf. [1]). For our purposes,
however, we view them as a base from which to construct plane
partitions, extending from one-dimensional arrays to two-dimensional
ones. From another viewpoint, given a shape, we can view its
graph as an order ideal (o-ideal, ikf-closed subset) of P2, the direct
product of the chain of natural numbers P with itself. (See [3] or
[5] for the relevant definitions.) This leads to the consideration



MATRIX CORRESPONDENCES 297

of order ideals in P3 and plane partitions.
Let λ be a shape. A plane partition P = (pί3 ) of shape X is an

array of positive integers indexed by Γ{X) such that

Piό ^ Vij+i and ptj ^ pi+lj ,

whenever both sides are defined. As with shapes, the pi3 are the
parts of P and the norm of P, σ(P), is the sum of all the parts.
If k is an integer, 1 — p(x) <Ξ k ^ λj. — 1, the k-diagonal of P is the
nonincreasing sequence induced by the pi3 with j — i = k. We define
TP — ((7ί5 ) to be the plane partition of shape λ' where qi3 — pβi. If
TP = P, we say that P is symmetric.

We can extend some of these definitions in an obvious manner
to more general arrays. If M — (mi3) is an r x c matrix, let σ(M) —
Σ mij> summed over all i and j , and let TM be the transpose of M.

Certain special types of plane partitions will play an important
role in the sequel. If the parts of a plane partition P = (pi3) strictly
decrease down the columns, i.e., pi3 > pi+l3, then P is a column-strict
plane partition. If P has shape X and its parts consist of all the
integers from 1 to σ(λ), we call P a standard Young tableau.

Having defined plane partitions, we can consider reversing the
inequalities. A reverse plane partition of shape X is an array P= (pi3)
of nonnegative integers indexed by Γ(x) such that

Piό ^ Pi+ij and pi3 ^ pij+1 .

All the other definitions given concerning plane partitions are pre-
cisely the same for reverse plane partitions.

2Φ The Frobenius construction. Probenius [6] devised a bijec-
tion between shapes and pairs of shapes whose parts strictly decrease.
Bender and Knuth [2] extended this construction to give a bisection
between plane partitions and pairs of column-strict plane partitions
of the same shape. We will have a great deal of use for a variation
of their construction.

Let P — (pi3) and Q = (qi3 ) be two column-strict plane partitions
of the same shape λ. We define an array A — (aid) as follows. Let
(a>n, da+if an+2, •••) be the conjugate of row i of Q, viewed as a
shape. Let (α«, α i + l f, ai+2i, •••) be the conjugate of row i of P.
Since au = Xίf the construction is well-defined.

It is easy to verify that A is a plane partition, and that, given
any plane partition, this process can be reversed. Thus, we have
a bijection, which we call the Frobenius construction, between plane
partitions A = (aί3 ) and pairs of column-strict plane partitions P =
(pί3) and Q = (qtj) of the shape λ. The bijection is characterized by
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\{k: qίk^j-

for j ^ i

for i <̂  j ,

where | V | denotes the cardinality of the set V. This follows im-
mediately from the definition of the conjugate of a shape.

In addition, the number of rows (columns) of A equals the largest
part in P(Q); the 0-diagonal of A equals λ; and A is symmetric if
and only if P equals Q.

As an example of this construction, the column-strict plane
partitions

4 4 3 3
3 2 2
1 1

6 6 3
5 4 2
3 3

correspond to the single plane partition

4 3 3 2 2 2
4 3 3 2 2 1
4 3 2 2 2
2 1

In the Bender-Knuth version of this construction, the plane
partition derived from a pair of column-strict plane partitions is a
"conjugate" of the plane partition derived using the construction
given above. (For a detailed discussion of plane partition conjugates,
see [18, pp. 176-181].) This conjugation disguises the geometric
relations between the pair of plane partitions and the associated
single plane partition. For example, symmetric plane partitions no
longer correspond to a pair of equal column-strict plane partitions.

3* The correspondences of Burge and Kniith* Let M — (mi5)
be an r x c matrix with nonnegative integer entries. Using M,
we will see how to construct two pairs of column-strict plane parti-
tions of the same shape, thereby defining the Burge and Knuth
correspondences.

To the matrix M we can correspond a two-line array

a2

\&i δ2 bN

in which ^^ a2^ ^ aN> &έ ^ bi+1 if at = ai+1 and a column ί, )

must appear in the array mba times.
Using the two-line array, we inductively build two arrays P and

Q of the same shape out of the 6/s and α/s, respectively. We start
by letting Px = (bx) and Qx — (αj. Now, assuming we have defined
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Pό and Qj9 we insert bjΛl into the first column of Pό by placing it
at the bottom of the column if bj+1 is strictly smaller than every
entry in the column. Otherwise, we use bj+1 to replace the uppermost
entry which is less than or equal to bj+1. The entry replaced is /
inserted in the same manner into the second column. If any entry
is replaced in that column, it is inserted into the third column. This
process continues until an entry is placed at the bottom of a column
or is placed in the first position of an empty column. This defines
Pr+1. We obtain Qr+1 by attaching ar+1 to Qr in order that Pr+1 and
Qr+1 have the same shape. Finally, if N = cr(Jkf), we let P = PN and
Q = ζ)v. Examples illustrating this process can be found in [4] and
[10].

