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PARTITIONS OF GROUPS AND COMPLETE MAPPINGS

RICHARD J. FRIEDLANDER, BASIL GORDON

AND PETER TANNENBAUM

Let G be an abelian group of order n and let k be a
divisor of n — 1. We wish to determine whether there exists
a complete mapping of G which fixes the identity element
and permutes the remaining elements as a product of dis-
joint ^-cycles. We conjecture that if G has trivial or non-
cyclic Sylow 2-subgroup then such a mapping exists for
every divisor k of n — 1. Several special cases of the con-
jecture are proved in this paper. We also prove that a
necessary condition for the existence of such a map holds
for every k when G is cyclic.

1* Introduction* A complete mapping of a group G is defined
to be a bijection φ: G -> G such that the mapping θ: g —> g~λφ(g) is
also bijective. (Some authors refer to θ, rather than φ, as the com-
plete mapping.) If the permutation ( ι 2 ' ' ' * J is a complete map-

\Cι C2 * * * Cn/

ping of G and g eG, then ( 1 2 n ) is clearly also a complete
Vwy c2g * cng/

mapping of G. By suitable choice of g, we can therefore suppose
that bn = cn — 1. Then the complete mapping can be viewed as a

permutation ( 1 2 ' ' ' n~ι) of the nonidentity elements of G. The

permutation ( 1 2 W~M is cyclic if and only if it can be written

in the form ( α i α 2 ' ' * a*-1), where aτιa2, a2

ιaZf , a^-x^i are all dis-
\tt 2 0-3 * * ill. /

tinct. In this case we say that G is an R-sequenceable group with
i2-sequencing al9 α2, •• ,αΛ_1. Thus a group G is i?-sequenceable if
and only if it has a complete mapping which fixes the identity element
and permutes the remaining elements cyclically. In [2], we deter-
mined several infinite classes of 22-sequenceable abelian groups (see
(l)-(6) below).

In this paper, we generalize the notion of i2-sequenceability by
asking which groups G of order n have the property that, given any
regular partition k + k + + k (d terms) of n — 1, there exists a
complete mapping of G which fixes the identity element and permutes
the remaining elements as a product of d disjoint Λ -cycles. We call
such a mapping a k-regular complete mapping of G. That is, given
any divisor k of n — 1, a fc-regular complete mapping of G is a
permutation ( λ 2 ' ' ' n~1) of the nonidentity elements of G whose
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disjoint cycles each have length k and whose quotients b^Ct also
constitute all the nonidentity elements of G. If k = n — 1 then the
permutation is cyclic and hence is an ^-sequencing of G.

There are several contexts in which fc-regular complete mappings
arise. For example, 6-regular complete mappings of Zn can be ob-
tained from cyclic Steiner Triple Systems of order n Ξ= 1 (mod 6) [9].
Another occurrence of ^-regular complete mappings is in connection
with a special family of permutation matrices called /-matrices [8],
An additional context in which ά-regular complete mappings arise is
in the connection between map coloring and .B-sequenings of a group
[2], [11].

It is well known [6] that if a finite abelian group has a complete
mapping, then its Sylow 2-subgroup is either trivial or noncyclic.
By a theorem of M. Hall [5], the converse is also true. We conjec-
ture that, given any abelian group G of order n having either trivial
or noncyclic Sylow 2-subgroup, there exists a fe-regular complete
mapping of G for each divisor k of n — I.1 We have shown this to
be true for n <Ξ 15, as well as for the following general cases:

(1) k = n — 1, G is the cyclic group Zn, where n > 1 is odd.
(2) k = n — 1, (n, 6) = 1 and n Φ 1.
(3) k = n — 1, G has cyclic Sylow 3-subgroup, where n > 1 is

odd.
(4) k = n — 1, the Sylow 2-subgroup of G is (Z2)

m, where m > 1,
but m Φ 3.

(5) k = n — 1, the Sylow 2-subgroup S of G is Z2 x Z2r where
either

( i ) r is odd, or
(ii) r Ξ> 2 is even and G/S has a direct cyclic factor of order = 2

(mod 3).
( 6 ) k = n -1, G = Z2x Z4rf r ^ l .
( 7 ) & is any divisor of n — 1, G is an elementary abelian p-

group, G =£ Z2.
( 8 ) fc is any divisor of p — 1, G is an abelian p-group p Φ 2.
( 9 ) fc = 2 o r ( w - l)/2, G = Zn, where w > 1 is odd.
As mentioned above, cases (l)-(6) give i?-sequencings of G and

are proved in [2]. Cases (7) and (8) will be proved in § 2 of this
paper and case (9) in § 3.