This construction is Burge's correspondence, originally presented
in [4]. It is a variation of the "dual" correspondence of Knuth,
which can be found in [15] along with the construction we call
Knuth's correspondence. This can be defined in the same manner
as Burge's correspondence, with the following modifications. As
above, with the given matrix we correspond the two-line array in

which <xx 2̂  α2 ^ Ξ> aN and a column (-, j appears mba times, but

now, bt ^ bi+1 whenever at = ai+1. Second, instead of inserting entries
down the columns, we now insert entries along the rows, either
replacing the leftmost entry which is strictly less than the inserted
entry or placing the inserted entry at the end of the row if every
entry in the row is greater than or equal to it.

Concerning either correspondence, we immediately note that the
number of i's in P is 2J5=I

 mH9 the number of j's in Q is Σί=i mu a n ^
σ(X) = σ(M), where λ is the shape of P (or Q). More importantly, we
have the following fundamental result concerning these constructions.

THEOREM 3.1. Burge's and Knuth's correspondences are bisec-
tions between nonnegative integer matrices of size r x c and pairs
of column-strict plane partitions (P, Q) of the same shape such that
the largest part in P is at most r and the largest part in Q is at
most c. •

Proofs for the parts of this theorem can be found in [4], [7,
pp. 43-56], [15], and [23], among other sources. We will also mention
in the next section another approach to a proof of this theorem
using a specialization of Knuth's correspondence.

If these correspondences are combined with the bijection given
by the Frobenius construction, we obtain two bijections between
matrices and plane partitions.

THEOREM 3.2. The Burge and Knuth correspondences, when
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combined with the Frobenius construction, form bisections between
the set of all r x c nonnegative integer matrices and the set of all
plane partitions with at most r rows and c columns. •

We will be interested in these correspondences in their several
forms. To simplify the notation, we let B represent the Burge cor-
respondence, regardless of whether the domain consists of matrices or
two-line arrays and whether the range consists of pairs of column-
strict plane partitions or a single plane partition. When B maps to
a pair of column-strict plane partitions, we let B1 be the projection
of B onto the first component of the pair and B2 the projection onto
the second. We allow B1 to also operate on any finite sequence
(&!, δ2, , bN) of positive integers by defining

& 2 * * * 6tf-l

Finally, if b is a positive integer and P is a column-strict plane
partition, we let Bb(P) be the column-strict plane partition obtained
from P by inserting b using the Burge insertion process. Similar
conventions will be observed for the Knuth correspondence K.

4. The correspondence of Schensted* If K is restricted to
permutation matrices, we obtain the correspondence of Schensted
between permutations and pairs of standard Young tableaux of the
same shape. This bijection was explicitly defined by Schensted in
[20], though it was essentially given by Robinson in [19, § 5].
Using it, Knuth devised his correspondence, and from Knuth, Burge
defined his.

To deal with Schensted's correspondence, we extend our notation
one final step. Given a permutation π on the set {1, 2, •••,%}, we
let

/ n - 2 1

\π(n) π(2) ττ(l

The same notation will also hold for Kι and K2.
All of the results that we shall give concerning K have immediate

corollaries pertaining to Schensted's correspondence. But, in a sense,
the latter correspondence is not significantly less general than either
K or B. Both of these functions can be factored through the
Schensted map, and their properties follow from its properties.

To see this, consider a two-line array used in the Burge cor-
respondence:

laλ α2 aN

•• bN



MATRIX CORRESPONDENCES 301

with at 2̂  aί+1 and b% <L bt+1 whenever at = ai+1. From this array, we
can obtain a permutation by replacing (αx a2 aN) by (N N — 1
2 1), and by replacing the leftmost minimum-sized entry in (b1 b2 bN)
by 1, the next leftmost minimum-sized entry by 2, etc. For example,
the array

3 3 3 3 2 2 1 1 1

1 2 2 4 1 1 2 3 3

becomes the permutation

9 8 7 6 5 4 3 2

1 4 5 9 2 3 6 7

We also need two functions to be able to obtain the original
array from its derived permutation π. Define ΦJj) = aN-%+i a n d
φh(i) — bN_j+1, where i = π(j). Note that these two functions, besides
being nondecreasing, satisfy the following properties:

(1) Φa(l + 1) = Φa(l) implies π(l + 1)< π(ί)

( 2 ) Φh(l + 1) - Φh(l) implies π~\l + 1)< TΓ"1© .

It is easy to see that this gives us a bijection between two-line
arrays and triples (π, Φa, Φh) satisfying the above properties.

Applying the Schensted correspondence to the permutation π,
we get a corresponding triple ((P, Q), Φα, Φ6), where P and Q are
standard Young tableaux of the same shape. From the properties
of the insertion process for K (cf. [12, Theorem 1], [18, Remarque
2]), Properties (1) and (2) translate to

(Γ) Φa(l + 1) = Φa(l) implies i > ϊ and j £ f, where 1,1 + 1
occupy positions (i, j), (if, jf), respectively, in Q;

(2') Φb(l + 1) = Φh(l) implies i > ir and j ^ f, where I, I + 1
occupy positions (ί, j), (i\ f), respectively, in P.
Again, we have a bijection between such triples.

Now, given a triple ((P, Q), Φa, Φb), in which P = (pid) and Q = (giy)
are standard Young tableaux of the same shape λ, σ(λ) = N, and
Φα, Φδ are nondecreasing functions from {1, 2, , N} into the positive
integers satisfying (1') and (2'), we can define two new arrays P ' =
(pis) and Q' - (q'tj) of shape λ by letting p[ό = Φjίp^ ) and g , = Φα(gίy)
for all (i, j) in Γ(λ). The properties of Φa and Φό imply that P'
and Q' are row-strict. It is not hard to show that every pair of
row-strict plane partitions of the same shape is the unique image,
under this map, of some triple ((P, Q), Φα, Φb).

Putting this chain of bijections together and applying T to each
of the row-strict plane partitions Pr and Q', we have a bijection
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from Burge-type two-line arrays to pairs of column-strict plane parti-
tions of the same shape. That this is Burge's correspondence follows
directly by induction on the insertion process, noting that property
(2) and the monotonicity of Φb implies that π(k) replaces π(l) if and
only if Φb(π(k)) replaces Φb(π(l)).

In a similar fashion, K can be factored through the Schensted
correspondence.

The ability to factor B and K through Schensted's correspondence
can facilitate in the proving of properties of the former correspond-
ences. The property can be proved in the (usually) simpler form
pertaining to Schensted's correspondence and then extended in the
appropriate manner to B or K. For example, in his work, Schensted
demonstrated that his correspondence was a bisection between permu-
tations and pairs of standard Young tableaux of the same shape.
Theorem 3.1 follows immediately from this and the observations of
this section. The use of this factorization in proofs will occur fre-
quently in the remaining sections.

5* The Greene-type characterizations* The reason for Schens-
ted's devising his correspondence was his interest in computing the
lengths of the longest monotonic subsequences of a permutation.
He showed that these lengths manifested themselves as the number
of columns or rows in the corresponding tableaux. These results
were extended by Greene to a characterization of the entire shape
of the tableaux in terms of subsequences of the permutation.

Let π be a permutation of the set {1, 2, , n). A D-subsequence
of 7Γ is. a subset V of {1, 2, , n) such that, if i, j e V with i > j ,
π(ϊ) > π(j). An A-subsequence is a subset W such that if i, j e W9

π(i) < π(j) whenever i > j . For k ^ 1, let dk(π) be the maximum
cardinality of the union of at most k disjoint D-subsequences of π.
Define ak(π) similarly, using A-subsequences.

THEOREM 5.1. (Greene [11].) Let π be a permutation of {1, 2,
• , n), and let λ be the shape of K\π). Then, for k ^ 1,

dk(π) = λx + λ2 + + λfc

ak(π) = λj + λ; + + λί ,

where λ' is the conjugate shape of X. •

Using the factorization given in § 4, we can apply this result to
B and K. We first must generalize the notion of monotonic sub-
sequences. Let M = (mi§) be an r x c nonnegative integer matrix.
A chain in M is a sequence ((ilf jx)9 (i2, j2), , (ih j\)) of ordered pairs
such that 1 <̂  iγ ^ i2 <; <: ix <̂  r, c ^ j \ ^ j2 ^ ^ j\ ^ 1 and
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the pair (i, j) can occur at most miά times in the sequence. A strict
chain is a chain in which 1 <̂  ix < i2 < < i, ^ r and c ^ jΊ >
i2 > * > ii ^ l A cross ctem in Λf is a sequence ((ίl9 j x \ (i2, j>2), ,
(ilf jι)) such that r Ξ> ix ;> i2 ^ ^ 1, c ^ JΊ ̂  j 2 ^ ^ jι ^ 1> and
(ΐ, j) can occur at most mi3 times. A strict cross chain is a cross
chain in which r ^ ix > i2 > > ix ^ 1 and c ^ j \ > j2 > > jι^ 1.
We allow empty chains and cross chains, strict or otherwise.

For k ^ 1, let ak(M) — max{| y j + + | Vk\: Vx are chains such
that the number of times (i, j) appears in all of them combined is
at most miά). We define dk(M), dk(M) and ak(M) by replacing "chains"
in the definition of ak{M) by "strict cross chains," "cross chains"
and "strict chains," respectively. Note that for all k ^ min{r, c}, we
have ak(M) = dk(M) = σ(M).

As an illustration of these definitions, consider the matrix

The longest chain is ((1, 4), (1, 3), (2, 3), (2, 3), (2, 2), (2, 2), (3, 1));
the longest cross chain is ((3, 3), (2, 3), (2, 3), (2, 2), (2, 2), (1, 1)).
Thus, a^M) = 7 and di(Λf) = 6. The remaining values of ak and d*,
as well as all the values of ak and dkf for the given matrix are
exhibited in the table below.

k

1
2
3
4
5
6

2:7

7
8
9
9
9
9
9

3
5
6
7
8
9
9

dk

6
8
9
9
9
9
9

dk

3
4
5
6
7
8
9

With these definitions, we can now interpret Greene's theorem
in terms of B and K.

THEOREM 5.2. Let M be a nonnegative integer matrix. Let X
and 7 be the shapes of B\M) and K\M), respectively. Let λ' and
Ί1 be the conjugate shapes. Then, for k ^ 1,

( i ) ak{M) = λj. + + λfc.
( i i) dk(M) = λί + ••• + λ ί .
(iii) dk(M) = 7i + + 7*.
(iv) S4(Λf) = 7ί + + 7*.
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Proof. We consider parts (i) and (ii), the analysis for (iii) and
(iv) being similar. Suppose that, under Burge's correspondence, M

is associated with the two-line array ί?1 ?2 ' ' ' ?* j . Note that chains
and strict cross chains in M correspond to nondecreasing subsequences
and strictly decreasing subsequences, respectively, of (blf δ2, •• ,6J.