As a necessary condition for solving the cyclic case for any
divisor k of n — 1, we must be able to divide the nonzero residues
mod n into (n — l)/k sets, each of cardinality k, such that the sum

1 One might also conjecture that there must be a complete mapping corresponding
to any partition of n — 1. However, the cyclic group Z7 provides a counterexample,
as it has no complete mapping that fixes the identity and permutes the remaining
elements as a product of a 4-cycle and a 2-cycle.
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of the elements in each set is = 0 (mod w). (We use additive notation
when the group is cyclic.) We will solve this number theory problem
in § 4 of this paper.

2* Abelian ^-groups* The following theorem gives an infinite
family of groups G of order n for which there exists a fc-regular
complete mapping for all divisors k of n — 1.

THEOREM 1. Suppose G is an elementary abelian p-group of
order n, p prime, G Φ Z2. Then for any divisor k of n — 1, there
exists a k-regular complete mapping of G.

Proof. If n = pm, we can write G = Zp 0 Zp 0 © Zp (m
times). G is the additive group of GF(pm), the finite field of pm

elements. Let a be a generator of the (cyclic) multiplicative group
GF(pm)* of nonzero elements of GF(pm). For each divisor k of n — 1,
we define the permutation φ by φ{x) = adx, where d = (n — l)/k. Since
ad has order k in GF(pm)* and ad, ad — 1 Φ 0, the permutation ^ is
a fc-regular complete mapping in G. •

THEOREM 2. Suppose G is an abelian p-group of order n = pm,
p prime, p Φ 2. Then for any divisor k of p — 1, there exists a
k-regular complete mapping of G.

Proof. If G = Ẑ rn then by a result in [3] there exists a unit a
in the ring Ẑm such that the mapping φ{x) = α a? is a ^-regular com-
plete mapping of Zvm.

The result follows by induction and the following observation:
If φλ is a fc-regular complete mapping of Gx and φ2 is a fc-regular
complete mapping of G2 then the mapping (x, y) -^ (Φi(%), Φi{y)) is
clearly a ά-regular complete mapping of Gx x G2. •

3̂  Cyclic groups. In this section we show the existence of
ά-regular complete mappings of cyclic groups for certain values of k.

THEOREM 3. If k = 2 or (n — l)/2, then there exists a k-regular
complete mapping of the cyclic group Zn, where n > 1 is odd.

Proof. The nonzero elements of Zn are 1, 2, , n — 1, the non-
zero residues mod n. For & = 2, we define the permutation φ by

φ is clearly a product of in ~ l)/2 disjoint 2-cycles. The two differences
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occuring in the jth factor of φ are j — (n — j) = 2j and (n — j) — j =
n — 2j. As j runs from 1 to (n — l)/2, these differences run through
all the nonzero residues mod n, since n is odd. Thus φ is a 2-regular
complete mapping of Zn.

For k = (n — l)/2, we define the permutation φ to be the product
of two fe-eyeles φx = (α1? α2, , αΛ) and Φ2 — ( — α:, — α2, , — αfc),
where the α̂  are determined as follows:

-iy- 1 (2i - 1) l^ί£ n + 3

4
α,. = if W Ξ I (mod 4)

±l 1

and

+ 1

aL =

(-l) i-1(2i - 1) 1 ̂  iS

(-l)ι(2ΐ-l); i^±i^.
if 9i = 3 (mod 4) .

In either case, since — at — n — aίy it is easily checked that the ele-
ments ±ait 1 ̂  i ^ k, run through all the nonzero residue modw.
If n = 1 (mod 4), the differences ai+1 — at in ̂  are ( —l)*(4i) (when
1 ^ ΐ ^ (n - l)/4), (-l) ί+1(4ί) (when (w + 7)/4 ^ i ^ (w - 3)/2), ±2
and 3. A straightforward check shows that, since n is odd, these
differences are all distinct and, along with their negatives, run through
all the nonzero residues mod n. The verification for n = 3 (mod 4)
is entirely similar. Thus, in either case, φ = φ^2 is an (n — l)/2-
regular complete mapping of Zn. Π

For the case k = 6, a 6-regular complete mapping of ZΛ for W Ξ I
(mod 6) can be constructed from a C/P-neofield Nv of order v = 2
(mod 6) [1] or from an £ΓP /-matrix of order m Ξ 0 (mod 6) [8].
This result can be extended to show the existence of a 6-regular
complete mapping of any abelian group of order = 1 (mod 6) [14].