If we factor B through the Schensted map, and obtain a permu-
tation π associated with the two-line array of M, we see that the
nondecreasing and decreasing subsequences of (bl9 b2, , 6 J correspond
precisely to A-subsequences and D-subsequenees of π. From this, it
follows immediately that ak(M) = ak(π) and dk{M) — dk{π).

The factorization also tells us that λ is the shape of TK\π).
Hence, by Theorem 5.1, we have ak(π) = λx + + Xk and dk{π) —
X[ + + λί, giving us (i) and (ii). Π

Theorem 5.2 suggests a manner in which to characterize not just
the shape of B\M) or K\M), but all of B(M) or K(M) in terms of
chains and cross chains in M. To achieve this, we first need the
following result.

LEMMA 5.3. Let h ̂  0, and let β — (blf b2, , bn) be a sequence of
positive integers. Let P=B\β) and P=K\β). Let β' be the sequence
derived from β by deleting those terms less than or equal to h. Let
Pr and Pf be the column-strict plane partitions derived from P and
P, respectively, by deleting those parts less than or equal to h.
Then

( i ) P' =
(ii) p ' = j

Proof. The lemma is easily proven by induction on n. Let
β = (K K , K bn+i)> P = B\β) and let β' and P' be the correspond-
ing derived sequence and column-strict plane partition. By induction,
we have P' = B\β'). If bn+1 ̂  h, β' = β'. In addition, when bn+1 is
inserted into P, it does not affect any part greater than h, implying
that P' - P'. Thus, P' = P' = B\β) = B\β').

On the other hand, if bn+1 > h, when it is inserted into P, the
process only involves parts greater than h, exactly as though bn+1

were inserted into P', until a part is placed at the end of a column
or a part less than or equal to h is replaced, after which, no part
of P greater than h is ever again affected. Thus, inserting bn+ί into
P affects the parts greater than h in the same manner as inserting
bn+1 into P'. Since P' = B\β'\ we have P' = Bbn+1P' = B\β').

The proof of (ii) is exactly the same if we use "K" instead of
"B" and "row" instead of "column". •
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This lemma tells us how to divide the column-strict plane parti-
tion into layers. We can then employ Theorem 5.2 on each of the
layers to get the desired characterization. If M = (m^ ) is an r x c
matrix and I is an integer, 1—r^l^c — 1, [define Mi to be the
r x c matrix obtained from M by changing the entries in the first
I columns ( — I rows) to zero if I > 0 (I < 0). If I = 0, let Mo = M.

THEOREM 5.4. Let M be a nonnegative integer "matrix of size
r x c, and let 1 - r ^ I ^ c - 1. Let B(M) = (P, Q), where P = (p^)
and Q = (qiά), and let K(M) = (P, Q), where P = (pid) and Q = (qi3).
We define two shapes λ and 7 by

= (\{k'. qik^l + l}\ if 1^0
1 \\{k: pίk^l-l}\ if 1^0

\{k: qik^l + l}\ if ί ^ O

\{h\ pik^l -l}\ if 1^0.

Let λ' and 7' be the respective conjugates of X and 7. Then, for
k^ 1,

( i ) αfc(M,) = λx + + λ*.
(ii) dk{Mι) = λί + ••• + λί.
(iii) d4(ilii) = 7i + + 7*.
(iv) α/c(Mz) = 7ί + + 7i.

Proof. We will prove (i), the proof of (iii) being similar. Parts
(ii) and (iv) then follow from Theorem 5.2. Considering Burge's
correspondence, let M correspond to the two-line array

a2 - - - aN

62 6.

If I ^ 0, let T = max{ΐ: a t ^ l + 1}. Then Mι corresponds to t h e

two-line a r r a y

a2 aτ

b2 bτ

It follows immediately from the construction that the shape of
B\blf b2, - - -, bτ) is λ. But by Theorem 5.2, the shape of B\bu δ2, , bτ)
is (a^Mi), a2(M{) — aL(Mι), az(Mt) - α2(ilίi), •)• This implies (i) for
I ^ 0.

If I <£ 0, the two-line array of Mt is obtained by deleting from

the two-line array of M all columns of the form (?) where 6 <; — L

Let β — (blyb2f •••)• Then, using the notation and the result of
Lemma 5.3 with h = —ί, we have P 1 ^ ' ) = P', implying that the
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shape of B\β') is λ. But β' is the bottom row of the two-line array
of Mt. So, by Theorem 5.2, the shape of B\βf) is (α^ikQ, a2(Mι) -

•••), completing the proof. •

We note that the original difference in the constructions of P
and Q is missing from this theorem. The theorem can be reformulated
in terms of plane partitions, in which form it will relate B to another
plane partition correspondence (§ 10).