4* A related number theoretic problem* Let φ: G —> G be a
complete mapping of G, normalized (as in the introduction) so that
φ fixes the identity element of G. Then as already noted, φ can be

regarded as a permutation ( 1 2 n) of the elements of G with

the property that αέ ~h~i1ci (i = 1, , w — 1) also constitute all the
nonidentity elements of G. We now decompose this permutation into
a product of disjoint cycles, and suppose that (b1 b2 br) is a typical
one of these cycles. Thus Gi = 6i+1 for i < r, while cr = δx. Hence
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a,a2 - ar = (br'c,) (b2~
ιc2) - (b~ιcr) = (b^b2) (b^b,) (b7%) = 1. We

have thus proved the following:

THEOREM 4. Suppose that φ is a complete mapping of G whose
associated permutation is the product of disjoint cycles of lengths
Vu r2, ••',?%• Then the elements of G can be partitioned into disjoint
subsets Si of cardinality Ί\ (1 ^ i ^ v) such that the product of the
elements in each subset St (taken in a suitable order) is 1.

We now specialize to the case where G — Zny the cyclic group
of order n, and we go over to additive notation. We further suppose
that φ is a A -regular permutation of Z* = Zn\{0} for some k > 1,
i.e., that φ(0) = 0, while the remaining n — 1 elements of Zn fall into
in — l)/k cycles, each of length k. In this case, Theorem 4 asserts
that if such a complete mapping φ exists, then the nonzero elements
Zΐ can be partitioned into (n — l)/k sets of cardinality k, where the
sum of the elements in each set is = 0 (mod w). The purpose of this
section is to show that this necessary condition for the existence of
ό is always fulfilled as long as k\n — 1 and n is odd. (Of course
the condition that n be odd is needed, for only then is the sum of all
the elements of Zn congruent to 0 (moan).) We state this formally
as a theorem, although the proof will not be achieved until the end
of the section.

THEOREM 5. Suppose n is odd and k\n — 1, where k > 1. Then
the nonzero residues (mod n) can be partitioned into (n — l)/k sets
of cardinality k, so that the sum of the elements of each set is ΞΞ 0
(mod n).

We remark that if k\l\(n — 1), and that if Theorem 5 has been
proved for sets of cardinality k, then it also holds for sets of car-
dinality I. Indeed the required sets of cardinality I can be obtained
by simply grouping together the sets of cardinality k (in groups of
Ilk). This reduces the proof of Theorem 5 to the case where k is a
prime. For k = 2 the theorem is trivial, since the required sets are
then just {1, n-ΐ\, {2, n-2}, , {(n-l)/2, (n + l)/2}. For odd values
of k we have not been able to take effective advantage of the re-
duction to primes. Instead we will proceed by mathematical induc-
tion through the odd values of k. The kernel of the proof is a
discussion of the case k = 3.

When k = 3, the conditions k\n — 1 and n odd of Theorem 5 are
together equivalent to n = 1 (mod 6). In this case Theorem 5 re-
duces to
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THEOREM 6. If n = 1 (mod 6), then the nonzero residues (moan)
can be partitioned into (n — l)/3 triples such that the elements of
each triple have sum = 0 (modn).

This theorem was proved by Skolem [12], [13] for n = 1 or 7
(mod 24), and by Hanani [7] for n = 13 or 19 (mod 24). For the
purpose of extending to arbitrary odd k, it is necessary to strengthen
Hanani's result by proving a conjecture of Skolem [13, p. 274]. We
will therefore have to make a fairly elaborate detour. This investi-
gation was originally carried out by one of us (B.G.) in collaboration
with W. H. Mills [4]. Related constructions were later carried out
by O'Keefe in [10] and Doner in [1]. Since [4] is not in general
circulation, we will reproduce the details of the construction here.

Given a set A = {al9 a2, , am} of m integers and a set B =
{K K ''', b2j of 2m integers, we will say that B covers A if B can
be partitioned into m disjoint pairs (6^, bh), , (6<m, bjm) with
^h ~~ biλ = aλ (1 <Ξ λ ^ m). We will prove the following conjecture
of Skolem:

THEOREM 7. Am = {1, 2, 3, , m) is covered by Bm = {1, 2, 3,
2m — 1, 2m + ε}, where ε = 0 ifm = 0 or 1 (mod 4), and e = 1 if
m = 2 or 3 (mod 4).