THEOREM 5.5. Let M be a nonnegatίve integer matrix of size
r x c and let I be an integer, 1 — r ^ I ^ c — 1. Considering the
plane partitions A = B(M) and A = K{M), we let λ and y be the l-
diagonals of A and A, respectively. Let λ' and 7' be their respective
conjugates. Then, for k ^ 1,

( i ) αt(Λf,) = λx + + λ*.
(ii) dk(Mι) = λί + ••• + λ i .
(iii) dk{Mι) = 7i + + 7*.
(iv) α*CMi) = 7ί + + Ίl

Proof. If B(M) = (P, Q), where P = (pid) and Q = (g<y) are
column-strict plane partitions of the same shape, A is obtained by
applying the Frobenius construction to (P, Q). Thus,

= (\{k: q i k ^ l + l}\ if 1 ^ 0
1 \\{k: p i k ^ l - l } \ i f ί ^ O

(cf. § 2). Comparing this with Theorem 5.4, (i) and (ii) follow. The
proof of (iii) and (iv) is analogous. •

Theorem 5.4 and its more elegant form Theorem 5.5 completely
characterize the correspondences B and K. Surprisingly, considering
the original constructions, these theorems imply that the correspond-
ences preserve symmetry. We note that (TM)ι — T{M_t). Therefore,
ak{{TM)χ) = afc(r(M_,)) = ah(M^). The same equality holds for dk.
From these observations, we obtain the following results.

COROLLARY 5.6. ( i ) B\M) = B\TM) or, as plane partitions,
B(TM) - TB(M).

(ii) K\M) = K\TM) or, as plane partitions, K(TM) =
TK{M). •

COROLLARY 5.7. B and K are bisections between symmetric non-
negative integer matrices and column-strict plane partitions (equi-
valently, symmetric plane partitions). •
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These corollaries were first proved by Schϋtzenberger [21] in
terms of Schensted's correspondence, and later by Burge and Knuth
in terms of column-strict plane partitions.

If M is a symmetric matrix, we have seen that B\M) = B\M)
and K\M) = K\M). In this case, the correspondences possess another
pair of interesting and useful [4] properties. It turns out that the
trace of M equals the number of odd length columns in K\M), and
the number of odd entries on the main diagonal of M equals the
number of odd length rows in B\M). These are observations of
Knuth and Burge, respectively. One can find in [15] a proof of the
former, which in turn can be revised to yield a proof of the latter
(cf. [4]). A proof of the latter can also be obtained by restricting
the former to Schensted's correspondence and then utilizing the
factorization of B through that correspondence.

6* Some properties of B1 and KK The functions B1 and Kι

can be viewed as maps from finite sequences of positive integers to
column-strict plane partitions. We would now like to consider some
of their properties, especially concerning the effect of modifying the
sequence.

It is an immediate corollary of Theorem 3.1 that B1 and K1 are
not one-to-one. This leads one to attempt to characterize those se-
quences that are the preimages of some fixed column-strict plane
partition. This task was accomplished for both K1 and B1 by Knuth
[15]. We give his result below.

Two sequences of positive integers are called K-equivalent if one
can be transformed into another by a series of interchanges of the
following types:

( i ) ( , α, c, δ, •) •— ( , c, α, δ, •) where α < b <£ c.
(ii) ( , 6, α, c, ...)«—(.. .f b, c, α, •) where α S> δ < c.

Two sequences are B-equivαlent if one can be transformed into the
other by a series of interchanges of the following types:

( i ) ( , α, c, δ, «•)<->(. , c, α, δ, •) where α S b < c.
(ii) ( , 6, α, e, ...)<-»(.. .f b, c, α, •) where α < b <£ c.

THEOREM 6.1. Let α and β be finite sequences of positive in-
tegers. Then

( i ) K\a) ~ K\β) if and only if a and β are K-equivalent.
(ii) B\a) = B\β) if and only if a and β are B-equivalent. •

This theorem can be a useful tool in obtaining results concerning
B and K. One shows that B or K has a certain property acting
on a canonical sequence in each equivalence class, and then that the
property is not affected by interchanges. Greene proved Theorem
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5.1 in this fashion (also Theorem 3 in [12]), and the technique can
also be used to demonstrate the next theorem. However, with
Theorem 5.4 at our disposal the proof becomes trivial.

THEOREM 6.2. Let β = (blf b2, , be) be a sequence of positive
integers. Let β = (δe, , δ2, 6J. Then B\β) = K(β).

Proof. Let r = max{δl9 δ2, , bc}. Let M be the r x c matrix

whose two-line array under B is {? G Γ "" \ , j , and let M be

the r x c matrix whose two-line array under K is i? i ".".! λ Λ )•
Then M is ilί reflected about a vertical axis and it follows immediately
from Theorem 5.4 that B\M) = iΓ^M). Π

This result can be found in a variety of forms in the literature,
e.g., [16, p. 59] or [17, Theorem 4.5]. It was originally proved in
terms of permutations by Schensted [20], using induction and a form
of the following corollary.

COROLLARY 6.3. Let P be a column-strict plane partition, and
let x and y be positive integers. Then BxKyP = KyBxP.

Proof. Let (bl9 b2, , δΛ) be a sequence of positive integers such
that P = B1(blf * , δ j . By repeated applications of Theorem 6.2,
one can easily verify that

KyBxP = B\y, bl9 -, K, x) = BxKyP ,

thereby completing the proof. •

Theorem 6.2 and its corollary can be useful in deriving other
properties of B, iΓand related correspondences (cf. [24], [25]). They
also lead us to another connection between B and K, which we
explore in the next two sections.