Clearly if B covers A, and Y Φ 0, then any set of the form
7J3 + δ = {γδ1 + <5, , τ&2m + <?} covers 7A and — 7A.

LEMMA 1. If u^ 1, the set Fu = {1, 3, 5, , 2u — 1} is covered
by G. = {1,2,3, --.

Proof An appropriate division of Gtt into pairs is given by
(i, 2u + 1 — i), 1 ^ i ^ ^.

LEMMA 2. // w^l or 3, then Fu is covered by Hu = {0, 3, 4, 5, ,
2u + 1}.

Proof. We use induction from ^ to u + 2. We have F2 = {1, 3}
and H2 — {0, 3, 4, 5}. The pairs (4, 5) and (0, 3) give a covering of
F2 by H2. For the other initial value of the induction, namely u = 5,
we have F5 = {1, 3, 5, 7, 9} and H5 = {0, 3, 4, 5, 6, 7, 8, 9, 10, 11}. The
desired covering of F5 by H6 is provided by pairs (7, 8), (3, 6), (5, 10),
(4, 11) and (0, 9).

Now assume the lemma true for u, and consider Fu+2 =
{1, 3, 5, , 2u + 3} and Hu+2 = {0, 3, 4, 5, , 2u + 5}. We form the
pairs (0, 2u + 3) and (3, 2^ + 4). These give the differences 2u + 3
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and 2u + 1. The remaining elements of Fu+2 constitute the set Fu,
while the remaining elements of Hu+2 form the set {4, 5, 6, ,
2u + 2, 2u + 5} = - 1 Hu + (2u + 5). By induction (and the above
remarks) this set covers Fu9 completing the induction.

LEMMA 3. If u Φ 1, 2, 4, then Fu is covered by Ju = {0, 2, 3, ,
2% -2,2u- 1, 2u + 1}.

Proof. We form the pair (2, 2w + 1), which has difference 2u — 1.
The remaining elements of Fu constitute the set Fu_19 while the
remaining elements of Ju constitute the set Hu_1 of Lemma 2. There-
fore, Lemma 3 follows from Lemma 2.

LEMMA 4. If u Φ 2 or 4, then Fu is covered by Ku — {0, 1, 4, 5,

6, -..,2u + 1}.

Proof. We again use induction from u to u + 2. We have
2^ = {1} and Kt = {0, 1} so clearly ϋ^ covers Fλ. For the other
initial value u = 6, we have i^ = {1, 3, 5, 7, 9, 11} and K6 = {0, 1, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13}. A covering of F6 by K6 is given by the
pairs (6, 7), (9, 12), (5, 10), (1, 8), (4, 13) and (0, 11).

Now assume the lemma proved for some integer u, and consider
Fu+2 - {1, 3, 5, , 2u + 3} and Ku+2 = {0, 1, 4, 5, 6, , 2u + 5}. We
form the pairs (0, 2u + 3) and (1, 2u + 2) with differences 2^ + 3 and
2^ + 1 respectively. The remaining elements of Fu+2 constitute Fuf

while the remaining elements of Ku+2 form the set {4, 5, 6, ,
2u + 1, 2u + 4, 2u + 5} = -1-K% + (2u + 5). By induction, -1KU +
(2u + 5) covers Fu, and the proof is complete.

LEMMA 5. Ifu>l, then Fu is covered by Lu = {0, 1, 2, 4, 5, 6, ,
2u - 1, 2u + 1}.

Proof. We form the pair (2, 2w + 1), which has a difference of
2u — 1. The remaining elements of JPW form the set Fu_lf while the
remaining elements of Lu form the set Ku_t of Lemma 4. For u ΦZ
or 5, Lemma 5 now follows from Lemma 4. Finally, consider u = 3
and 5. We have L3 = {0, 1, 2, 4, 5, 7} and L5 = {0, 1, 2, 4, 5, 6, 7, 9}.
The required coverings of Fz and F5 are given respectively by (1, 2),
(4, 7), (0, 5) and (7, 8), (2, 5), (1, 6), (4, 11), (0, 9).

LEMMA 6. If u^ 4, then Fu is covered by Mu = {0, 4, 5, 6, ,

2u + l,2u + 3}.

Proof. We form the three pairs (0, 2u-l), (4, 2u + 1), (8, 2M + 3)
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with differences 2u — 1, 2u — 3, 2u — 5 respectively. The remaining
elements of Fu form the set F%_3. If u = 4, the remaining elements
of M4 form the set {5, 6}, which covers ί\. If u > 4, the remaining
elements of M4 form the set {5, 6, 7, 9, , 2u — 2, 2 }̂ = Lu_3 + 5.
In this case the result follows from Lemma 5, and the proof is
complete.

We are now ready to prove Theorem 7. There are six special
cases which do not fit into the general pattern. We deal with them
separately in the following lemma.

LEMMA 7. If m = 2, 3, 6, 7, 10 or 11, there is a covering of
Am = {1, 2, ., m) by Bm = {1, 2, , 2m - 1, 2m + 1}.

Proof. Write m = 2h + δ, where 3 = 0 or 1 and ft = 1, 3 or 5.
We begin by forming the pairs (1, 2) and (2 + i, h + 2 + 2i), 1 ^
i <. m — h. These pairs have differences 1, ft + 1, ft + 2, , m. If
ft = 1 these pairs constitute the desired covering. If ft — 3 we are
left with the problem of covering {2, 3} by {6 + 2δ, 8 + 2δ, 10 + 2δ,
13 + 2<5}, which can clearly be done. If h = 5, we must cover {2, 3,
4, 5} by {8 + 2§, 10 + 2S, 12 + 2S, 14 + 2S, 16 + 2S, 18+ 28, 19 + 2S, 21 + 2δ}.
The required covering is (8 + 2δ, 10 + 2δ), (18 + 25, 21 + 23), (12 + 2δ,
16 + 2δ), (14 + 2δ, 19 + 2§).

Proof of Theorem 7. Let m = 2ft + δ, where δ = 0 or 1. By
Lemma 5, we can assume that m Φ 2, 3, 6, 7, 10 or 11. We now use
induction on m. Note first that ε = 0 if ft is even, and e = 1 if ft
is odd. We begin by forming the pairs (i, ft + 2i), where 1 ^ i <5

m — fe = ft + g. Then we are left with the problem of covering
{1, 2, , ft} by the union of the sets {h + 2δ + 2% - 1|1 ^ i ^ ft},
{3ft + 2§ + i11 ^ i ^ ft - 1} and {2m + e}. Now the set {1, 2, , u}
can be covered by {1, 2, , 2u — 1, 2u + ε'}, where u = [ft/2] and
ε' = 0 if u Ξ 0 or 1 (mod 4), ε' = 1 if u - 2 or 3 (mod 4). If u = 0
this is trivial, \ί u = 2, 3, 6, 7, 10 or 11 it follows from Lemma 7,
while for all other u it follows from the induction hypothesis. We
now distinguish four cases:

Case 1. ft = 0 or 2 (mod 8). Here ε = ε' = 0. Then as just
noted, we can cover {2, 4, 6, , h] by {h + 23 + 2i - 111 <: i <: ft}. By
Lemma 1, we can cover {1, 3, 5, , ft - 1} by {3ft + 25 + j \ 1 <; j ^ ft}.

Case 2. ft = 1 or 3 (mod 8). Here ε = 1, ε' = 0. By assumption
we can cover {2, 4, 6, , k - 1} by {h + 2<5 + 2i - 111 ^ i ^ ft - 1}.
By Lemma 3 we can cover {1, 3, 5, , h} by {3ft + 2<5 - 1} U {3ft +
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25 + i | l <ί j <: h — 1} U {2m + 1} unless h = 1, 3 or 7. Here ft ^ 7,
while ft = 1, 3 correspond to m = 2, 3, 6, 7.

Case 3. ft ΞΞ 4 or 6 (mod 8). Here ε = 0, ε' = 1. By assumption
we can cover {2, 4, 6, , ft} by {ft + 25 + 2i - 111 <i i <: ft - 1) U
{3ft + 25 + 1}. By Lemma 2 we can cover {1, 3, 5, , ft - 1} by
{3ft + 25 - 1} U {3ft + 25 + i | 2 ^ j ^ ft} unless ft = 2 or 6. Here
h Φ 2. For ft = 6 a suitable covering of {1, 2, 3, 4, 5, 6} is given by
(23 + 25, 24 + 23), (9 + 25, 11 + 25), (19 + 25, 22 + 25), (17 + 25, 21 +
25), (15 + 25, 20 + 25), (7 + 25, 13 + 25).