7* The operations of Schϋtzenberger* Suppose that the image
of a two-line array under the Burge correspondence is (P, Q) whereas
the image of the same array with its first column deleted is (P', Q')
Theorem 6.2 tells us that, if we know the difference in the shapes
of P' and P, we can obtain P' and bλ from P by reversing the Knuth
construction.

For example, if

4 4 3 2
P= 3 2 2

2 1 1
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and the shape of Pf is (4, 3, 2), we must have 6X = 3 and

4 4 2 2
P' = 3 2 1

2 1

as these are the unique choices of bx and a column-strict plane parti-
tion P' of shape (4, 3, 2) such that KhχP' = P. The same result holds
for Knuth's correspondence by reversing the roles of B and K.

To obtain the relation between Q and Q', we have need of an
operation Δ on column-strict plane partitions due to Schϋtzenberger
[21]. It will turn out that Q' = ΔQ. To construct ΔQ, where Q = (qtί),
start by deleting qn. This creates a "hole" which we fill using the
procedure described below. This creates another hole, which again
we fill by the same procedure. This process continues until we can
no longer fill the hole, at which point we have a new column-strict
plane partition which we denote by ΔQ.

If we have a "hole" at position (i, j) in Q, we fill it by qij+ί,
creating a new hole at position (i, j + 1), if tfϋ+i > qt+n- Otherwise,
we fill the hole with qi+1j, creating a new hole at the (i + 1, j)
position. We use the convention that qkl = 0 if (k, I) is not in Γ(X).

Illustrations of this operation can be found in [8], [16, pp. 57-
58], [21] or [22].

Concerning standard Young tableaux and Schensted's correspond-
ence, Schΐitzenberger proved the following property of Δ.

THEOREM 7.1. Let πbe a permutation on {1, 2, , n + 1}. Define
a permutation πf on {1, 2, , n) by letting

(π(i) - 1 if π(i) > π(n + 1)

\π(i) if π(ϊ) < π(n + 1) .

Then K\π') - ΔK\π). •

To extend this result to B and K, we factor them through the
Schensted correspondence. In the case of B, if we have a two-line
array

α 2

 an+i

b2 - bn+ι

to which we can apply B, it has an associated permutation π and
functions Φa and Φb (cf. § 4). We can obtain B2 of this array by
applying Φa to each part of the transpose of K2(π).

From the construction of the factorization, we know that Φa(j) =
Φa(j + 1) if and only if j appears in the same column or to the left
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of, and below, j + 1 in K\π). This implies that A "commutes" with
Φa, i.e., it makes no difference whether we apply Δ to Φa(TK2(π)),
or first apply Δ to TK\π) and then apply Φa.

In addition, if the array

α2 αΛ+1

h - 6n.

is associated (as in § 4) with the permutation πr and the functions
Φf

a and Φ'b, it is clear that π and π' are related as in Theorem 7.1
and that Φ'a is the restriction of Φa to {1, 2, , n).

A similar collection of facts holds for K. If we add them all
to Theorem 7.1, we obtain the desired extension.

COROLLARY 7.2. ( i ) K- (ζ £ ) = ^ (£ J «•).

Using J, we can define a collection of operators, essentially
defined by Schϋtzenberger, each of which maps one column-strict
plane partition into another, preserving shapes. Choose m jΞ> 1, and
let P be a column-strict plane partition with largest part at most
m. We inductively construct a new array Sm{P) = (Pij) based on P
and having the same shape as P.

Start by letting Px = P. If, at some point, we have defined
Pu I ^ 1, let nx be the size of the largest part in Px and let {ih j\) —
Γ(X) — Γ(τ), where λ and τ are the shapes of Pt and JPZ, respectively.
We then define p[ι5ι = m — nt + 1. If ΔPX is not empty, let P ί + 1 = z/Pi
and continue the process. When ΔPX is empty, the construction is
complete.

Thus, if we have the column-strict plane partition

4 4 4 3
P = 3 3 1

1 1

we find that

5 5 5 2
SIP) - 3 3 3

2 2

For our purposes, we are mainly interested in the following
property of Sm.

THEOREM 7.3. For m Ξ> 1, Sm is an involution mapping the set
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of column-strict plane partitions with part size bounded by m onto
itself, preserving shapes. •

A proof of this theorem is given in [8], along with an extension
of the definition of Sm and a discussion of some of its other properties.
Variations of Sm are also considered in [16, pp. 57-60] and [22].

8«. The dihedral group and the correspondences* Some of
the results that we have derived thus far have suggested that there
is a relation between geometric operations on a matrix and changes
in the image of the matrix under B and K. The most obvious
relation is the fact that B and K commute with T. In addition,
Theorem 5.4 implies that, if we take a matrix M and let M be the
reflection of M about a vertical axis, we have B\M) = K\M) (cf.
Theorem 6.2).

We are thus led to consider the effect of the eight operations,
forming the dihedral group generated by 90° rotations and trans-
positions, on a matrix under B and K. If M — (m^ ) is an r x c
matrix, let UM = (m y) be the c x r matrix defined by m[ό — mr_j+li.
Thus U rotates a matrix 90° clockwise. As Corollary 5.6 tells us
the effect of the transposition Γ, it suffices to determine how K and
B are affected by U.

THEOREM 8.1. Let M be a r x c matrix. Then
( i ) B{UM) - (K\M), SrK\M)).
(ii) K(UM) = (B\M), SrB\M)).

Proof We first prove (i). That B\UM) = K\M) for all M is
an immediate consequence of Theorem 5.4. We next prove that
B\UM) = SrK\TM) which, since K\TM) = K\M), will finish the
proof. Since K\M) = K\TM), B\UM) has the same shape as
SrK\TM) for all M. Now, the desired equality can be proved by
induction on σ(M), the case σ(M) = 1 being clear.

Let M = (mtj) be an r x c matrix. Let k be the greatest index
such that row k of M has nonzero entries, and let I be the greatest
index such that mkl Φ 0. Define a new r x c matrix Mf by subtracting
1 from mu in M.

Using the Burge correspondence, it is clear that the two-line
array of UMr can be obtained by deleting the last column, necessarily
ίr — k + 1\ f r o m t ] i e t w o _ i j n e a r r a y of UM. Thus, we can construct
\ v /

B\UM) by adjoining r — k + 1 to some position (s, t) in B\UMf).
On the other hand, using the Knuth correspondence, the two-

line array of TM' equals the two-line array of TM with its first
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column, necessary fi\ deleted. Thus by Corollary 7.2, SrK\TM') =

SrΔK\TM). The definition of Sr implies that, to get SrK\TM), we
adjoin v — k + 1 to some position (V, *') in SrK\TMf). By induction,
B\UM') = SrK\TMr) and, since 52(tfΛf) and SrK\TM) have the
same shape, (β, ί) = (s', t') Hence, B\UM) = SrK\TM).

The proof of (ii) is now easy. It follows from Theorem 5.4 that
JB2(M) - K\UM) and i:2(M) - B\TUM). From the second of these
and (i), we obtain

K\UM) = B\U2TM) = SrK\UTM) .

Using the first equality and Corollary 5.6, we find that

SrK\UTM) = SrB\TM) = S r£W) ,

completing the proof. •

This result and Corollary 5.6 allow us to calculate how B and
K act upon any of the eight variants of the r x c matrix M using
just Sr and Sc if we are given B(M) and K(M). For example, if
K(M) = (P, Q), we find that K(U2M) equals (SrP, SCQ). Note that
the fact that Sr is an involution (Theorem 7.3) is an immediate con-
sequence of this result, since U\U2M) = M.

If we restrict ourselves to Schensted's correspondence and let
M be a permutation matrix, Theorem 8.1 becomes simpler, since
K\M) = TB\M) and K\M) = TB\M). In this case, the corollary is
basically a reformulation of results of Schensted and Schϋtzenberger.
These results and some of their implications are given in another
form by Knuth [16, p. 59].

9. The Hillman-Grassl correspondence* Although the study
of plane partitions dates back to MacMahon, reverse plane partitions
have only recently been considered. Interestingly, reverse plane
partitions are much easier to enumerate than their forward cousins.
Using some deep results concerning plane partitions, Stanley has
shown that reverse plane partitions have a simple generating func-
tion (cf. [23, p. 270]). This simplicity was explained by a corre-
spondence between nonnegative integer arrays and reverse plane
partitions devised by Hillman and Grassl [13]. It is to this corre-
spondence that we turn our attention in this section.

Let λ be a shape. Let M — (m,, ) be an array of nonnegative
integers indexed by Γ(λ). We say that M has shape λ. We will
use M to construct inductively a reverse plane partition H(M) of
shape λ. If all the entries of M are 0, we let H(M) be the reverse
plane partition of shape λ with all of its parts equal to 0.
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If M has some nonzero entry, let t = min {j: mtj Φ 0 for some i}
and let s = max {i: mit Φ 0}. Let Mf be the array of shape X obtained
from M by subtracting 1 from mst. We assume that H(M') = (qτj)
has been defined.

We next define a path in Γ{\). Let (il9 j\) = (s, Xs). Assume that
(ΐfc, ifc) has been defined for some k ^ 1. Let (ifc+1, jΛ + 1) be (ΐfc + 1, jk)
if gifcifc = q%k+l3 k and let (ifc+1, ifc+1) be (ίk, j k - 1) otherwise. By con-
vention, we assume that qiά — oo if (^ *̂) is not in Γ(X). It is easily
seen that we must have (in, jn) = (λί, ί) for some n. The path ter-
minates in this position.

Finally, we let H(M) be the array (ptj) of shape λ defined by

_ (qtj + 1 if (ί, i) = (i*, ifc) for some fc

[qtj otherwise

for all (ΐ, j) in /"(λ). Detailed examples of this procedure can be
found in [9] or [13].

The map H is the Hillman-Grassl correspondence. The funda-
mental result concerning H is given below.

THEOREM 9.1. For a given shape λ, H is a bisection from the
set of all nonnegative integer arrays of shape X onto the set of all
reverse plane partitions of shape λ. O

A proof of this theorem can be found in [13], along with certain
other properties of H. Additional properties of the correspondence
as it pertains to reverse plane partitions are given in [9] and [14].
Here, we are interested in a connection between H and the plane
partition correspondences that we have already developed.

10* The relationship between B and H. Despite the entirely
different constructions used to define the correspondences B and H,
it happens that they are intimately connected. Indeed, H can be
viewed as a generalization of B, and it can be used to give a simpler
construction of B(M). To see this connection, we first note that
the Hillman-Grassl correspondence possesses a very familiar type of
characterization.