Case 4. h = 5 or 7 (mod 8). Here ε = ε' = 1. By assumption
we can cover {2, 4, 6, , h - 1} by {ft + 25 + 2ί - 111 ^ i ^ h - 2} U
{3ft + 25 -1}. By Lemma 6 we can cover {1, 3, 5, , ft} by {3ft + 25 - 3} U
{3ft + 25 + j 11 ^ j ^ h - 1} U {2m + 1} if ft ^ 7. There remains ft = 5,
which corresponds to m — 10 and 11. This completes the proof of
Theorem 7.

Proof of Theorem 6. Let n = 6m + 1. It is trivial to check
that the nonzero residues (mod?ι) are the disjoint union of the four
sets Am, Bm + m, —Am, —(Bm + m). By Theorem 7 Bm + m covers
Am. This means that (Bm + m) ϋ Am is a union of triples (α, ί>, c)
where aeAmy 6, ceJ5m + m, and a = b — c. The triples (α, —6, c)
and ( —α, δ, — c) then exhaust all the nonzero residues (modw), and
each one has sum zero.

We turn now to the case k ^ 4 of Theorem 5. It is convenient
to prove it in the following somewhat sharper form.

THEOREM 8. Suppose n is odd and Jc\n — 1, where k Ξ> 4.
ίftβ nonzero integers in the interval [ — (n — l)/2, (w — l)/2] ccm δβ
partitioned into (n — l)/k disjoint sets of cardinality k, so that the
sum of the elements in each set is 0.

Proof. Again we note that this is trivial when k is even, for
then we need merely split the interval [1, (n — l)/2] into (n — l)/k
sets of cardinality k/2, and then adjoin to each of these sets the
negatives of its elements. Suppose next that k — 5. The conditions
that n is odd and k\n — 1 then yield n = 10m + 1. We begin by
forming the 2m triples (α, — δ, c) and ( —α, δ, — c) constructed in
Theorem 6. If m Ξ 0 or 1 (mod 4), the elements of these triples
constitute all the nonzero integers in the interval [ — 3m, 3m], and
each triple has sum zero. The remaining nonzero integers in the
interval [ — (n — l)/2, (n — l)/2] = f —5m, 5m] are symmetric about 0,
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and there are 2(5m — 3m)'= 4m of them. They can therefore be
partitioned into 2m pairs of the form ( — j , j). To each of the above
2m triples we adjoin one of these pairs. This has the effect of de-
composing the nonzero integers of [—5m, 5m] into 2m sets of cardi-
nality 5, where the sum of the integers in each set is zero.

If m Ξ 2 or 3 (mod 4), the elements of the triples (α, — b, c) and
( —α, 6, — c) of Theorem 5 constitute the integers 1, 2, , 3m — 1,
3m + 1 and their negatives. The remaining nonzero integers in
the interval [ — 5m, 5m] are therefore 3m and {v\Zm + 2 ^ v ^ 5m},
together with their negatives. Since this set is symmetric about 0,
we can again split it into 2m pairs of the form (—j, j) and adjoin
one pair to each triple, giving the desired partition of [ — 5m, 5m]
into sets of cardinality 5.

Exactly the same construction will clearly now carry us from k
to k + 2 for any k ^ 5. It is no longer necessary to distinguish
between the various residues of m (mod 4), since for k ^ 5, the
elements of our k-sets constitute all the nonzero integers in

We note that the hypothesis in this section that φ is a fc-regular
permutation can easily be dispensed with, using a very slight modi-
fication of the above technique. The only essential requirement is
that 0 must be the only fixed point of φ. For simplicity we confined
ourselves to the regular case, which seems to be the most interesting
in applications. In a later paper the results of this section will be
extended to arbitrary groups of odd order.

Note added in proof. A direct, constructive proof of Skolem's
conjecture (Theorem 7), appears also in R. 0. Davies, "On LangforcΓs
problem (II), Math. Gaz., 43 (1959), pp. 253-255. We are grateful
to D. G. Rogers (private communication) for pointing out this result
as informing us of the following 3-regular complete mapping of Z2h\
φ = (1, 8, 5) (2, 10, 11) (3, 6, 24) (4, 14, 16) (7, 19, 17) (9, 15, 20) (12, 23, 18)
(13, 22, 21). The above partition was obtained by D. G. Rogers and
F. W. Roush by means of a computer search.
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