THEOREM 10.1. Let M be a nonnegative integer array of shape τ.
Choose I such that 1 — p(τ) ^ I ^ τt — 1. Let s = max {i: {i, I + i) e
Γ(τ)} and lett — l + s. Define a matrix Mι to be the s x t subarray
of M consisting of those entries in positions (ί, j ) f l ^ i ^ s f l ^ j ^ t.

Let X be the shape determined by the l-diagonal of H(M) and
let Xr be its conjugate shape. Then, for all k ^ 1, we have
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( i ) ak(Mι) = X, + λ2 + + Xk

(ii) dk(Mι) = X[ + λ̂  + + λί.

Proof. A direct proof of part (i) can be found in [14]. This
can also be proved by first verifying Theorem 10.2, to follow, invoking
Theorem 5.5 and then noting that, to determine a diagonal in the
general case, one can restrict oneself to the rectangular case. The
details for this method are given in [7, pp. 110-121].

As for part (ii), this follows immediately from part (i) and
Theorem 5.2. •

This theorem suggests a strong relationship between H and the
Burge correspondence. To make the connection explicit, consider the
following correspondence. Let M be an r x c nonnegative integer
matrix. Rotate M 180°, apply H to the rotated matrix to yield a
reverse plane partition of shape (cr) and then rotate the reverse
plane partition 180° to yield a plane partition with at most r rows
and c columns. We denote this resultant plane partition by G{M).
Thus, G sends an r x c matrix to a plane partition with at most r
rows and c columns, as does B. From the definition of G and the
nature of H, G must be a bijection, as is B. Finally, a comparison
of Theorems 5.5 and 10.1 leads us the following conclusion.

THEOREM 10.2. For all nonnegative integer matrices M, B{M) =
G(M). •

A direct proof of this theorem can be found in [7, pp. 110-118].
This is a surprising result. We have no good explanation as to why
this connection should exist. Nor do we know of any analogous,
and equally nice, result for K. Each step in the construction of
K(M) does consist of adding l's to certain parts, but these parts
need not be contiguous, forming a path, and the first and last posi-
tions are not easy to determine. For another example of where the
parallelism of B and K seems to fail, see [10, § 6].

REFERENCES

1. G. E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.
2. E. A. Bender and D. E. Knuth, Enumeration of plane partitions, J. Combinatorial
Theory, Ser. A, 13 (1972), 40-54.
3. G. Birkhoff, Lattice Theory, 3rd. ed., Amer. Math. Soα, Providence, RI, 1967.
4. W. H. Burge, Four correspondences between graphs and generalized Young tableaux,
J. Combinatorial Theory, Ser. A, 17 (1974), 12-30.
5. P. Crawley and R. P. Dilworth, Algebraic Theory of Lattices, Prentice-Hall, Engle-
wood Cliffs, NJ, 1973.



MATRIX CORRESPONDENCES 315

6. G. Frobenius, Uber die Charaktere der symmetrischen Gruppe, S.-B. Preuss. Akad.

Wiss. (Berlin, 1900), 516-534.

7. E. R. Gansner, Matrix correspondences and the enumeration of plane partitions, Ph.D.

Dissertation, M.I.T., February, 1978.

8. , On the equality of two plane paftition correspondences, Discrete Math., 30

(1980), 121-132.

9. , The Hilhnan-Grassl correspondence and the enumeration of reverse plane

partitions, J. Combinatorial Theory Ser. A, to appear.

10. , The enumeration of plane partitions via the Burge correspondence, preprint.

11. C. Greene, An extension of Schensted's theorem, Advances in Math., 14 (1974), 254-

265.

12. , Some order-theoretic properties of the Robinson-Schensted correspondence, in
ιίCombinatoire et Representation du Groupe Syrnettique", D. Foata, ed., Lecture Notes in

Mathematics No. 579, Springer-Verlag, Berlin, 1977, 114-120.

13. A. P. Hillman and R. M. Grassl, Reverse plane partitions and tableaux hook numbers,

J. Combinatorial Theory, Ser. A, 21 (1976), 216-221.

14. } Functionx on tableaus frames, Discrete Math., 25 (1979), 245-255.

15- D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J.

Math., 34 (1970), 709-727.

16. , The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading,

Mass., 1973.

17. C. L. Liu, Topics in Combinatorial Mathematics, Math. Assoc. Amer., Washington,

DC, 1972.

18. P. A. MacMahon, Combinatory Analysis, Vol. 2, Cambridge University Press, 1916;

reprinted by Chelsea, New York, 1960.

19. G. de B. Robinson, On the representations of the symmetric group, Amer. J. Math.,

60 (1938), 745-760.

20. C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math., 13

(1961), 179-191.

21. M.-P. Schiitzenberger, Quelques remarques sur une construction de Schensted, Math.

Scand., 12 (1963), 117-128.

22. , Promotion des morphismes d'ensembles ordonees, Discrete Math., 2 (1972),

73-94.

23. R. P. Stanley, Theory and applications of plane partitions I, II, Studies in Applied

Math., 50 (1971), 167-188, 259-279.

24. G. P. Thomas, On a construction of Schiitzenberger, Discrete Math., 17 (1977),

107-118.

25. y On Schensted's construction and the multiplication of Schur functions,

Advances in Math., 30 (1978), 8-32.

Received August 8, 1979 and in revised form June 26, 1980.

UNIVERSITY OF ILLINOIS

URBANA, IL 61801

Current address: Bell Laboratories

Murry Hill, NJ 07974






